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Potential of olfactory neuroepithelial cells as a model
to study schizophrenia: A focus on GPCRs (Review)
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Abstract. Schizophrenia (SZ) is a multifactorial disorder
characterized by volume reduction in gray and white matter,
oxidative stress, neuroinflammation, altered neurotransmission,
as well as molecular deficiencies such as punctual mutation
in Disrupted-in-Schizophrenia 1 protein. In this regard, it is
essential to understand the underlying molecular disturbances
to determine the pathophysiological mechanisms of the disease.
The signaling pathways activated by G protein-coupled receptors
(GPCRs) are key molecular signaling pathways altered in SZ.
Convenient models need to be designed and validated to study
these processes and mechanisms at the cellular level. Cultured
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olfactory stem cells are used to investigate neural molecular
and cellular alterations related to the pathophysiology of SZ.
Multipotent human olfactory stem cells are undifferentiated and
express GPCRs involved in numerous physiological functions
such as proliferation, differentiation and bioenergetics. The use
of olfactory stem cells obtained from patients with SZ may iden-
tify alterations in GPCR signaling that underlie dysfunctional
processes in both undifferentiated and specialized neurons or
derived neuroglia. The present review aimed to analyze the role
of GPCRs and their signaling in the pathophysiology of SZ.
Culture of olfactory epithelial cells constitutes a suitable model
to study SZ and other psychiatric disorders at the cellular level.
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1. Introduction

Schizophrenia (SZ) is a multifactorial disease with an
unspecified origin. Although genetic, environmental, psycho-
social and other factors might be involved in its etiology, the
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precise pathophysiological mechanisms of its development
remain unclear. SZ diagnosis is primarily based on symptoms
classified as positive (hallucinations, delirium, disorganized
speech, psychomotor disturbances), negative (affective flat-
tening, alogia, avolition, asociality and anhedonia) or cognitive
(memory and executive function deficits) (1,2).

SZ symptoms, specifically cognitive symptoms, are
associated with the molecular structure of dopaminergic and
serotonergic topology and brain networks (3).

A key objective in the study of neuropsychiatric disorders
is to elucidate the pathophysiological processes occurring in
the brain to improve understanding of the disease and diag-
nostic and therapeutic options available. The delicate nature
of the brain complicates study, and although postmortem
studies have yielded insight, there is need for suitable models
to overcome ethical and methodological limitations to obtain
brain samples. In recent years, in vitro models have emerged,
such as the culture of induced pluripotent stem cells
(iPSCs) (4) and induced neuronal (iN) cells (5), which allow
reprogramming of cells into neural and glial cell lines (6).
An alternative is the use of human olfactory neuroepithelial
(hONE) cells: Primary neurons and glial cells can be taken
via epithelial cells in the nasal cavity of living patients
with a minimally invasive technique. The heterogeneous
samples include stem cells with multipotent and regenera-
tive capacities that can be differentiated into neuronal and
glial cells for use in vitro and ex vivo (6,7). Neuropsychiatric
disorders including SZ (8-12), Alzheimer's disease (13,14)
and other mood and anxiety disorders (15) are associated
with anosmia, and it has been shown that the olfactory
epithelial cells of patients with these illnesses have cellular
and molecular alterations, such as amyloid-f and paired
helical filament-tau aggregates, alterations to the cell cycle
and phosphatidylinositol signaling pathways, membrane
phospholipid alterations, dysregulated neurodevelopmental
pathways, dysregulated mitochondrial function, oxidative
stress (16-25). Since the hONE cells of the olfactory bulb are
connected to the olfactory cortex, neurobiological alterations
in the limbic regions may be reflected in the hONE cells,
suggesting these may serve as an appropriate model for the
study of neuropsychiatric disorders.

In patients with SZ or SZ-like animal models, dysfunctions
have been observed in intracellular mechanisms activated by
key hormones, modulators and transmitters such as dopamine,
glutamate, serotonin, acetylcholine (ACh), ATP, melatonin,
endocannabinoids and oxytocin (26-28). These modula-
tors exert action by binding to G protein-coupled receptors
(GPCRs) and triggering complex downstream intracellular
signaling cascades. In the physiology of the central nervous
system (CNS), the GPCR family of receptors is involved in
key cellular functions such as proliferation, differentiation,
migration and neurotransmission both in undifferentiated
and mature neurodevelopmental stages (29-31). Genomic and
proteomic studies have demonstrated the association of SZ
with alterations in expression of GPCRs and enzymes acti-
vated by them, such as phospholipase Cb (32-34). In addition,
drugs (such as aripiprazole, azepine, chlorpromazine) used in
the treatment of this psychiatric disorder target GPCRs. To the
best of our knowledge, however, there are few studies of the
functionality of these receptors and the actions of these drugs

at the cellular level (6,35). One possibility to study these is the
use of cells cultivated from patients.

The present study conducted a literature review on PubMed
and Google Scholar, selecting articles associated with GPCRs
and their connection to SZ, as well as GPCRs in stem cells
and their relevance to SZ. The following search strategies were
used: Schizophrenia AND olfactory epithelial cells AND
GPCR; GPCR AND schizophrenia and schizophrenia AND
stem cells.

2. Olfactory epithelial cells in in vitro study of SZ

To comply with the bioethical and anatomical restrictions
around directly obtaining CNS tissue from patients with mental
disorders or neurodegenerative diseases, several experimental
approaches have been developed to study human neurons and
neuroglial physiological processes at the cellular level (36-39).
Cell models have been characterized, such as olfactory
epithelial SCs, iP cells and monocytes induced to resemble
neurons (6,21). In particular, SCs of the olfactory epithelium
express different types of GPCR and may be a suitable model
to study the function of these receptors at the cellular level
and their alteration in SZ; alterations in neurodevelopment,
stress response and gene/protein expression regulatory path-
ways have been found in patients with SZ through the use of
cells in culture obtained from olfactory epithelium (40). Most
of the currently validated cellular models take advantage of
the specific characteristics of SCs, such as their self-renewal
capacity and their differentiation potency (41,42). These char-
acteristics are also useful to establish cryopreserved biobanks
of neural SCs at different stages of development. These cells
are multipotent and have been differentiated into neurons (43)
and neuroglia (44), making the study of GPCRs at different
stages of development in different cell types possible.

Studies have observed disease-associated pathological
traits in both neural SCs and their differentiated progeny, such
as alterations in microtubule organization (45), making these
models suitable to investigate cellular and subcellular mecha-
nisms underlying the pathophysiology of psychiatric disorder.
Human olfactory neural stem cells obtained by the nasal cavity
exfoliation procedure described by Benitez-King ez al (37)
have revealed cellular and subcellular alterations in patients
with SZ, bipolar disorder and Alzheimer's disease (46) and
in cannabis users (Fig. 1) (47,48). Specifically regarding
GPCRs and their signaling, one study reported abnormal
3'-5'-cyclic adenosine monophosphate (cCAMP) accumulation
in patient-derived hONE cells (49). Another study reported
melatonin MT, and MT, receptors and their involvement in
the modulation of axonogenesis, associated with increased
levels of phosphorylated (p)GSK3p (Fig. 1) (27); axonogenesis
is impaired and melatonin receptor and pGSK3p levels are
lower in cells derived from patients with SZ compared with
those from healthy subjects (27). In olfactory cells of patients
with SZ, trimethylation of histone H3 lysine and H3 lysine 27
alters expression of genes related to glutamate decarboxylase 1
and other pathways associated with SZ (50). Neural epithelial
SCs from living patients obtained via non-invasive exfoliation
allows observation of the pathophysiological mechanisms and
structural and molecular changes in SZ (7,51,52). Moreover,
this model presents an opportunity to obtain cells from a
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Figure 1. Olfactory neuroepithelial cells as a model to study schizophrenia at the cellular level. Mechanisms associated with schizophrenia at the cellular and
molecular level, such as GPCR cellular signaling pathways, cellular functions, epigenetic markers, gene and protein expression; it also shows that neuroepithe-
lial olfactory cells can be used as a pharmacological model. GPCR, G protein-coupled receptor.

single patient at different stages of disease, including naive
stages and during treatment. Numerous in vitro models for
the study of SZ have been developed and standardized using
other human biospecimens such as postmortem brains and
genetically engineered cells due to their accessibility and
reliability (37,40,53,54).

Advantages and limitations of olfactory neuroepithelial cell
models. The initial sample to develop iPSC and iN stem cells
can be easily collected since, usually, peripheral cells are
used. Meanwhile, the collection of hONE cells has moderate
ease with a minimally invasive technique that a qualified
professional should perform (6,55). hONE cells are ready for
use ~4 weeks after collection, while iPSC require a longer
waiting time (6). Additionally, costs to obtain hONE cells are
lower than that for iPSCs and iN cells. hONE cells are neural
tissue and do not require genomic reprogramming. Both
hONE cells and iPSC have moderate or high proliferative
capacity while iN cells do not possess this capacity (5,56).
As iPSC and iN cells are induced models, it is difficult to
determine the degree of phenotypical similarity with brain
cells, while in hONE cells neurobiological properties are

preserved (6). hONE cells are cultured from living patients,
which allows the comparison of cells obtained at different
stages of the illness and treatment.

GPCR involvement in SZ-related pathways using ONE
cells. hONE cells are a relatively new model to study GPCR
expression and function. hONE cultures have multipotent SC
features and express functional purinergic P2 receptors (both
ionotropic P2X and metabotropic P2Y receptors) (57). The
activation of the purinergic pathway in these cells elicits tran-
sient increase in the intracellular calcium (Ca**) concentration,
mainly by the participation of the P2Y receptors; the calcium
increase induces exocytotic processes in these cells (57).

Moreover, other functional GPCRs are expressed in human
olfactory neural SCs, such as dopaminergic, serotoninergic
and adrenergic receptors (ARs). These cells express markers
of multipotency (Fig. 2A) and elicit an increase in intracellular
Ca** concentrations in response to ligand binding (Fig. 2B).
These characteristics contribute to a viable, minimally
invasive model for neuronal culture sample from live patients
with SZ to study the GPCR signaling pathways involved in
this pathology.
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Figure 2. Characterization of stem cells obtained from olfactory epithelium by detection of specific protein markers and functional evaluation. (A) Confocal
image of an olfactory epithelial stem cell expressing SOX-2 (red) and neuron-specific human III B-tubulin (green). Nuclei are stained with DAPI (blue).
(B) Intracellular Ca** concentration measurements illustrating the functionality of human olfactory epithelial stem cells. Stimulation with DA, 5-HT and or
EPI increases intracellular Ca** concentration (unpublished material). DA, dopamine; 5-HT, serotonin; EPI, epinephrine.

3. Dysregulated calcium signaling in SZ

Ca?" is a primary second messenger that regulates a myriad of
cellular processes depending on its intracellular concentration,
duration of stimulus and even global or local concentration
changes (58).

The Ca** signaling system in neurons is responsible for the
regulation of multiple neural functions, including exocytosis,
neuronal excitability, control of brain rhythms, information
processing and changes in synaptic plasticity involved in learning
and memory (59). Dysregulation of the Ca®* signaling pathway
is implicated in the development of neural diseases, including
SZ and bipolar disorder (59,60). Alterations in this system
include the hypofunction of N-methyl-d-aspartate receptors
(NMDAR) in early developmental stages, including complex
transcriptional and compensatory events, resulting in a pheno-
typical switch in GABAergic neurons, altering y rhythms (59).
Even though the decreased activity of the NMDAR reduces Ca?*
flow, the overall effect causes an increase in intracellular Ca?* in
large neuronal populations (61,62). This is caused by the loss of
inhibitory regulation in excitatory pathways from GABAergic
interneurons (62,63). These pathways then increase intracellular
Ca”* by activating non-NMDA channels, including GPCRs (64).

Furthermore, in the cerebral cortex of patients with SZ, elevated
levels of calcium/calmodulin-dependent protein kinase II
(CAMKIIIP) have been observed (65); this enzyme promotes
Ca*-dependent neurotransmitter release (66,67) and this
mechanism could be involved in the excessive dopamine release
observed in animals dosed with amphetamine (68,69). Altered
Ca* signaling in SZ could cause the reduced dendritic extension
and branching observed in prefrontal cortical neurons (70,71),
since an optimal balance is required to maintain dendritic trees
and altered Ca** concentration can cause dendritic deforma-
tions (72-74). An increase in Ca?* activates cell apoptosis and may
be associated with decreased neuronal cell number in cortical
and subcortical regions observed in patients with SZ (75-80).
Additionally, patients with SZ present an abnormal increase in
neurons in the cortical white matter (81), and this may be caused
by Ca** dysregulation affecting neuronal migration (82,83). To
the best of our knowledge, however, the participation of GPCRs
in Ca?* signaling has not been investigated in hONE cells.

4. Role of GPCRs in cellular signaling in SZ

SZ clinical onset usually happens in early adulthood. It occurs
in ~1% of the human population and in the US it is estimated to
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Table I. GPCR alterations identified in animal models, ex vivo assays and patients with SZ.

Associated

GPCR signaling Implications in SZ (Refs.)

Type D, (D, and Dy) Go, /G, Elevated mRNA levels of D, receptors in the (93)
temporal and parietal cortex

Type D, (D,.,) Ga/G, Overexpression in the striatum leads to deficits in 92)
inhibitory neurotransmission and dopamine
sensitivity in the prefrontal cortex

Adrenergic (o, B,.5) Go, G Positive symptoms are exacerbated by selective and (295)

Adrenergic (o, B, 3) Go indirect norepinephrine receptor agonists, while
antagonists decrease symptoms

Muscarinic (M, M3, M;) Ga,Gy, Transcriptional and proteomic alterations in M, and (296,297)

Muscarinic (M,, M,) Ga/G, M, receptors in the hippocampus and
prefrontal, frontal and cingulate cortex

mGlu (mGluR 1, mGIluR5) Go, G Overexpression of mGluR1 in the prefrontal cortex (152)
of patients

mGlu (mGluR2-4 and 6-8) Ga,/G, mGIluR2/3 may serve a role in working memory (82,298)
associated with NMDA receptor hypofunction

Serotonergic (5-HT,, 5-HT5) Ga,/G, Decreased binding of SHT to the 5-HT, , receptor in (299)
the amygdala of patients

Serotonergic (5-HT,) Go, Alterations in frontal cortical 5-HT,, receptor (300)
binding and decreased receptor density in the brain
of patients

Serotonergic (5-HT,, 5-HT, 5-HT;) Ga, 5-HT; in the human brain and reduced mRNA levels (301)
in the prefrontal cortex of patients

GABAj; metabotropic (GBR2) Ga,/Gg, GABAGR1 (6p21.3) and GABARR?2 (5q34) gene loci (302)

are SZ susceptibility loci

GPCR, G protein-coupled receptor; SZ, schizophrenia; D, dopamine; mGluR, glutamate metabotropic receptor; NMDA, N-methyl-d-aspartate;

5-HT, serotonin; GBR, GABA metabotropic receptor.

decrease lifespan by 28.5 years (84). Patients with SZ present
brain structural alterations as well as dysfunction in several
neurotransmission systems (dopaminergic, glutamatergic,
GABAergic, ACh and serotonergic signaling), in addition to
inflammation and oxidative stress. Patients also present loss of
cerebral gray matter and abnormal distribution of neurons in
the prefrontal cortex (PFC) (85-87). Patients with SZ present
structural alterations in heavily myelinated brain tracts that
comprise mostly white matter, which suggests that impaired
brain connectivity and an overall dysfunction of the axo-myelin
unit is a key mechanism underlying the pathophysiology of
SZ (88). SZ has a complex genetic background and develop-
ment depends on environmental factors (89,90). GPCRs play
a key role in the development, progression and treatment of
SZ (Table I).

Dopaminergic receptors. The biological functions of the
catecholaminergic neurotransmitter dopamine in the brain
and periphery are mediated by dopamine receptors D, .
These functions include regulation of sleep, feeding, synaptic
regulation, attention, cognitive function, hormonal regulation,
affection, reward systems, voluntary movement, vision and
smell (91).

Based on binding to G proteins, dopamine receptors are
classified as class 1 (D, and Ds) or 2 (D,, D; and D,). D,-type
receptors are mainly associated with Goq/Gs proteins and
stimulate adenylyl cyclase (AC) activity, cAMP produc-
tion and Ca** release from intracellular stores. By contrast,
D,-type receptors bind with Ga i/o proteins to inhibit cAMP
production (92,93). Dopamine receptors are the most studied
molecular targets in numerous neurological and psychiatric
disorders, such as SZ, Parkinson's disease, bipolar disorder,
attention deficit hyperactivity disorder, Huntington's disease,
and Tourette syndrome (94-96). The exacerbation of the
psychotic effects of dopaminergic drugs in SZ may be due
to excessive stimulation of supersensitive postsynaptic dopa-
minergic receptors, particularly D, receptors, which is the
pharmacological target of antipsychotics (97).

Variation in dopamine levels and the symptoms of SZ are
dependent on the associated brain region; increased release in
the striatum is associated with positive symptoms (hallucina-
tions and delusions) where the binding of the D, receptor predicts
the response to treatment with antipsychotics. However, the
occupation of D, receptors in the ventral region of the striatum
is associated with negative symptoms such as passivity, apathy
and social withdrawal (98). These conclusions are supported
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by genetic research showing a clear association between the
dopamine receptor D, gene and SZ (86,99). Although the
majority of the currently authorized antipsychotic drugs block
D,-type dopamine receptors, clinical symptomology is not
completely treated in most patients. However, they have effects
on other receptors in the brain, such as dopamine, serotonin,
histamine, norepinephrine and ACh receptors, resulting in
other abnormality, such as the risk of extrapyramidal side
effects (100). D, receptors are involved in postsynaptic acti-
vation and autoreceptor-mediated inhibition of dopamine
release in the striatum and the D, receptor modulates actions
of dopamine in the corticostriatal circuitry; alterations in
dopamine D, receptors and key molecules in their signaling
pathways have been found in the PFC of patients with SZ (101).
Other studies have visualized expression in limbic and cortical
areas of D; and D, dopamine receptors (102,103). Moreover,
clozapine, a second generation antipsychotic drug, has a higher
affinity for the D, receptor, which supports its participation in
the pathophysiology of SZ (102). On the other hand, the distri-
bution and low cerebral abundance of D; receptors, as well as
their close homology with the D, receptor, indicate they may
serve as pharmacological targets, especially since their imple-
mentation could avoid the adverse motor effects produced by
the inhibition of the D, receptor (104).

ARs. ARs are divided into o, o, B, B,, and 5. The a, recep-
tors couple to protein Gq/phospholipase C signaling proteins
and a, couple to Gi proteins. The ;, and 3, adrenoceptors
activate Gs/AC/cAMP/protein kinase a (PKA) and [3; receptors
couple to both Gs and Gi (105).

0,-ARs present three molecular subtypes (a,,, 0,5, and
a,p) that regulate the functions of the sympathetic nervous
system by transducing signals after binding with cognate
agonists, such as endogenous catecholamines norepinephrine
and epinephrine (106). In the peripheral nervous system (PNS),
0,-ARs participate in nervous regulation of the cardiovascular
and other system functions (107).

The positive symptoms of SZ are exacerbated by selec-
tive and indirect AR agonists (ephedrine, clonidine and
desipramine), while they are decreased by antagonists (yohim-
bine, propranolol and oxypertine) (85,108). Additionally,
o-ARs are linked to cognitive deficit in SZ (109) and PFC
impairment via PKC activation (85,110,111). In neocortical
pyramidal cells, adrenergic arousal controls coupling between
apical and somatic integration regions by the regulation of
hyperpolarization-activated currents (I,) and altering apical
amplification (AA) (112). Higher levels of cAMP lead to
excessive I, therefore increasing AA. Patients with SZ exhibit
translocation in the disrupted in schizophrenia 1 (DISCI)
gene and DISCl-regulated phosphodiesterase 4 (PDE4)
activity; in the presence of high concentration of cAMP, this
increases hydrolysis; however, but this process is altered in
these patients (113,114). This area is key for spatial working
memory (WM), in which a,, receptors serve a key role by
inhibiting the cAMP/PKA pathway, thus reducing the persis-
tent firing by increasing the open state of hyperpolarization
and cyclic nucleotide-gated channels (115,116). The effects of
adrenergic signaling are subtype-specific and could be influ-
enced by noradrenaline concentration and receptor affinity.
The effect is mediated through the persistent firing of the o,

receptors, and the use of an exogenous general 3 agonist does
not alter the outcome. This phenomenon may be related to the
upregulation of cAMP (117). In another study, the use of a f3,
antagonist improved WM and the activation of §, enhanced
this effect, illustrating the complex modulation by adrenergic
receptors (117-119).

Certain single nucleotide polymorphisms (SNPs) have
been associated with SZ, including two SNPs in the promoter
region of the a,, receptor gene (120), as well as methylene-
tetrahydrofolate reductase (MTHFR) (121,122). A detection
system has been proposed to measure levels of 5-MTHF in
patients with MTHFR SNPs (123).

Muscarinic receptors. ACh is a crucial neurotransmitter
that participates both in the CNS and PNS. There are two
types of receptors activated by ACh, nicotinic ionotropic
and muscarinic metabotropic receptors (mAChRs) (124).
There are five types of muscarinic receptors that can be clas-
sified as those coupled to Gq/G11 (M,, -; and -5) and those
coupled to Gi/o (M, and -,) (124-126). The M, receptor is the
most prevalent receptor in the CNS, located in postsynaptic
neurons and some peripheral tissues (126). Meanwhile, in the
presynaptic neurons, the M, and M, receptors are expressed,
while in the postsynaptic neurons, the M5, M, and M; recep-
tors are expressed, with the M; typically being the less
abundant (126). Lower levels of M, and M, expression have
been detected in the cortex (127,128), hippocampus (129) and
striatum (130).

Genetic alterations in the muscarinic signaling pathway
have been associated with SZ,including SNPs in the gene for the
muscarinic acetylcholine receptor M1 (CHRM1) (131), as well
as changes in methylation of the promoter of this gene, caused
by the increase in microRNA (miRNA or miR) that regulates
this gene (miR-107) (132). SNPs for CHRM4 (126,133) and
CHRMS5 (126,134) have also been linked with an increased
risk of SZ.

The use of animal models has demonstrated the participa-
tion of the mAChRs in the pathogenesis of SZ. In M, knock-out
(KO) mice, impaired WM and long-term potentiation are
observed (126,135). In a double KO mice model for M, and
M,, impaired prepulse inhibition (PPI) is observed (126,136).
M, KO mice models have been reported to present impaired
PPI, abnormal social behavior, locomotor activity, sensorim-
otor gating, abnormal antipsychotic function, dopaminergic
hyperexcitability and altered striatal dopamine release
regulation (126,137-142). It has been observed that M; KO
mice present changes in PPI and reduced striatal dopamine
release (126,142-144).

Alterations in other participants of this signaling pathway
affect SZ. Acetylcholinesterase inhibitors, the enzyme that
hydrolyses ACh, decrease visual hallucinations (85,145,146).
Additionally, choline acetyltransferase (ChAt), the enzyme
that synthesizes Ach, has decreased activity in the nucleus
accumbens and pontine tegmentum of patients with SZ, which
is associated with cognitive performance. An SNP for ChAt is
associated with SZ (147).

Glutamatergic receptors. Glutamate is the primary
excitatory neurotransmitter in the CNS responsible for modu-
lation of synaptic transmission and neuronal excitability.
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This modulation is mediated by the activity of ionotropic
and metabotropic glutamate receptors (mGluRs) (85,148,149).
There are eight subtypes of mGluRs encoded by the glutamate
metabotropic receptor 1 (GRM1)-8 genes and these receptors
are be classified into three groups: Group I includes receptors
coupled to a Gq/11 protein (mGluR1 and mGIuR5) and group II
(mGIluR2 and mGluR3) and III (mGluR4, -6, -7 and -8) are
coupled to Gi/Go protein (85,148,149). All receptor subtypes
are expressed in neurons and glial cells, except mGIuR6,
which is primarily expressed in the retina (85,150).

Alterations in mGlIuR1 are associated with SZ. Patients
with SZ may have deleterious GRM1 non-synonymous
SNPs (85,151); in postmortem studies, patients with SZ
have higher levels of mGluR1a in the PFC (85,152). The
role of mGluR1 has been studied through KO mice. These
animals have decreased hippocampal long-term potentia-
tion leading to a deficit in associative learning (148,153,154)
and activity-dependent synaptic plasticity (154). mGluR1
deficiency causes long-term depression in the cerebellum
and motor learning impairment (148,155) and a decrease in
PPI (148,156). Use of mGluR1 negative allosteric modula-
tors is effective in the treatment of positive SZ symptom
models (85,148,157).

mGluRS5 may be involved in SZ as this receptor potenti-
ates the NMDAR in brain regions of interest in SZ (158).
In mGIluR5KO mice, there is a deficit in PPI (148,159).
Furthermore, a KO model of miR-50103p induces dendritic
structural defects, glutamatergic transmission enhancement
and sociability, memory and sensorimotor gating deficits,
which are attenuated when restoring miR-50103p expression.
These effects were attributed to the upregulation of mGIuRS5
since this miRNA negatively regulates the expression of
the receptor. When using a negative allosteric modulator
of mGluR5, similar effects were observed (160). In animal
models of positive and negative symptoms, a positive allo-
steric modulator of mGluRS5 effectively improves all types of
SZ symptom (85,148,157). Furthermore, mGluR5-selective
negative allosteric modulators in adult rats causes social
interaction deficits, impaired WM, reduced instrumental
learning, decreased overall response in 5-choice serial reac-
tion time task (5-CSRT) and increased NMDAR antagonist
side effects (158,161-165). Postsynaptic mGluR2/3 activation
can augment NMDAR currents via Src kinase in pyramidal
cells of the hippocampal CA1 (166) and in the PFC via PKC
activity (167) and soluble N-ethylmaleimide-sensitive factor
attachment protein receptor proteins (157,168).

Although the group II receptors have not been as exten-
sively studied, they may serve as therapeutic targets. In animal
models of SZ, the activation of mGIluR2/3 decreases the
psychomotor activity and neurochemical effects produced by
psychostimulants (85,169). Agonists of mGIluR2/3 decrease
extracellular dopamine efflux in the substantia nigra, nucleus
accumbens and dorsal striatum (157,170-173). The activation
of mGIuR2/3 functions as an autoregulator to decrease gluta-
mate release, makes it a target for the development of agonists
for treatment of SZ (157,174). Additionally, in preclinical trials,
mGluR2/3 agonists (LY354740 and LY379268) decrease
NMDAR antagonist-induced hyperlocomotion (175-178)
and behavioral stereotypes (175,179) and behavioral and
electrophysiological effects and head twitches induced by

(+/-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)
in mice (180) and improve SZ-like symptoms induced by
prenatal stress and postnatal isolation (157,181,182). In negative
symptom models, the agonists improve deficits in social inter-
action (183-185) and mobility attenuated by dizocilpine in the
swimming test (157,178). For cognitive symptoms, mGluR2/3
agonists decrease deficits in discrete-trial delayed alternation
task (175) and errors in the 5-CSRT (157,186). However, it has
also been shown that agonists can impair cognitive symptoms.
Impaired cognition by inhibiting hippocampal synaptic trans-
mission (187) and exacerbated deficits in the 5-CSRT have
been observed (157,188).

mGluR?2 is associated with the serotonergic receptor
5-HT,,R based on the behavioral, pharmacological, and
biochemical results observed when antagonizing receptor
signaling (157,189-191). The antipsychotic properties of
mGluR?2 have been attributed to the effects on the serotonin
receptor and it has also been observed that 5-HT,,R antago-
nism in mice with atypical antipsychotics decreases expression
of GRM?2 encoding mGlu2 through a decrease in histone
deacetylase 2 (157,192).

The least explored receptors are those in group III.
All receptors in this group have been studied in KO mice
models (180,184-197). The administration of a group III agon
ist (1S,3R ,4S)-1-aminocyclo-pentane-1,3 4-tricarboxylic acid
(ACTP-1) decreases hyperlocomotion induced by MK-801 and
amphetamines and improves head twitches induced by DOI
in mice (157,193). The mGluR4 is expressed throughout the
brain but is most densely expressed in the cerebellum; KO
mice can present impairments in cerebellar synaptic plasticity
and motor learning of complicated tasks and altered spatial
memory performance. These receptors are key in regula-
tion of GABAergic absence seizures in the thalamocortical
region (148,194-196). In positive symptom animal models, the
administration of mGluR4 agonist (LSP1-2111 and LSP4-2022)
improves psychosis symptoms (hyperlocomotion and head
twitches) (157,197,198). mGluR4 agonists also improve deficits
in social interaction and novel object recognition (157,198).
mGIuR6, which is primarily expressed in the retina, presents
delayed response when retinal bipolar cells are stimulated
with light in mGluR6 KO mice (148,199,200). There have been
reports of photoreceptor and bipolar and retinal ganglion cell
(RGC) dysfunction in SZ (201,202). RGC signaling deficit is
associated with SZ, particularly in patients that experience
visual hallucinations (202).

The mGluR7 receptor is widely expressed but has
a lower affinity to glutamate than other receptors and
downregulates overstimulation by glutamate (148), as
indicated by the epileptic phenotype observed in mGluR7
KO mice (148,203). mGIluR7 KO mice exhibit worse
short-term neural plasticity in the hippocampus (85,204,205),
memory and learning deficits (204,206-209) and an altered
fear (209) and anxiety response (20,85,148,204,210). In
preclinical studies, mGluR7 negative allosteric modulators
6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]
pyridin-4(5H)-one and (+)-6-(2,4-dimethylphenyl)-2-
ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one improves
symptoms caused by MK-801 and DOI-induced head
twitches (85,211-213), while an mGuR7 agonist (AMNO082)
produces the opposite effects (157,197).
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mGluR8 is less expressed than mGluR4 and -7; it is
primarily expressed presynaptically and widely throughout
the brain (148,157). This receptor serves as an autoreceptor in
the lateral prefrontal path of the dentate gyrus, therefore gating
glutamatergic transmission into the hippocampus (157,214),
which is why mGIuR8 KO mice exhibit deficiency in
hippocampal-mediated learning (157,215). Unlike the other
group III receptors, mGIuRS8 agonist [(S)-3,4-DCP] does not
affect NMDAR or amphetamine hyperactivity, suggesting that
it might be an ineffective target for SZ treatment (157,216).

Purinergic receptors. P2Y metabotropic purinoceptors are a
family of proteins divided into eight subtypes (P2Y1, 2, 4, 6
and 11-14) that can be activated by several nucleotides such
as ATP, ADP, UTP, UDP and UDP-glucose (217). Activation
of these receptors induces biological effects due to the subse-
quent activation of different effectors, including MAPK,
p-associated protein kinase, phospholipase A2, nitric oxide and
the transactivation of growth receptors (218). Several signaling
pathways activated by ATP and other nucleotides via P2Y,
participate in regulation of CNS development. Stimulation
of the P2Y, receptor promotes adult neurogenesis (219,220).
The P2Y receptors have been suggested to be involved in SZ.
P2Y, receptor agonist (MRS2365) to the PFC in rats impairs
WM and other behavioral responses that may be involved in
conditions that increase ATP concentration, such as SZ (221).
Perisomatic interneurons, which modulate y oscillations,
express P2Y Rs (222). These cells have been implicated in SZ
and cognitive deficit (222) and vy oscillations and PPI altera-
tions have been reported in SZ animal models (223,224).

The role of the purinergic signaling system in SZ has gained
interest (225,226). Based on modulation of glutamatergic and
dopaminergic systems by adenosine, it has been theorized that
complications during the early stages of brain development
lead to an excessive release of adenosine that induces brain
changes. The dysfunctional activation of adenosine receptor
AR decreases activity of dopamine, consequently increasing
cytotoxicity through glutamate (227). Adenosine A,, receptor
(A,AR) KO mice showed that, in astrocytes, these receptors
disrupt glutamate homeostasis, leading to psychomotor and
cognitive impairment, which may be involved in the develop-
ment of SZ (228). Moreover, A,,Rs can form heterodimers
with D, receptors. A,,Rs are highly expressed in certain brain
regions implicated in SZ and may modulate D, receptors.
However, no difference in expression of these receptors is
observed in male patients with SZ treated with antipsychotic
medication compared with healthy controls by measuring a
tracer through positron emission tomography (229).

Wnt/FRIZZLED (FZD) receptors. Wnts transduce signaling
cascades to regulate SC differentiation in various types
of tissues such as skin, muscle, colon and bone marrow; in
addition, they promote cell proliferation and differentiation to
regulate maintenance of the adult hippocampus and neuronal
progenitors of the subventricular zone (230,231). A distinctive
aspect of Wnt signaling is its ability to favor tissue growth
while inducing cell proliferation, serving as a directional
growth factor and preventing the formation of amorphous
structures, an essential feature during tissue development and
homeostasis in adults (232,233).

Neuroinflammation and immune dysfunction could be
involved in the pathogenesis of SZ, supported by the higher
incidence of autoimmune disease in patients with SZ. The
inflammatory process is mediated by Wnt/p-catenin dysregu-
lation, with the primary effector being NF-«B, stimulating
production of inflammatory markers, including various cyto-
kines, and favoring oxidative stress. Many of these processes
promote psychotic symptoms. SZ is associated with a decrease
in Wnt/p-catenin pathway activity, leading to an upregulation
of PPARy and downregulation of PPARa (234-236). The
increase of PPARY increases oxidative stress and inflam-
mation (234). The Wnt/p-catenin pathway is involved in the
pathogenesis of numerous neuropsychiatric disorders. There
have been reports of myelin and oligodendrocyte dysfunction
in SZ (88,237), indicating that the Wnt/B-catenin pathway
could be altered in this illness. The levels of B-catenin are
decreased in the hippocampal region of patients with SZ
and downstream alterations in this pathway have been also
observed (238).

Genome-wide SNP analysis has identified multiple SNPs
associated with SZ, including the FZD1 gene at chromosome
7q21.13 (239), as well as FZD3 gene on the chromosome
8p21 (240-242). FZD3 SNPS are also implicated in meth-
amphetamine psychosis (243). There is aberrant Wnt gene
expression at multiple levels of the signaling pathway.
Microarray analysis demonstrates that patients with SZ
exhibit dysregulated mRNA expression of genes that attenuate
[-catenin signaling and favor non-canonical signaling, while
transcription factor nuclear factor of activated T cells 3, which
is activated downstream by the non-canonical pathway, is
upregulated (244).

Cannabinoid receptors. Cannabinoid receptor subtypes 1
and 2 (CB, and CB,) are metabotropic receptors primarily
coupled to Gi/o proteins. Activation of these receptors inhibits
the enzymatic activity of AC), and decreases the intracellular
levels of cCAMP (245). These receptors couple to Gq/11 or
Gs, inducing different responses (246). They are expressed
in neuroglia, immune cells and neurons in the CNS (247).
Furthermore, olfactory (248) and neural SCs (NSCs) express a
functional endocannabinoid system (249).

CB, receptors are usually absent in neurons, although they
are functionally active in SCs and, together with CB,, modu-
late processes such as proliferation, cell cycle maintenance,
and NSC differentiation via the PI3K/Akt pathway (250-253).

Excessive activation of the endocannabinoid system
through CB, receptors of inhibitory GABAergic interneu-
rons in the ventral tegmental area, basolateral amygdala
and the medial PFC generates a hyperdopaminergic and
hypoglutamatergic environment, causing SZ (254,255).
Through in vivo and postmortem studies, it has been shown
that gene, mRNA and protein levels of these receptors
are decreased and dysregulated in multiple brain regions
of patients with SZ (256-258). In animal models, chronic
blockade of CB, receptors has been shown to induce
anxiolytic action (259). Treatment with a selective CB,
agonist reduces depressive-like behaviors (260). Maternal
deprivation induces a significant increase in CB, receptor
immunoreactivity in the hippocampus, suggesting partici-
pation of this receptor in psychiatric neurodevelopmental
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Table II. Effect of different agonistic and antagonistic treatments targeting GPCRs in patients with schizophrenia.

Drug Typical GPCR-associated signaling Atypical GPCR-associated signaling
Aripiprazole Dopamine Antagonist (W) D, G, lcAMP Serotonin Antagonist (W) S5HT,, G,cAMP;
1Ca* [IK*; (W) D, G, | cAMP; (\) D, G, (\NAA) 5HT,, Ca** PLC; (O) 5HT,, Ca®* PLC;
lcAMP |Ca* |IK* (\) 5HT, G,1cAMP
Adrenergic Antagonist (V) al G, IP,/Ca*
Histamine Antagonist (\) H, G, IP,/Ca*
Azepine Dopamine Antagonist (O00) D, G, |cAMP Serotonin Antagonist (VWYV) SHT,, Ca>* PLC;
1Ca* |IK*; (V) D, G, "cAMP (\W) 5HT,, Gs 1cAMP; (\W) 5HT,, G,
1cAMP; (\) 5HT,, Ca** PLC; (\) 5HT, G,
1cAMP; (\) 5HT, G, 1Camp
Chlorpromazine Dopamine Antagonist (VW) D, G, }cAMP; Serotonin Antagonist (\\V) SHT1a
(\W) Ds G, 1cAMP; (O) D, G; |cAMP |Ca?* G, 1¢cAMP; (\WN) 5HT,, Ca** PLC
“IK*; (V) D, G, |cAMP
Adrenergic Antagonist (\W)y al G, IPy/Ca™;
(\W) a2 G, |cAMP
Histamine Antagonist () H, G, IP,/Ca**
Muscarinic Antagonist () M, G, IP;/Ca*; ()
M, G; |cAMP TIK*
Clozapine Dopamine Antagonist (VW) D, G, cAMP; Serotonin Antagonist (\VV) SHT,, Ca?* PLC
(\\)D, G, 1 cAMP ;(0) D, G, | cAMP | Ca** Adrenergic Antagonist (W) al G, IP,/Ca™
JIK*; () D; G, | cAMP Muscarinic Antagonist (V\) M, G, IP;/Ca®;
()M, G; |cAMPIK*; (V) M; G, IP,/Ca**
Muscarinic Agonist (\) M, G, |cAMP |IK*
Fluphenazine Dopamine Antagonist (VA D, G, Muscarinic Antagonist () M, G, IP,/Ca*
lcAMP |Ca** |IK* Adrenergic Antagonist (V) al G, IP,/Ca™
Histamine Antagonist (\) H, G, IP,/Ca*
Haloperidol Dopamine Antagonist (W) D, G, 1 cAMP; Muscarinic Antagonist \HM, G, IP,/Ca™
(\\) D, G, |cAMP “Ca** |IK* Adrenergic Antagonist () al G, IPy/Ca?*
Olanzapine Dopamine Antagonist (\\A) D, G, 1 cAMP; Serotonin Antagonist (\AA) 5HT,, Ca** PLC;
(\W) Dy G, 1 cAMP; (\W) D, G, |cAMP ~Ca?* (\WW) 5HT,, Ca* PLC
JIK*; () D, G, |cAMP Adrenergic Antagonist (V) al G, IP,/Ca™
Muscarinic Antagonist () M, G, IP,/Ca™;
()M, G; | cAMP |IK*; () M, G, IP;/Ca’;
()M, G; |cAMPIK*; (V) M; G, IP,/Ca**
Histamine Antagonist (V) H, G, IP,/Ca*"
Quetiapine Dopamine Antagonist (\W) D, G, 1 cAMP; Serotonin Antagonist (\WW) 5HT, Ca?*
(\W) D, G, |cAMP |Ca** |IK* PLC; (\\\) 5HT, G, |cAMP “IK*
Histamine Antagonist () H, G, IP,/Ca*
Adrenergic Antagonist (V) al G, IPy/Ca™;
(\) a2 Gi | cAMP
Perphenazine Dopamine Antagonist (V) D, G; |cAMP Adrenergic Antagonist (V) al G, IP,/Ca*
1Ca? |IK*
Risperidone Dopamine Antagonist (V) D, G, |cAMP Serotonin Antagonist (\\V) SHT, Ca>* PLC
1Ca* 7IK*; (\) D; G; | cAMP Adrenergic Antagonist (VV) al G, IP,/Ca*
Histamine Antagonist () H, G, IP,/Ca**
Muscarinic Antagonist (V) M, G, IPy/Ca™;
(\\) M, Gi |cAMP “IK*
Thioridazine Dopamine Antagonist (\W) D, G,"cAMP Adrenergic Antagonist (W) al G, IP,/Ca*
1Ca? |IK*
Trifluoperazine Dopamine Antagonist () D, G; |cAMP Adrenergic Antagonist (\W) a1 G, IP,/Ca*

|Ca* |IK*
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Table II. Continued.

Drug

Typical GPCR-associated signaling

Atypical GPCR-associated signaling

Ziprasidone
1Ca? |IK*; (\) D, G; |cAMP

Dopamine Antagonist () D, G; [cAMP

Serotonin Antagonist (\AA) 5HT,, Ca* PLC;
(\W) 5HT,, Ca* PLC; (\W) 5HT,, G, |cAMP
|Ca* |IK*

Adrenergic Antagonist (V) al G, IPy/Ca*
Histamine Antagonist (V) H, G, IP,/Ca™

(\/\/\/) High effect; (\/\/) Moderate effect; (\/) Mild effect; | decreased effect; 1 increased effect. The information of this table was taken
from (2,292,303). GPCR, G protein-coupled receptor; IK, potassium current; 5-HT, serotonin; PLC, phospholipase C; IP;, inositol 1.4 ,5-trispho-

sphate; Gi, G inhibitory; Gs, G stimulatory.

diseases such as SZ (261). Polymorphisms in the genes for
cannabinoid receptors and the endocannabinoid system
are associated with SZ (28) and quality of the response to
antipsychotics (262).

Sphingosine-1-phosphate (SIP) receptors. S1P is produced in
all cell types during the catabolic degradation of membrane
glycosphingolipids and sphingomyelin, which results in
sphingosine that is phosphorylated by sphingosine kinase
(SphK) to SIP, a bioactive signaling molecule that serves as
a ligand for GPCRs of the Gi/o, G12/13, and Gq types (263).
Various hormones, cytokines and growth factors can activate
the SphK/S1P signaling pathway, modulating cell prolif-
eration, migration and survival. The SphK/SIP pathway
has been associated with stem/progenitor cells and tissue
self-renewal in the vascular, immune, muscular and nervous
systems (264-267).

In the pathogenesis of SZ, there are alterations in myelin,
white matter integrity and metabolism of lipids. Recent
targeted mass spectrometry-based analysis found that post-
mortem samples of the corpus callosum of patients with SZ
have lower levels of S1P (268). Furthermore, one study divided
patients with SZ into those that present an upregulation of
S1PR1 and those that have levels comparable to controls (269).
This may be used as a biomarker since SIPR1 can be detected
through positron emission tomography (269).

Neuropeptide Y (NPY) receptors. NPY is a 36-amino acid
peptide produced by GABAergic interneurons that is widely
expressed in the CNS and PNS during development and adult-
hood. The Y receptors are a family of proteins divided into five
subtypes (Y, Y,, Y,, Y5, and Y,) that are activated by the NPY
family of hormones, which consists of three native peptide
ligands (NPY, pancreatic polypeptide and peptide YY). All
NPY receptors are involved in the Gi signaling cascade;
upon activation, the o subunit decreases cAMP production
and the b/g subunit activates various kinase cascades. This
ligand-receptor interaction can lead to decreased Ca** channel
activity and increased G-protein-coupled inward rectifying
potassium currents (270,271).

NPY serves an important role in the regulation of learning,
memory, feeding and endocrine secretion (272). NPY is
found in the olfactory neuroepithelium, where it stimulates

proliferation of olfactory SCs (273). Additionally, NPY regu-
lates the response of olfactory receptors, apoptosis and cell
regeneration (274) and protects sensory neurons from death
due to excessive GluR activation by decreasing Ca** entry into
the presynaptic nerve terminal via PKA- and p38K-associated
signaling (275).

NPY participates in adult neurogenesis in the hippocampal
dentate gyrus, caudal subventricular zone and subcallosal
zone (276). In vivo, by fusing NPY vectors with a brain
transport peptide (apolipoprotein B), proliferation of neural
precursor cells in the subgranular zone of the hippocampus
increases substantially without neuronal differentiation (277).
Furthermore, NPY promotes the proliferation of olfactory and
hippocampal SCs (272,273,278).

NPY gene and mRNA expression is decreased in PFC of
patients with SZ (279,280); these prefrontal deficits depend on
regional supply of brain-derived neurotrophic factor through a
miRNA-regulated mechanism (279). Additionally, activation
of the Y, subtype of NPY receptor regulates central dopamine
signaling, which is closely related to the pathophysiology of
psychotic symptoms (281,282).

Chemokine receptors. Chemokines are a family of small cyto-
kines (CXC, CC or B-chemokines, C, and CX3C), that regulate
chemotaxis, hematopoiesis, angiogenesis, survival, prolifera-
tion, migration and degranulation of leukocytes by coupling
with their respective GPCRs (283). Chemokine receptors
are divided into four subtypes according to their activating
chemokine ligands (284). Chemokines are key regulators of
SCs in specific tissues (268,285) and can mediate migration
of multipotent SCs (286). CXCR4 modulates growth factor
signaling and is expressed in vitro in adult human and murine
NSCs and cells from the embryonic murine subventricular
zone (287).

In addition to chemotactic functions, it has been observed
that chemokines participate in neuromodulation, neuro-
transmission and neurogenesis, exert a pleiotropic effect and
exacerbate inflammation, which is why their dysregulation
is associated with neurobiological processes associated with
mental illnesses such as SZ (284,288). A systematic review
demonstrated an association between chemokines and
neuroinflammation and the pathogenesis of SZ, highlighting
that there is a genetic association of SZ with polymorphisms
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of chemokine receptor genes, blood levels of CXCLS8/IL-8,
CCL2/(monocyte chemoattractant protein 1, chemokine
(C-C motif) ligands 4 (CCL4)/macrophage inflammatory
protein 1 (MIP-1f), and CCL11/eotaxin-1 are increased
and chemokine expression and their receptors are changed
in brain regions and peripheral immune cells of patients with
SZ and animal models have revealed molecular mechanisms
associated with deregulation of the CX3CL1-CX3CRI1 and
CXCLI12-CXCR4 axes, demonstrating that deregulation of
chemokine expression may contribute to the neurobiological
processes that cause SZ (284).

5. GPCRs as therapeutic targets in SZ

Management of patients with SZ consists of pharmacotherapy
and/or psychotherapy and its principal goal is to improve
quality of life and limiting side effects of treatment to main-
tain adherence to the treatment. The primary pharmacological
therapy used in SZ is based on total or partial antagonists of
the dopamine D, receptor, however, few patients fully recover
or exhibit reversed negative symptoms (Table II). Moreover,
the cognitive impairments of SZ are usually resistant to current
antipsychotic treatment (289).

GPCRs play an important role in the treatment of SZ
because they transmit the extracellular signal into cells
by activating the signaling cascade coupled to G proteins.
Advances in pharmacology have made it possible to identify
drugs that can modify the interaction of GPCRs related to
dopaminergic and serotonergic activity in the treatment
and management of SZ (290,291). Understanding the role
of GPCRs in the signal transduction of SZ is fundamental
for the discovery of pharmacological targets. The basis
of pharmacological treatment for SZ requires a complete
understanding of GPCR-mediated signaling, transducers and
associated second messengers. Structural plasticity of GPCR
proteins underlying physiological regulation with pharma-
cological implications in clinical use has been summarized
previously (292).

Considering SZ pathophysiology and ineffective
antipsychotic therapy with severe side effects and poor
adherence to the therapeutic regimen that diminishes
quality of life and undermines the beneficial effects of the
drugs, novel treatments directed at the whole symptom-
atology as well as specific symptoms are needed. There
are numerous clinical studies of GPCR targets, including
those directed at general, positive, negative and cognitive
symptoms (30,293,294).

6. Conclusion

The present review demonstrated that GPCR alterations can
be associated with the pathophysiology of psychiatric disor-
ders and neurodegenerative diseases, such as SZ. GPCRs are
a therapeutic target of antipsychotics used in the treatment
of SZ. To the best of our knowledge, however, experimental
evidence regarding the functionality of these receptors in
patients is scarce. Knowledge of GPCR signaling in human
multipotent SCs and their progeny differentiated in neurons
or neuroglia could widen the study of the pathophysiology of
SZ and other diseases such as diabetes, myocardial infarction,

stroke, Parkinson's disease, Alzheimer's disease and multiple
sclerosis.

Some of the limitations of hONE as a model of study in
SZ include lack of information about GPCRs functionality in
hONE cells; also, since these cells are undifferentiated, they
may have a distinct expression of channels and receptors than
their differentiated progeny, and the results obtained in the
undifferentiated cells should be corroborated in conventional
SZ models based on differentiated dopaminergic and sero-
toninergic neurons.

Models such as patient-derived iPSCs, transdifferenti-
ated neurons, olfactory sensory neurons and cerebral
organoids can provide understanding of SZ and facilitate
the development of treatment. Particularly, the culture and
cryopreservation of olfactory SCs have been characterized
and used to identify several dysfunctional processes at a
cellular level; this has been proposed as a model to under-
stand the pathophysiology of neuropsychiatric disorders
and detect biomarkers for diagnosis. This model could be
useful to study the functionality of GPCR in SZ. GPCRs and
their associated signaling pathways are possible therapeutic
targets for SZ, although further research using experimental
and bioinformatic tools is needed.
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