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Abstract. Intervertebral discs (IVDs) are complex structures 
that consist of three parts, namely, nucleus pulposus, annulus 
fibrosus and cartilage endplates. With aging, IVDs gradually 
degenerate as a consequence of many factors, such as micro-
environment changes and cell death. Human clinical trial 
and animal model studies have documented that cell death, 
particularly apoptosis and autophagy, significantly contribute 
to IVD degeneration. The mechanisms underlying this 
phenomenon include the activation of apoptotic pathways and 
the regulation of autophagy in response to nutrient deprivation 
and multiple stresses. In this review, we briefly summarize 
recent progress in understanding the function and regulation 
of apoptosis and autophagy signaling pathways. In particular, 
we focus on studies that reveal the functional mechanisms of 
these pathways in IVD degeneration.
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1. Introduction: Overview of cell death and its intracellular 
signaling pathways

Cell death is a fundamental biological process that is required 
for cellular development. On the basis of its morphological 
features, cell death can be grouped into three main classes, 
namely, apoptosis, autophagy and necrosis (1). The deregula-
tion of cell death is associated with the etiology, pathogenesis 
and treatment of many diseases (2-4), particularly degen-
erative diseases such as cancer, Alzheimer's disease, heart 
disease and Parkinson's disease (2,5). Over the past few years, 
increasing evidence has indicated that cell death contributes 
to degenerative disc disease (6), spinal degenerative disease, 
and intervertebral disc (IVD) degeneration (7,8). These find-
ings have led to an improved understanding of the etiology 
of these diseases as well as providing molecular strategies 
for therapy. Degenerative changes in IVDs due to aging are 
clinically important as these changes are associated with back 
pain. Current understanding of the molecular basis of IVD 
degeneration is principally focused on the regulation of apop-
totic and autophagic pathways.

Apoptosis and its signaling pathways. Apoptosis is a process 
of programmed cell death that eliminates damaged or 
non-essential cells without causing local inflammation from 
cell leakage (9). Apoptotic cells exhibit apparent morpholog-
ical changes, including cell shrinkage and plasma membrane 
bubbling as well as nuclear condensation and fragmenta-
tion (10). Triggering apoptosis requires a group of cysteine 
proteases known as caspases, which may be activated through 
intrinsic and extrinsic signaling pathways (11).

The intrinsic pathway, also known as the mitochondrial 
pathway, is initiated in the mitochondria (11). As shown 
in Fig. 1, apoptotic signals, such as DNA damage and cytokine 
deprivation, activate p53, which further initiates the intrinsic 
pathway by upregulating the p53 upregulated modulator of 
apoptosis (Puma) and Noxa [also known as phorbol-12-my-
ristate-13-acetate-induced protein 1 (PMAIP1)] (12). These 
two proteins in turn activate pro-apoptotic proteins, such as 
Bax and Bak, which eventually results in the efflux of cyto-
chrome c (13). Cytochrome c further interacts with the cytosolic 
protein apoptotic protease activating factor-1 (Apaf-1) to 
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recruit caspase-9 to form a complex known as the apopto-
some, thereby initiating the activation of the caspase 
cascade (Fig. 1) (11). Caspase activation leads to nuclear 
lamin cleavage and nuclear breakdown through caspase-3, -6 
and -7 (11,13). The intrinsic pathway is regulated by various 
proteins, including nuclear factor κ-light-chain-enhancer of 
activated B cells (NF-κB), and B-cell lymphoma-2 (Bcl-2) 
protein families. The latter is a large protein family that 
contains pro-apoptotic members [Bax, Bak, Bad, Bcl-xS, 
BH3 interacting domain death agonist (Bid), Bik and Bim] 
and anti-apoptotic members (Hrk, Bcl-2, Bcl-xL, Bcl-W, Bfl-1 
and Mcl-1) (13-16). The anti-apoptotic Bcl-2 members repress 
apoptosis by blocking the release of cytochrome c whereas the 
pro-apoptotic members promote apoptosis (15). For example, 
the cytosolic pro-apoptotic protein Bid is cleaved to form a 
truncated tBid, which further translocates to mitochondria 
and oligomerizes Bak to release cytochrome c (12). In addi-
tion, the mitochondrial protein, second mitochondria-derived 
activator of caspase (Smac/DIABLO) augments apoptosis by 
binding to cellular inhibitor of apoptosis proteins (cIAPs) and 
reversing their grip on several caspases including caspase-3, 
-6 and -7 (12).

The extrinsic pathway, also known as the cytoplasmic 
pathway, is initiated by activating pro-apoptotic recep-
tors such as tumor necrosis factor receptor 1 (TNFR1), 
death receptors (DRs) and Fas on the cell surface (17). 
This pathway consists of several other proteins, including 
membrane-bound Fas ligand (FasL), Fas complexes, 
Fas-associated death domain (FADD), caspase-8 and -10; 
these proteins ultimately activate downstream caspases 
and trigger apoptosis (Fig. 1) (15,17). Previous studies have 
demonstrated that ligand binding induces receptor clustering 
and recruitment of the adaptor protein FADD and the initiator 
caspases-8 and -10 as procaspases, forming a death-inducing 
signaling complex (DISC) (12). This event triggers the acti-
vation of the apical caspases including caspase-8 and -10, 
driving their autocatalytic processing and release into the 
cytoplasm, where they activate the effector caspases -3, -6 
and -7 (18,19) (Fig. 1). Several pathways and proteins, such as 
NF-κB, Fas-associated phosphatase-1 (FAP-1), Fas-associated 
death domain-like interleukin (IL)-1-converting enzyme-like 
inhibitory protein (FLIP), and decoy receptors (DcR)1 (also 
known as TRAIL R-3), DcR2 (also known as TRAIL R-4), and 
DcR3 (20,21), regulate the activation of the extrinsic pathway.

Figure 1. Intrinsic and extrinsic pathways of apoptosis. Apoptosis pathways may be initiated in the mitochondria (intrinsic pathway) and on the plasma membrane by 
death receptor ligation (extrinsic pathway). The intrinsic pathway is initiated intracellularly, and pro-apoptotic proteins are released from the mitochondria to activate 
caspase proteases and trigger apoptosis (12,95). The extrinsic pathway mainly comprises two branches, namely, tumor necrosis factor (TNF)-induced apoptosis and 
Fas-Fas ligand-mediated apoptosis (17). The stimulation of death receptors (DRs) leads to receptor aggregation and recruitment of the adaptor molecule Fas-associated 
death domain (FADD) and procaspase-8, which subsequently becomes activated and initiates apoptosis by direct cleavage of downstream effector caspases (12). JNK, 
c-Jun N-terminal kinase; MEKK, mitogen-activated protein kinase kinase; Puma, p53 upregulated modulator of apoptosis; TRADD, TNF receptor-associated death 
domain protein; TRAF2, TNF receptor-associated factor 2; TNFR1, tumor necrosis factor receptor 1; Apaf-1, apoptotic protease activating factor-1; Bcl-2, B-cell 
lymphoma-2; Bid, BH3 interacting domain death agonist; Smac/DIABLO, second mitochondria-derived activator of caspase; cIAPs, cellular inhibitor of apoptosis 
proteins; DISC, death-inducing signaling complex.
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Although the extrinsic and intrinsic pathways may func-
tion separately, crosstalk between these two pathways has 
been extensively reported. For example, the activation of the 
extrinsic pathway promotes caspase-8-mediated processing of 
tBid, which subsequently stimulates Bax and Bak to engage the 
intrinsic pathway (Fig. 1) (12). Another well-studied crosstalk 
mechanism between these two pathways regards the stimula-
tion of the intrinsic pathway by the tumor suppressor p53, which 
also upregulates some of the pro-apoptotic receptors such as 
DR5 and augments extrinsic signaling (12). In addition, a waxy 
lipid molecule known as ceramide may directly interfere with 
the mitochondrion and trigger the activation of the mitochon-
drial permeability transition (MPT) pore, which further leads 
to the permeabilization of the mitochondrial outer membrane, 
the release of mitochondrial intermembrane pro-apoptotic 
messengers and the induction of apoptotic cascades (22).

Autophagy and signaling pathways. Autophagy involves the 
degradation of unnecessary or dysfunctional cellular compo-
nents within lysosomes, and three different forms have been 
described, namely, macroautophagy, microautophagy and 
chaperone-mediated autophagy (23,24). Autophagy consists of 
several critical steps: i) the initiation of autophagy signaling 
through the unc-51 like autophagy activating kinase 1 
complex (24); ii) the regulation of phagophore formation by 
beclin 1/VPS34 in membranes in response to stress signaling 
pathways (25); iii) autophagy-related gene (Atg)5-Atg12 conju-
gation, interaction with Atg16L, and multimerization at the 
phagophore (24,25); iv) microtubule-associated protein 1A/1B 
light chain 3 (LC3) processing and insertion into the extending 
phagophore membrane (26); v) the degradation of targets and 
completion of the autophagosome; and vi) the fusion of the 
autophagosome with lysosomes and proteolytic degradation 
by lysosomal proteases (24,27).

The regulation of autophagy is complicated and may 
involve multiple pathways, such as nutrient deprivation, and 
various stresses (23). Nutrient deprivation may significantly 
induce autophagosome formation (28). Two well-characterized 
signaling cascades, including the target of rapamycin (TOR) 
and Ras-cAMP-dependent protein kinase A (PKA) pathways, 
sense nutrient status (Fig. 2) (23). TOR regulates nutrient 
sensing, cell growth, and autophagy (24). TOR activates down-
stream proteins, including Akt kinase (also known as protein 
kinase B), phosphoinositide-3 kinase (PI3K) and growth factor 
receptor (29). Collectively, the Ras/cAMP-dependent PKA 
signaling pathway plays an important role in glucose sensing 
in yeast cells and mammals. Under nutrient-rich conditions, 
two Ras homologs, namely, Ras1 and Ras2, are active and 
enhance cAMP generation through adenylyl cyclase in 
yeast (30). Elevated cAMP binds to bypass of cyclic-AMP 
requirement 1 (Bcy1) and inhibits PKA (23). The constitutive 
activation of the Ras/PKA pathway may suppress autophagy 
that is induced by TOR inhibition (23). Various extra- and 
intracellular stresses, such as endoplasmic reticulum (ER) 
stress, hypoxia and oxidative stress, potentially induce 
autophagy (23). ER stress stimulates autophagy through 
the double stranded RNA-activated protein kinase-like 
ER kinase-eukaryotic initiation factor-2α (PERK-eIF2α) 
pathway, the inositol requiring enzyme 1 (IRE1)/c-Jun 
N-terminal protein kinase (JNK)1 pathway, and Ca2+ 

release (23,31) (Fig. 2). The activation of eIF2α by PERK 
may enhance the transcription of autophagic genes, such as 
ATG12 (32). Hypoxia activates autophagy through effects that 
are dependent on both target genes induced by hypoxia-induc-
ible factor (HIF) and through HIF-independent effects that are 
mediated by downstream TOR inhibition of AMP-activated 
protein kinase (AMPK), regulated in development and 
DNA damage responses 1 (REDD1) and tuberous sclerosis 
proteins 1 and 2 (TSC1/TSC2) (Fig. 2) (24,28,33). Specific 
targets of HIF in autophagy include BCL2/adenovirus E1B 
19 kDa protein-interacting protein 3 (BNIP3) and BNIP3-like 
protein (BNIP3L), which are noncanonical members of the 
Bcl-2 superfamily (Fig. 2) (25,28).

2. Degeneration of IVDs and cell death

Structure of IVDs. The IVD is a flexible joint that is local-
ized between adjacent spinal vertebrae (7,8). IVDs consist 
of the outer endplates, the inner annulus fibrosus (AF), and 
the central nucleus pulposus (NP) (34). It has been suggested 
that the endplates absorb the small molecules and nutrients 
required for the disc cells (35). The AF is the tough, circular 
exterior of the IVD that surrounds the soft inner NP, and the 
AF may prevent the NP from herniating or leaking out of the 
disc by hydraulically sealing the nucleus and by evenly distrib-
uting any pressure and force imposed on the IVD (36).

IVD degeneration and signaling pathway regulation. As the 
human body ages, IVDs gradually degenerate, which leads to 
degenerative disc disease in some individuals. Various changes 
in the cellular phenotype and biochemical factors occur during 
IVD degeneration. These changes mainly include inflam-
mation, matrix degradation, loss of proteoglycan in the NP, 
disorganization of the concentric lamellae in the AF, spinal 
instability, disc height loss and prolapse (37,38). Changes to 
the immune balance of the microenvironment of the disc 
may cause immune cell infiltration and attack of the NP 
cells (39,40).

Various intracellular signaling pathways involved in the 
adaptation of IVD cells to the IVD-specific niche, pain media-
tors and IVD degeneration have been extensively studied (40). 
NF-κB and mitogen-activated protein kinase (MAPK) pathways 
regulate proinflammatory mediators such as TNF-α, IL-1β and 
IL-6 (41). The suppression of the NF-κB and MAPK pathways 
controls anti-inflammatory and anticatabolic conditions during 
the treatment of IVD herniation and its associated pain (41). 
MAPK activity also participates in osmoregulation, matrix 
production, integrin expression and NP cell survival under 
HIF-1 regulation (42). These findings suggest that β-catenin is 
a fundamental factor required to maintain IVD structure and 
function (43). The Wnt pathway is also suggested to mediate 
the development and progression of disc diseases (43). LiCl, an 
activator of the Wnt pathway, accelerated cellular senescence 
in NP cells (44,45). However, β-catenin mRNA and protein 
levels were decreased in NP cells following stimulation with the 
PKC activator phorbol 12-myristate 13-acetate (PMA) (46). The 
Notch pathway is also involved in IVD degeneration mediated 
by proinflammatory cytokines (47). Notch signaling is activated 
by hypoxia in IVD cells, and the Notch-signaling inhibitor 
L685458 blocks the activity of Notch-responsive luciferase 
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reporters and reduces the proliferation of AF cells (48). NP cells 
treated with TNF-α or IL-1β have increased levels of Notch 
receptors including Notch-1 and -2, the Notch ligand JAGGED2, 
and target genes such as HES1, HEY1 and HEY2 (49).

Cell death and its causes in IVD degeneration. Apoptosis 
and autophagy have been commonly observed in degen-
erative IVDs in clinical trials, animal models and cell culture 
studies. Cell death may be caused by numerous causes, such 
as nutrient depletion, biotic and abiotic stress as well as viral 
infection (49). The cells located at the center of the IVD only 
acquire nutrients through fluid flow or diffusion through the 
vertebral endplates and the AF (50). Consequently, nutrients 
and oxygen tension within the disc are significantly reduced as 
a result of the long distance from the vasculature to the center 
of the NP (50). Therefore, the metabolism in disc cells is partly 
anaerobic, which leads to high lactic acid concentrations and 
low pH conditions (50). With disc degeneration, the increased 
loss of NP proteoglycans reduces the hydrodynamic transfer 
of axial stress to the outer AF (50). Concurrently, the integrity 
of the AF is affected by radial fissures. Endplates undergo 
ossification, which further reduces the nutritional supply to 

the disc (51). Consequently, changes to the microenvironment, 
nutrient depletion and stress result in cell death during IVD 
degeneration.

3. Apoptosis and IVD degeneration

Apoptosis has been demonstrated to participate in IVD degener-
ation for many years. Apoptosis was initially identified using the 
terminal deoxynucleotidyl transferase-mediated dUTP nick-end 
labeling (TUNEL) assay; the IVDs from patients were found to 
have considerably more TUNEL positive cells compared with 
the healthy control discs (52). Thereafter, numerous studies 
determined that NP and AF cells undergo apoptosis in degen-
erative discs through complicated mechanisms.

Apoptosis in NP cells. The excessive apoptosis of NP cells, 
which produce cartilage-specific extracellular matrix (ECM) 
components, is an evident cellular and biochemical change 
which occurs during IVD degeneration (53,54). The dynamic 
balance between ECM synthesis and degradation is disrupted 
during IVD degeneration, which results in a gradual loss of 
disc ECM, structural failure and biomechanical changes (54). 

Figure 2. Main signaling pathways involved in autophagy regulation. Multiple factors, including nutrient deprivation, endoplasmic reticulum (ER) stress and 
hypoxic stress, are involved in autophagy through the mechanisms shown (96). Nutrient deprivation mediates autophagy through the target of rapamycin (TOR) 
and Ras-cAMP-dependent protein kinase A (PKA) pathways. ER stress stimulates autophagy through the protein kinase-like ER kinase-eukaryotic initiation 
factor-2α (PERK-eIF2α) and inositol requiring enzyme 1 (IRE1)/c-Jun N-terminal protein kinase 1 (JNK1) pathways. Autophagy is also induced by hypoxia 
that signals via AMP-activated protein kinase (AMPK) to inhibit mTOR activity or disrupt Bcl-2-beclin-1 interaction and activate beclin-1. PI3K, phos-
phoinositide 3-kinase; ATF4, activating transcription factor 4; Rheb, Ras homolog enriched in brain; HIF, hypoxia-inducible factor; TSC1/2, tuberous sclerosis 
proteins 1 and 2; BNIP3, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3.
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Both intrinsic and extrinsic pathways of apoptosis play critical 
roles in NP cell degeneration.

Intrinsic pathway and the degeneration of NP cells. 
Emerging evidence suggests that the intrinsic pathway of 
apoptosis participates in NP cell degeneration mainly by regu-
lating the levels of Bcl-2, caspase-3, collagen and aggrecan. 
Bcl-2 inhibits the intrinsic pathway of apoptosis in various cell 
systems, including factor-dependent lymphohematopoietic 
and neural cells (55). Bcl-2 regulates apoptosis by controlling 
mitochondrial membrane permeability and inhibiting caspase 
activity either by preventing the release of cytochrome c from 
the mitochondria and/or by binding to Apaf-1 (55). Notably, 
Bcl-2 significantly prevents apoptosis during IVD degenera-
tion mainly by inhibiting caspase-3 activity (Fig. 3). It has been 
demonstrated that NP cells overexpressing Bcl-2 under condi-
tions of serum starvation exhibit reduced apoptosis, decreased 
mRNA levels of caspase-3 and increased mRNA levels of 
type II collagen and aggrecan (56). Bcl-2 has been found to 
bind to nucleotide-binding domain and leucine-rich repeat 
containing protein 1 (NLRP1) and suppress its activation, 
thereby inhibiting the release of IL-1β, a pro-inflammatory 
cytokine that is processed to its active form by caspase-1 (57).

Numerous studies have shown that oxidative stress leads 
to the apoptosis of NP cells during IVD degeneration. NP 
cells treated with IL-1β exhibited elevated production of 
nitric oxide (NO) and decreased levels of proteoglycan, which 
triggered apoptosis (54); apoptosis is increased in NP cells 
treated with H2O2 and the mRNA levels of aggrecan and 
type II collagen are decreased (58). Notably, the deleterious 
effects of either H2O2 or IL-1β may be efficiently prevented by 
glutathione (58), a powerful antioxidant that protects NP cells 
from apoptosis. Pyrroloquinoline quinone (PQQ), a redox 
cofactor for bacterial dehydrogenases, potentially scavenges 
reactive oxygen species (ROS) and inhibits apoptosis (59). 
PQQ protects rat NP cells against H2O2-induced apoptosis by 
inhibiting the intrinsic pathway (59). In the presence of PQQ, 
ECM production is maintained despite being in an apoptotic 
environment (59). In addition, the pre-treatment of cells with 
PQQ increases Bcl-2 expression, inhibits cytochrome c release, 
and decreases Bax expression and caspase-3 cleavage (59). 
These results indicate that glutathione and PQQ are possible 
therapeutic options for the management of disc degeneration.

Sirtuin-1 (SIRT1), an NAD(+)-dependent deacetylase, has 
been suggested to reduce apoptosis in NP cells by enhancing 
the expression of many cartilage-specific ECM genes, such 
as type II collagen (COL2A1) and aggrecan (54,60). Recent 
studies have also shown that SIRT1 protects human NP cells 
from apoptosis by activating the Akt anti-apoptotic signaling 
pathway (54). In addition, degenerative NP cells obtained 
from patients have decreased numbers of autophagosomes 
and low LC3 and beclin 1 levels (6). These findings suggest 
that autophagy plays an important role in IVD degeneration 
and that SIRT1 protects the degenerative NP cells in humans 
against apoptosis by promoting autophagy.

Extrinsic pathway and the degeneration of NP cells. NP 
cells undergo apoptosis through the extrinsic pathway during 
IVD degeneration by regulating the levels of Fas and FasL, 
thereby affecting caspase activities. The expression levels of 
FasL and Fas were elevated in a co-culture system of human 
NP cells and human microvascular endothelial (HMEC-1) 

cells (61). FasL expression in human NP cells prevents angio-
genesis in the IVD by inducing Fas-mediated apoptosis with 
the activation of downstream FADD and caspase-3 (61). The 
NP is derived from the notochord, a rod-like structure of meso-
dermal origin (62). Notochordal cells protect NP cells from 
matrix protein degradation and apoptosis induced by IL-1β and 
FasL, and this apoptotic process is inhibited by notochordal 
cell-conditioned medium by suppressing activated caspase-9 
and -3 (63). Bid, cytochrome c and activated caspases-9 and -3 
were robustly detected in herniated NP tissues (63). Apoptotic 
signaling downstream of activated caspase-9 involves complex 
interactions between mediators of Smac/DIABLO and X-linked 
inhibitor of apoptosis protein (XIAP) that control activated 
caspase-3 signaling (Fig. 3) (64). These findings suggest that 
Smac/DIABLO and XIAP play a role in the degeneration of 
NP cells. However, this aspect remains to be clarified. The 
strong expression of Fas and FasL and the TUNEL-positive 
staining of a few NP cells in human herniated lumbar IVD 
tissues indicated the involvement of the DR pathway in IVD 
degeneration (64). Similar results were also observed in 
the IVD tissues obtained from patients with scoliosis (65). 
Recently, a member of a disintegrin and metalloproteinase 
with thrombospondin motifs (ADAMTS) family, ADAMTS-7, 
was found to have markedly elevated levels in both human and 
rat degenerative NP tissues compared with those in normal 
controls (66). The findings of this study suggest that IL-17A 
may induce ADAMTS-7 expression through TNF-α, which 
may form a molecular axis in human NP cells (66).

Apoptosis is regulated by miRNAs, which are key 
post-transcriptional regulators that target the 3'-untranslated 
regions of the genes that they repress. Aberrant expression 
profiles of miRNAs are considered as one of the etiologies 
of IVD degeneration (67). A study examining the miRNA 
expression profiles revealed that 29 miRNAs are differentially 
expressed and that miR-155 is significantly downregulated in 
degenerative NP cells (58). Additional evidence indicated that 
miR-155 promotes Fas-mediated apoptosis by targeting FADD 
and caspase-3 (67). Some studies examined the expression of 
several other miRNAs, such as miR-10b in degenerative NP 
cells; however, the upstream regulation of miRNAs and their 
interactions with cytokines remain elusive (67). In addition, 
miR-27a was recently found to regulate apoptosis in NP cells 
by targeting PI3K (69). The elevated expression of miR-21 
was found in human degenerative NP tissues, and functional 
analysis revealed that the overexpression of miR-21 increases 
Akt phosphorylation by targeting phosphatase and tensin 
homolog (PTEN) (70).

MAPK and the degeneration of NP cells. The MAPK 
family members are crucial for the maintenance of cell devel-
opment. Three subfamilies of MAPKs have been identified: 
extracellular signal-regulated kinases (ERKs), JNKs and 
p38-MAPKs (71). ERKs are important for cell survival, and 
JNKs and p38-MAPKs are involved in both the intrinsic and 
extrinsic pathways of apoptosis (71). The p38-MAPK, JNK1/2 
and ERK1/2 signaling pathways exist in NP cells and are 
required for cell growth, differentiation, and apoptosis (71). 
A highly osmotic microenvironment may be established 
during IVD degeneration. Mimicking high-osmolality condi-
tions in vitro activated the p38-MAPK, JNK1/2 and ERK1/2 
signaling pathways in rabbit NP cells (72). Furthermore, 
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activated p38-MAPKs and JNK1/2 may induce cell apop-
tosis whereas activated ERK1/2 promotes cell survival (72). 
Recently, β1 integrin was found to inhibit apoptosis induced by 
cyclic stretch in AF cells through the ERK1/2 MAPK pathway, 
and this process correlates with the activation of caspase-3 (73).

Apoptosis in AF cells. AF cells play an important role in 
providing the structural properties of the disc, and the apop-
tosis of AF cells contributes to IVD degeneration through both 
the intrinsic and extrinsic pathways.

Intrinsic pathway and the degeneration of AF cells. Studies 
of TUNEL-positive staining in rat AF tissues as well as rabbit 
models of overload-induced IVD degeneration showed that many 
cells release anti-cytochrome c; however, no anti-FasL-positive 
cells were identified in these tissues (74,75). These results imply 
that AF cells undergo apoptosis through the intrinsic pathway 
under mechanical conditions of overload. In addition, cell 
proliferation was inhibited after subjecting rabbit AF cells to 
pressure for 24 or 36 h; this result was associated with increased 
apoptosis and caspase-9 activity (75). The activity of caspase-9 
is suggested to be proportional to the apoptotic index of rabbit 
AF cells cultured in silicon elastic membranes; however, 

no detectable change in caspase-8 activity was observed in 
these cells (76). Notably, only caspase-9 inhibitor was capable 
of suppressing the apoptosis of AF cells induced by cyclic 
stretch (76). Moreover, it was demonstrated that cyclic stretch-
induced apoptosis is partially mediated by ER stress through 
NO production (77). The cyclic stretch of AF cells caused NO 
overproduction, the upregulation of ER stress markers (CHOP, 
GRP78 and caspase-12), mitochondrial depolarization and 
caspase-9 activation (77). The specific inhibitors of caspase-12 
(Z-ATAD-FMK) and caspase-9 (Z-LEHD-FMK) partially 
suppressed apoptosis (77).

Electroacupuncture (EA) inhibited the apoptosis of AF 
cells by suppressing the intrinsic pathway in a rat model of 
IVD degeneration (78). Treatment with EA reduced the 
number of TUNEL-positive stained cells whereas it increased 
the number of Bcl-2-positive cells as revealed by immunohis-
tochemical staining (78). Moreover, EA treatment significantly 
inhibits the activation of caspase-9 and -3, and enhances the 
mRNA and protein levels of Crk and ERK2 (78).

Extrinsic pathway and the degeneration of AF cells. 
An in vitro study examined the involvement of the extrinsic 
pathway in IVD degeneration and demonstrated that rabbit 

Figure 3. Principal cell death pathways involved in intervertebral disc (IVD) degeneration. With aging, IVDs suffer nutrient deprivation and multiple stresses, 
and undergo cell death, which eventually results in degeneration. Cells undergo apoptosis through both intrinsic and extrinsic pathways. The leakage of cyto-
chrome c from the mitochondria, the activation of crosstalk between caspase-8 and BH3 interacting domain death agonist (Bid)-tBid, the important downstream 
molecules of caspase-9 such as inhibitor of apoptosis protein (IAP), second mitochondria-derived activator of caspase (Smac/DIABLO) and the upstream regula-
tors of mitochondrial maintenance such as Bax and B-cell lymphoma-2 (Bcl-2), play critical roles in IVD degeneration (65,66). Two main autophagic pathways, 
including signaling via AMP-activated protein kinase (AMPK) to inhibit mTOR activity and the HIF-BINP3-beclin-1 pathway, are also induced during IVD 
degeneration. BINP3, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3; TSC1/2, tuberous sclerosis proteins 1 and 2; HIF, hypoxia-inducible factor.
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AF cells undergo increased apoptosis under conditions of 
serum deprivation (76). This process is associated with the 
increased activity of caspase-3 and -8; however, there was 
no substantial increase in cytochrome c protein levels in the 
cytosolic fraction (76). The inductive effect of serum depriva-
tion on apoptosis may be reduced by caspase-8 inhibitor but 
not by caspase-9 inhibitor (76). Apoptosis in human IVD cells 
subjected to acute trauma force may be simultaneously and 
interdependently mediated by extrinsic and intrinsic path-
ways (79).

Apoptosis in endplate cells. Apoptosis evidently occurs in the 
cartilaginous endplate cells during IVD degeneration, which 
results in a marked decrease in cell density (80). The number of 
TUNEL-positive cells in the cartilaginous endplate increases 
with age and with the destruction of the cartilaginous endplate 
following apoptosis (81).

Mechanical stress induced the apoptosis of endplate 
chondrocytes in organ-cultured mouse IVDs (82). Apoptosis 
occurred after subjecting the cells to a static mechanical 
load (82). MAPK inhibitors increase the occurrence of 
apoptosis, suggesting that MAPKs counteract mechanical 
stress-induced apoptosis (82). In rat endplate chondrocytes, the 
increased phosphorylation of JNK, ERK1/2 and p38-MAPK; 
increased cytochrome c release; and activated caspase-9 
and -3 indicate the occurrence of static mechanical 
stress-induced apoptosis through the MAPK and intrinsic 
signaling pathways (82). Treatment with inhibitors of JNK 
(SP600125), p38-MAPK (SB203580) and ERK (PD98059) 
prior to mechanical stimulation reversed both the static 
load-induced apoptosis of chondrocytes and the activation of 
JNK, p38 MAPK and ERK (82). Collectively, these findings 
demonstrate that mechanical stress induces apoptosis in rat 
cervical endplate chondrocytes through the MAPK-mediated 
mitochondrial apoptotic pathway.

Low levels of fetal bovine serum may induce the apop-
tosis of rat endplate cells, and serum deprivation leads to 
the elevated expression of caspase-9, -3, poly(ADP-ribose) 
polymerase, cytochrome c and Bax (83). The caspase-9 
inhibitor Z-LEHD-FMK significantly suppressed serum 
deprivation-induced apoptosis (80). In addition, the activation 
of acid-sensing ion channel 1a (ASIC1a) in endplate chon-
drocytes may trigger Ca2+-dependent protease activity and 
signaling, leading to the apoptosis of endplate chondrocytes 
in IVDs (84).

4. Autophagy and IVD degeneration

Autophagy consists of multiple processes that are highly 
regulated by Atg proteins and LC3 (23). During autophagy, the 
cytosolic microtubule-associated protein LC3-I is converted 
to LC3-II through lipidation, and LC3-II is translocated to 
the autophagosomal membrane (85). Thus, the conversion 
of LC3-I to LC3-II and the accumulation of LC3 are widely 
used as autophagy markers (23). Beclin 1 is a BH3 member 
of the Bcl-2 gene family that drives autophagy in mammalian 
cells (86). Various studies have demonstrated that autophagy 
occurs in both NP and AF cells. For example, rat NP and AF 
cells cultured in high glucose concentrations demonstrated the 
increased expression of beclin 1, LC3 and Atg3, 5, 7 and 12 (85).

Autophagy in NP cells. Rat NP cells exposed to compres-
sion undergo ROS-mediated autophagy, which leads to 
cell degeneration (87). Compression increases the levels of 
beclin 1 and the processing of LC3B-I to LC3B-II, which 
is a major step in autophagosome formation (87). The 
autophagy inhibitor 3-methyladenine (3-MA) attenuates 
the formation of LC3B and beclin 1 (87). Moreover, glucos-
amine, an amino sugar and a precursor in the synthesis of 
glycosylated proteins and lipids, is capable of protecting 
NP cells and inducing autophagy through the mTOR-
dependent pathway (88). Glucosamine activates autophagy 
in a dose-dependent manner within 24 h and inhibits the 
phosphorylation of mTOR and p70S6K (88). Autophagy in 
IL-1β- or H2O2-treated cells is increased by glucosamine (88). 
Glucosamine attenuates the reduction in aggrecan levels and 
prevents the apoptosis of NP cells induced by IL-1β, whereas 
3-MA partially reverses these effects (88). H2O2 increases 
the lysosomal membrane permeability in NP cells and 
subsequently induces apoptosis through the mitochondrial 
pathway (88). Moreover, H2O2 stimulates an early autophagic 
response through the ERK/mTOR signaling pathway (88). 
The inhibition of autophagy significantly decreases the rate 
of apoptosis in the cells disrupted with H2O2 (89). These 
results suggest that controlling the autophagy response in 
NP cells under oxidative stress enhances cell survival and 
probably delays disc degeneration.

Hypoxia facilitates NP cell survival under conditions of 
serum deprivation by downregulating excessive autophagy 
through restricting the generation of ROS (90). Appropriate 
autophagic activity enhances the survival of NP cells under 
conditions of serum deprivation, whereas excessive autophagy 
triggers the apoptosis of NP cells (90). Hypoxia facilitates the 
survival of NP cells in serum deprivation by downregulating 
excessive autophagy (90). Hypoxia downregulates the autoph-
agic activity of NP cells by restricting the production of ROS 
and inactivating the AMPK/mTOR signaling pathway, and 
possibly through a pathway involving HIF-1α (90). Nutrient 
starvation may also induce NP cell autophagy by increasing 
the ratios of LC3-II/LC3-I and beclin-1/β-actin, and by 
producing autophagosomes (90). Treatment with 3-MA may 
suppress autophagosome formation (90).

Autophagy in AF cells. Under conditions of serum depriva-
tion, autophagy was detected in rat AF cells by transmission 
electron microscopy (91). IL-1β may dose-dependently 
enhance the autophagy-induction effect of serum depriva-
tion (91). However, IL-1β alone fails to induce autophagy 
in AF cells cultured under conditions of serum starva-
tion (91). The suppression of autophagy by 3-MA treatment 
increases the apoptosis of cells (91). Serum supplementation 
also partially reverses the incidence of autophagy without 
affecting the incidence of apoptosis in the same cells. IL-1β 
dose-dependently upregulates the serum deprivation-induced 
autophagy of AF cells (91). Autophagy may act as a protec-
tive mechanism against apoptosis in AF cells and IVD 
degeneration.

Autophagy in endplate cells. The IVD obtains nutrients 
by diffusion from blood vessels through the cartilaginous 
endplate (92). Thus, endplate calcification may result in disc 
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degeneration by decreasing nutrient diffusion and failing to 
maintain cellular activity and homeostasis, which leads to 
apoptosis (92). Autophagic activity may correlate with IVD 
development and degeneration. For example, a previous study 
demonstrated that autophagy protects the endplate cells 
from calcification induced by intermittent cyclic mechanical 
tension (93), and the expression of the autophagy related-genes 
LC3 and beclin 1 significantly decreases as endplate chondro-
cyte activity decreases during aging (94).

5. Conclusion and future aspects

Cell death is closely associated with the pathology of IVD 
degeneration. Different types of cells undergo cell death 
through different signaling pathways in response to various 
stimuli (Fig. 3). On the basis of current studies, different IVD 
cell types undergo apoptosis largely through the caspase-9 
pathway which is clearly associated with cytochrome c 
leakage (Fig. 3). In addition, the activation of crosstalk between 
caspase-8 and Bid-tBid, the important downstream molecules 
of caspase-9 such as the inhibitor of apoptosis protein (IAP) 
and Smac/DIABLO as well as the upstream regulators of 
mitochondrial maintenance such as Bax and Bcl-2, also 
play critical roles in IVD degeneration (Fig. 3). Moreover, 
emerging evidence also suggests that several autophagic path-
ways, such as the AMPK/mTOR signaling pathway and the 
HIF-BINP3-beclin 1 pathway, are also induced by multiple 
stresses (Fig. 3).

Over the past few years, significant progress has been 
achieved to enhance our understanding of the molecular 
mechanisms that involve apoptosis and autophagy in IVD 
degeneration. However, the underlying mechanisms remain 
incompletely understood. With regard to the apoptotic 
pathways, future studies should build on current knowledge 
in order to identify all the key factors of the intrinsic and 
extrinsic pathways in the different IVD cells, as well as to 
establish their crosstalk. With regard to the autophagic path-
ways, current evidence provides either an indication of the 
factors involved or incomplete signaling pathways. Thus, it 
is necessary to exert considerable efforts in order to identify 
the factors that are specifically involved in autophagy during 
IVD degeneration. Importantly, greater efforts are necessary 
in order to develop clinical treatments that potentially retard 
or prevent IVD degeneration in the future.
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