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Abstract. Schizophrenia (SZ) is a multifactorial disorder 
characterized by volume reduction in gray and white matter, 
oxidative stress, neuroinflammation, altered neurotransmission, 
as well as molecular deficiencies such as punctual mutation 
in disrupted‑in‑Schizophrenia 1 protein. In this regard, it is 
essential to understand the underlying molecular disturbances 
to determine the pathophysiological mechanisms of the disease. 
The signaling pathways activated by G protein‑coupled receptors 
(GPcRs) are key molecular signaling pathways altered in SZ. 
convenient models need to be designed and validated to study 
these processes and mechanisms at the cellular level. cultured 

olfactory stem cells are used to investigate neural molecular 
and cellular alterations related to the pathophysiology of SZ. 
Multipotent human olfactory stem cells are undifferentiated and 
express GPcRs involved in numerous physiological functions 
such as proliferation, differentiation and bioenergetics. The use 
of olfactory stem cells obtained from patients with SZ may iden‑
tify alterations in GPcR signaling that underlie dysfunctional 
processes in both undifferentiated and specialized neurons or 
derived neuroglia. The present review aimed to analyze the role 
of GPcRs and their signaling in the pathophysiology of SZ. 
culture of olfactory epithelial cells constitutes a suitable model 
to study SZ and other psychiatric disorders at the cellular level.
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1. Introduction

Schizophrenia (SZ) is a multifactorial disease with an 
unspecified origin. Although genetic, environmental, psycho‑
social and other factors might be involved in its etiology, the 
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precise pathophysiological mechanisms of its development 
remain unclear. SZ diagnosis is primarily based on symptoms 
classified as positive (hallucinations, delirium, disorganized 
speech, psychomotor disturbances), negative (affective flat‑
tening, alogia, avolition, asociality and anhedonia) or cognitive 
(memory and executive function deficits) (1,2).

SZ symptoms, specifically cognitive symptoms, are 
associated with the molecular structure of dopaminergic and 
serotonergic topology and brain networks (3).

A key objective in the study of neuropsychiatric disorders 
is to elucidate the pathophysiological processes occurring in 
the brain to improve understanding of the disease and diag‑
nostic and therapeutic options available. The delicate nature 
of the brain complicates study, and although postmortem 
studies have yielded insight, there is need for suitable models 
to overcome ethical and methodological limitations to obtain 
brain samples. In recent years, in vitro models have emerged, 
such as the culture of induced pluripotent stem cells 
(iPScs) (4) and induced neuronal (iN) cells (5), which allow 
reprogramming of cells into neural and glial cell lines (6). 
An alternative is the use of human olfactory neuroepithelial 
(hONE) cells: Primary neurons and glial cells can be taken 
via epithelial cells in the nasal cavity of living patients 
with a minimally invasive technique. The heterogeneous 
samples include stem cells with multipotent and regenera‑
tive capacities that can be differentiated into neuronal and 
glial cells for use in vitro and ex vivo (6,7). Neuropsychiatric 
disorders including SZ (8‑12), Alzheimer's disease (13,14) 
and other mood and anxiety disorders (15) are associated 
with anosmia, and it has been shown that the olfactory 
epithelial cells of patients with these illnesses have cellular 
and molecular alterations, such as amyloid‑β and paired 
helical filament‑tau aggregates, alterations to the cell cycle 
and phosphatidylinositol signaling pathways, membrane 
phospholipid alterations, dysregulated neurodevelopmental 
pathways, dysregulated mitochondrial function, oxidative 
stress (16‑25). Since the hONE cells of the olfactory bulb are 
connected to the olfactory cortex, neurobiological alterations 
in the limbic regions may be reflected in the hONE cells, 
suggesting these may serve as an appropriate model for the 
study of neuropsychiatric disorders.

In patients with SZ or SZ‑like animal models, dysfunctions 
have been observed in intracellular mechanisms activated by 
key hormones, modulators and transmitters such as dopamine, 
glutamate, serotonin, acetylcholine (Ach), ATP, melatonin, 
endocannabinoids and oxytocin (26‑28). These modula‑
tors exert action by binding to G protein‑coupled receptors 
(GPcRs) and triggering complex downstream intracellular 
signaling cascades. In the physiology of the central nervous 
system (cNS), the GPcR family of receptors is involved in 
key cellular functions such as proliferation, differentiation, 
migration and neurotransmission both in undifferentiated 
and mature neurodevelopmental stages (29‑31). Genomic and 
proteomic studies have demonstrated the association of SZ 
with alterations in expression of GPcRs and enzymes acti‑
vated by them, such as phospholipase cb (32‑34). In addition, 
drugs (such as aripiprazole, azepine, chlorpromazine) used in 
the treatment of this psychiatric disorder target GPcRs. To the 
best of our knowledge, however, there are few studies of the 
functionality of these receptors and the actions of these drugs 

at the cellular level (6,35). One possibility to study these is the 
use of cells cultivated from patients.

The present study conducted a literature review on PubMed 
and Google Scholar, selecting articles associated with GPcRs 
and their connection to SZ, as well as GPcRs in stem cells 
and their relevance to SZ. The following search strategies were 
used: Schizophrenia ANd olfactory epithelial cells ANd 
GPcR; GPcR ANd schizophrenia and schizophrenia ANd 
stem cells.

2. Olfactory epithelial cells in in vitro study of SZ

To comply with the bioethical and anatomical restrictions 
around directly obtaining cNS tissue from patients with mental 
disorders or neurodegenerative diseases, several experimental 
approaches have been developed to study human neurons and 
neuroglial physiological processes at the cellular level (36‑39). 
cell models have been characterized, such as olfactory 
epithelial Scs, iP cells and monocytes induced to resemble 
neurons (6,21). In particular, Scs of the olfactory epithelium 
express different types of GPcR and may be a suitable model 
to study the function of these receptors at the cellular level 
and their alteration in SZ; alterations in neurodevelopment, 
stress response and gene/protein expression regulatory path‑
ways have been found in patients with SZ through the use of 
cells in culture obtained from olfactory epithelium (40). Most 
of the currently validated cellular models take advantage of 
the specific characteristics of SCs, such as their self‑renewal 
capacity and their differentiation potency (41,42). These char‑
acteristics are also useful to establish cryopreserved biobanks 
of neural Scs at different stages of development. These cells 
are multipotent and have been differentiated into neurons (43) 
and neuroglia (44), making the study of GPcRs at different 
stages of development in different cell types possible.

Studies have observed disease‑associated pathological 
traits in both neural Scs and their differentiated progeny, such 
as alterations in microtubule organization (45), making these 
models suitable to investigate cellular and subcellular mecha‑
nisms underlying the pathophysiology of psychiatric disorder. 
Human olfactory neural stem cells obtained by the nasal cavity 
exfoliation procedure described by Benitez‑King et al (37) 
have revealed cellular and subcellular alterations in patients 
with SZ, bipolar disorder and Alzheimer's disease (46) and 
in cannabis users (Fig. 1) (47,48). Specifically regarding 
GPcRs and their signaling, one study reported abnormal 
3'‑5'‑cyclic adenosine monophosphate (cAMP) accumulation 
in patient‑derived hONE cells (49). Another study reported 
melatonin MT1 and MT2 receptors and their involvement in 
the modulation of axonogenesis, associated with increased 
levels of phosphorylated (p)GSK3β (Fig. 1) (27); axonogenesis 
is impaired and melatonin receptor and pGSK3β levels are 
lower in cells derived from patients with SZ compared with 
those from healthy subjects (27). In olfactory cells of patients 
with SZ, trimethylation of histone H3 lysine and H3 lysine 27 
alters expression of genes related to glutamate decarboxylase 1 
and other pathways associated with SZ (50). Neural epithelial 
Scs from living patients obtained via non‑invasive exfoliation 
allows observation of the pathophysiological mechanisms and 
structural and molecular changes in SZ (7,51,52). Moreover, 
this model presents an opportunity to obtain cells from a 
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single patient at different stages of disease, including naive 
stages and during treatment. Numerous in vitro models for 
the study of SZ have been developed and standardized using 
other human biospecimens such as postmortem brains and 
genetically engineered cells due to their accessibility and 
reliability (37,40,53,54).

Advantages and limitations of olfactory neuroepithelial cell 
models. The initial sample to develop iPSc and iN stem cells 
can be easily collected since, usually, peripheral cells are 
used. Meanwhile, the collection of hONE cells has moderate 
ease with a minimally invasive technique that a qualified 
professional should perform (6,55). hONE cells are ready for 
use ~4 weeks after collection, while iPSc require a longer 
waiting time (6). Additionally, costs to obtain hONE cells are 
lower than that for iPScs and iN cells. hONE cells are neural 
tissue and do not require genomic reprogramming. Both 
hONE cells and iPSc have moderate or high proliferative 
capacity while iN cells do not possess this capacity (5,56). 
As iPSC and iN cells are induced models, it is difficult to 
determine the degree of phenotypical similarity with brain 
cells, while in hONE cells neurobiological properties are 

preserved (6). hONE cells are cultured from living patients, 
which allows the comparison of cells obtained at different 
stages of the illness and treatment.

GPCR involvement in SZ‑related pathways using ONE 
cells. hONE cells are a relatively new model to study GPcR 
expression and function. hONE cultures have multipotent Sc 
features and express functional purinergic P2 receptors (both 
ionotropic P2X and metabotropic P2Y receptors) (57). The 
activation of the purinergic pathway in these cells elicits tran‑
sient increase in the intracellular calcium (ca2+) concentration, 
mainly by the participation of the P2Y receptors; the calcium 
increase induces exocytotic processes in these cells (57).

Moreover, other functional GPcRs are expressed in human 
olfactory neural Scs, such as dopaminergic, serotoninergic 
and adrenergic receptors (ARs). These cells express markers 
of multipotency (Fig. 2A) and elicit an increase in intracellular 
ca2+ concentrations in response to ligand binding (Fig. 2B). 
These characteristics contribute to a viable, minimally 
invasive model for neuronal culture sample from live patients 
with SZ to study the GPcR signaling pathways involved in 
this pathology.

Figure 1. Olfactory neuroepithelial cells as a model to study schizophrenia at the cellular level. Mechanisms associated with schizophrenia at the cellular and 
molecular level, such as GPcR cellular signaling pathways, cellular functions, epigenetic markers, gene and protein expression; it also shows that neuroepithe‑
lial olfactory cells can be used as a pharmacological model. GPcR, G protein‑coupled receptor. 
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3. Dysregulated calcium signaling in SZ

ca2+ is a primary second messenger that regulates a myriad of 
cellular processes depending on its intracellular concentration, 
duration of stimulus and even global or local concentration 
changes (58).

The ca2+ signaling system in neurons is responsible for the 
regulation of multiple neural functions, including exocytosis, 
neuronal excitability, control of brain rhythms, information 
processing and changes in synaptic plasticity involved in learning 
and memory (59). dysregulation of the ca2+ signaling pathway 
is implicated in the development of neural diseases, including 
SZ and bipolar disorder (59,60). Alterations in this system 
include the hypofunction of N‑methyl‑d‑aspartate receptors 
(NMdAR) in early developmental stages, including complex 
transcriptional and compensatory events, resulting in a pheno‑
typical switch in GABAergic neurons, altering γ rhythms (59). 
Even though the decreased activity of the NMdAR reduces ca2+ 
flow, the overall effect causes an increase in intracellular Ca2+ in 
large neuronal populations (61,62). This is caused by the loss of 
inhibitory regulation in excitatory pathways from GABAergic 
interneurons (62,63). These pathways then increase intracellular 
ca2+ by activating non‑NMdA channels, including GPcRs (64). 

Furthermore, in the cerebral cortex of patients with SZ, elevated 
levels of calcium/calmodulin‑dependent protein kinase II 
(cAMKIIIβ) have been observed (65); this enzyme promotes 
ca2+‑dependent neurotransmitter release (66,67) and this 
mechanism could be involved in the excessive dopamine release 
observed in animals dosed with amphetamine (68,69). Altered 
ca2+ signaling in SZ could cause the reduced dendritic extension 
and branching observed in prefrontal cortical neurons (70,71), 
since an optimal balance is required to maintain dendritic trees 
and altered ca2+ concentration can cause dendritic deforma‑
tions (72‑74). An increase in ca2+ activates cell apoptosis and may 
be associated with decreased neuronal cell number in cortical 
and subcortical regions observed in patients with SZ (75‑80). 
Additionally, patients with SZ present an abnormal increase in 
neurons in the cortical white matter (81), and this may be caused 
by ca2+ dysregulation affecting neuronal migration (82,83). To 
the best of our knowledge, however, the participation of GPcRs 
in ca2+ signaling has not been investigated in hONE cells.

4. Role of GPCRs in cellular signaling in SZ

SZ clinical onset usually happens in early adulthood. It occurs 
in ~1% of the human population and in the US it is estimated to 

Figure 2. Characterization of stem cells obtained from olfactory epithelium by detection of specific protein markers and functional evaluation. (A) Confocal 
image of an olfactory epithelial stem cell expressing SOX‑2 (red) and neuron‑specific human III β‑tubulin (green). Nuclei are stained with dAPI (blue). 
(B) Intracellular ca2+ concentration measurements illustrating the functionality of human olfactory epithelial stem cells. Stimulation with dA, 5‑HT and or 
EPI increases intracellular ca2+ concentration (unpublished material). dA, dopamine; 5‑HT, serotonin; EPI, epinephrine.
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decrease lifespan by 28.5 years (84). Patients with SZ present 
brain structural alterations as well as dysfunction in several 
neurotransmission systems (dopaminergic, glutamatergic, 
GABAergic, Ach and serotonergic signaling), in addition to 
inflammation and oxidative stress. Patients also present loss of 
cerebral gray matter and abnormal distribution of neurons in 
the prefrontal cortex (PFc) (85‑87). Patients with SZ present 
structural alterations in heavily myelinated brain tracts that 
comprise mostly white matter, which suggests that impaired 
brain connectivity and an overall dysfunction of the axo‑myelin 
unit is a key mechanism underlying the pathophysiology of 
SZ (88). SZ has a complex genetic background and develop‑
ment depends on environmental factors (89,90). GPcRs play 
a key role in the development, progression and treatment of 
SZ (Table I).

Dopaminergic receptors. The biological functions of the 
catecholaminergic neurotransmitter dopamine in the brain 
and periphery are mediated by dopamine receptors d1‑5. 
These functions include regulation of sleep, feeding, synaptic 
regulation, attention, cognitive function, hormonal regulation, 
affection, reward systems, voluntary movement, vision and 
smell (91).

Based on binding to G proteins, dopamine receptors are 
classified as class 1 (D1 and d5) or 2 (d2, d3 and d4). d1‑type 
receptors are mainly associated with Gαq/Gs proteins and 
stimulate adenylyl cyclase (Ac) activity, cAMP produc‑
tion and ca2+ release from intracellular stores. By contrast, 
d2‑type receptors bind with Gα i/o proteins to inhibit cAMP 
production (92,93). dopamine receptors are the most studied 
molecular targets in numerous neurological and psychiatric 
disorders, such as SZ, Parkinson's disease, bipolar disorder, 
attention deficit hyperactivity disorder, Huntington's disease, 
and Tourette syndrome (94‑96). The exacerbation of the 
psychotic effects of dopaminergic drugs in SZ may be due 
to excessive stimulation of supersensitive postsynaptic dopa‑
minergic receptors, particularly d2 receptors, which is the 
pharmacological target of antipsychotics (97).

Variation in dopamine levels and the symptoms of SZ are 
dependent on the associated brain region; increased release in 
the striatum is associated with positive symptoms (hallucina‑
tions and delusions) where the binding of the d2 receptor predicts 
the response to treatment with antipsychotics. However, the 
occupation of d2 receptors in the ventral region of the striatum 
is associated with negative symptoms such as passivity, apathy 
and social withdrawal (98). These conclusions are supported 

Table I. GPCR alterations identified in animal models, ex vivo assays and patients with SZ. 

 Associated
GPcR signaling Implications in SZ (Refs.)

Type d1 (d1 and d5) Gαq/Gs Elevated mRNA levels of d1 receptors in the (93)
  temporal and parietal cortex
Type d2 (d2‑4) Gαi/Go Overexpression in the striatum leads to deficits in (92)
  inhibitory neurotransmission and dopamine
  sensitivity in the prefrontal cortex
Adrenergic (α1, β1‑3) Gαq/Gs Positive symptoms are exacerbated by selective and (295)
Adrenergic (α2, β2, β3) Gαi indirect norepinephrine receptor agonists, while
  antagonists decrease symptoms
Muscarinic (M1, M3, M5) Gαq/G11 Transcriptional and proteomic alterations in M1 and (296,297)
Muscarinic (M2, M4) Gαi/Go M4 receptors in the hippocampus and
  prefrontal, frontal and cingulate cortex
mGlu (mGluR1, mGluR5) Gαq/Gs Overexpression of mGluR1 in the prefrontal cortex (152)
  of patients
mGlu (mGluR2‑4 and 6‑8) Gαi/Go mGluR2/3 may serve a role in working memory (82,298)
  associated with NMdA receptor hypofunction
Serotonergic (5‑HT1, 5‑HT5) Gαi/Go decreased binding of 5HT to the 5‑HT1A receptor in (299)
  the amygdala of patients
Serotonergic (5‑HT2) Gαq Alterations in frontal cortical 5‑HT2A receptor (300)
  binding and decreased receptor density in the brain
  of patients
Serotonergic (5‑HT4, 5‑HT6, 5‑HT7) Gαs 5‑HT7 in the human brain and reduced mRNA levels (301)
  in the prefrontal cortex of patients
GABAB metabotropic (GBR2) Gαi/Gβγ GABABR1 (6p21.3) and GABABR2 (5q34) gene loci (302)
  are SZ susceptibility loci 

GPcR, G protein‑coupled receptor; SZ, schizophrenia; d, dopamine; mGluR, glutamate metabotropic receptor; NMdA, N‑methyl‑d‑aspartate; 
5‑HT, serotonin; GBR, GABA metabotropic receptor.
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by genetic research showing a clear association between the 
dopamine receptor d2 gene and SZ (86,99). Although the 
majority of the currently authorized antipsychotic drugs block 
d2‑type dopamine receptors, clinical symptomology is not 
completely treated in most patients. However, they have effects 
on other receptors in the brain, such as dopamine, serotonin, 
histamine, norepinephrine and Ach receptors, resulting in 
other abnormality, such as the risk of extrapyramidal side 
effects (100). d2 receptors are involved in postsynaptic acti‑
vation and autoreceptor‑mediated inhibition of dopamine 
release in the striatum and the d1 receptor modulates actions 
of dopamine in the corticostriatal circuitry; alterations in 
dopamine d1 receptors and key molecules in their signaling 
pathways have been found in the PFc of patients with SZ (101). 
Other studies have visualized expression in limbic and cortical 
areas of d3 and d4 dopamine receptors (102,103). Moreover, 
clozapine, a second generation antipsychotic drug, has a higher 
affinity for the D4 receptor, which supports its participation in 
the pathophysiology of SZ (102). On the other hand, the distri‑
bution and low cerebral abundance of d3 receptors, as well as 
their close homology with the d2 receptor, indicate they may 
serve as pharmacological targets, especially since their imple‑
mentation could avoid the adverse motor effects produced by 
the inhibition of the d2 receptor (104).

ARs. ARs are divided into α1, α2, β1, β2, and β3. The α1 recep‑
tors couple to protein Gq/phospholipase c signaling proteins 
and α2 couple to Gi proteins. The β1 and β2 adrenoceptors 
activate Gs/Ac/cAMP/protein kinase a (PKA) and β3 receptors 
couple to both Gs and Gi (105).

α1‑ARs present three molecular subtypes (α1A, α1B, and 
α1d) that regulate the functions of the sympathetic nervous 
system by transducing signals after binding with cognate 
agonists, such as endogenous catecholamines norepinephrine 
and epinephrine (106). In the peripheral nervous system (PNS), 
α1‑ARs participate in nervous regulation of the cardiovascular 
and other system functions (107).

The positive symptoms of SZ are exacerbated by selec‑
tive and indirect AR agonists (ephedrine, clonidine and 
desipramine), while they are decreased by antagonists (yohim‑
bine, propranolol and oxypertine) (85,108). Additionally, 
α‑ARs are linked to cognitive deficit in SZ (109) and PFC 
impairment via PKc activation (85,110,111). In neocortical 
pyramidal cells, adrenergic arousal controls coupling between 
apical and somatic integration regions by the regulation of 
hyperpolarization‑activated currents (Ih) and altering apical 
amplification (AA) (112). Higher levels of cAMP lead to 
excessive Ih, therefore increasing AA. Patients with SZ exhibit 
translocation in the disrupted in schizophrenia 1 (dISc1) 
gene and dISc1‑regulated phosphodiesterase 4 (PdE4) 
activity; in the presence of high concentration of cAMP, this 
increases hydrolysis; however, but this process is altered in 
these patients (113,114). This area is key for spatial working 
memory (WM), in which α2A receptors serve a key role by 
inhibiting the cAMP/PKA pathway, thus reducing the persis‑
tent firing by increasing the open state of hyperpolarization 
and cyclic nucleotide‑gated channels (115,116). The effects of 
adrenergic signaling are subtype‑specific and could be influ‑
enced by noradrenaline concentration and receptor affinity. 
The effect is mediated through the persistent firing of the α2A 

receptors, and the use of an exogenous general β agonist does 
not alter the outcome. This phenomenon may be related to the 
upregulation of cAMP (117). In another study, the use of a β1 
antagonist improved WM and the activation of β2 enhanced 
this effect, illustrating the complex modulation by adrenergic 
receptors (117‑119). 

certain single nucleotide polymorphisms (SNPs) have 
been associated with SZ, including two SNPs in the promoter 
region of the α1A receptor gene (120), as well as methylene‑
tetrahydrofolate reductase (MTHFR) (121,122). A detection 
system has been proposed to measure levels of 5‑MTHF in 
patients with MTHFR SNPs (123).

Muscarinic receptors. Ach is a crucial neurotransmitter 
that participates both in the cNS and PNS. There are two 
types of receptors activated by Ach, nicotinic ionotropic 
and muscarinic metabotropic receptors (mAchRs) (124). 
There are five types of muscarinic receptors that can be clas‑
sified as those coupled to Gq/G11 (M1, ‑3 and ‑5) and those 
coupled to Gi/o (M2 and ‑4) (124‑126). The M1 receptor is the 
most prevalent receptor in the cNS, located in postsynaptic 
neurons and some peripheral tissues (126). Meanwhile, in the 
presynaptic neurons, the M2 and M4 receptors are expressed, 
while in the postsynaptic neurons, the M3, M4 and M5 recep‑
tors are expressed, with the M3 typically being the less 
abundant (126). Lower levels of M1 and M4 expression have 
been detected in the cortex (127,128), hippocampus (129) and 
striatum (130). 

Genetic alterations in the muscarinic signaling pathway 
have been associated with SZ, including SNPs in the gene for the 
muscarinic acetylcholine receptor M1 (cHRM1) (131), as well 
as changes in methylation of the promoter of this gene, caused 
by the increase in microRNA (miRNA or miR) that regulates 
this gene (miR‑107) (132). SNPs for cHRM4 (126,133) and 
cHRM5 (126,134) have also been linked with an increased 
risk of SZ. 

The use of animal models has demonstrated the participa‑
tion of the mAchRs in the pathogenesis of SZ. In M1 knock‑out 
(KO) mice, impaired WM and long‑term potentiation are 
observed (126,135). In a double KO mice model for M1 and 
M4, impaired prepulse inhibition (PPI) is observed (126,136). 
M4 KO mice models have been reported to present impaired 
PPI, abnormal social behavior, locomotor activity, sensorim‑
otor gating, abnormal antipsychotic function, dopaminergic 
hyperexcitability and altered striatal dopamine release 
regulation (126,137‑142). It has been observed that M5 KO 
mice present changes in PPI and reduced striatal dopamine 
release (126,142‑144).

Alterations in other participants of this signaling pathway 
affect SZ. Acetylcholinesterase inhibitors, the enzyme that 
hydrolyses Ach, decrease visual hallucinations (85,145,146). 
Additionally, choline acetyltransferase (chAt), the enzyme 
that synthesizes Ach, has decreased activity in the nucleus 
accumbens and pontine tegmentum of patients with SZ, which 
is associated with cognitive performance. An SNP for chAt is 
associated with SZ (147).

Glutamatergic receptors. Glutamate is the primary 
excitatory neurotransmitter in the cNS responsible for modu‑
lation of synaptic transmission and neuronal excitability. 
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This modulation is mediated by the activity of ionotropic 
and metabotropic glutamate receptors (mGluRs) (85,148,149). 
There are eight subtypes of mGluRs encoded by the glutamate 
metabotropic receptor 1 (GRM1)‑8 genes and these receptors 
are be classified into three groups: Group I includes receptors 
coupled to a Gq/11 protein (mGluR1 and mGluR5) and group II 
(mGluR2 and mGluR3) and III (mGluR4, ‑6, ‑7 and ‑8) are 
coupled to Gi/Go protein (85,148,149). All receptor subtypes 
are expressed in neurons and glial cells, except mGluR6, 
which is primarily expressed in the retina (85,150). 

Alterations in mGluR1 are associated with SZ. Patients 
with SZ may have deleterious GRM1 non‑synonymous 
SNPs (85,151); in postmortem studies, patients with SZ 
have higher levels of mGluR1α in the PFc (85,152). The 
role of mGluR1 has been studied through KO mice. These 
animals have decreased hippocampal long‑term potentia‑
tion leading to a deficit in associative learning (148,153,154) 
and activity‑dependent synaptic plasticity (154). mGluR1 
deficiency causes long‑term depression in the cerebellum 
and motor learning impairment (148,155) and a decrease in 
PPI (148,156). Use of mGluR1 negative allosteric modula‑
tors is effective in the treatment of positive SZ symptom 
models (85,148,157).

mGluR5 may be involved in SZ as this receptor potenti‑
ates the NMdAR in brain regions of interest in SZ (158). 
In mGluR5KO mice, there is a deficit in PPI (148,159). 
Furthermore, a KO model of miR‑50103p induces dendritic 
structural defects, glutamatergic transmission enhancement 
and sociability, memory and sensorimotor gating deficits, 
which are attenuated when restoring miR‑50103p expression. 
These effects were attributed to the upregulation of mGluR5 
since this miRNA negatively regulates the expression of 
the receptor. When using a negative allosteric modulator 
of mGluR5, similar effects were observed (160). In animal 
models of positive and negative symptoms, a positive allo‑
steric modulator of mGluR5 effectively improves all types of 
SZ symptom (85,148,157). Furthermore, mGluR5‑selective 
negative allosteric modulators in adult rats causes social 
interaction deficits, impaired WM, reduced instrumental 
learning, decreased overall response in 5‑choice serial reac‑
tion time task (5‑cSRT) and increased NMdAR antagonist 
side effects (158,161‑165). Postsynaptic mGluR2/3 activation 
can augment NMdAR currents via Src kinase in pyramidal 
cells of the hippocampal cA1 (166) and in the PFc via PKc 
activity (167) and soluble N‑ethylmaleimide‑sensitive factor 
attachment protein receptor proteins (157,168).

Although the group II receptors have not been as exten‑
sively studied, they may serve as therapeutic targets. In animal 
models of SZ, the activation of mGluR2/3 decreases the 
psychomotor activity and neurochemical effects produced by 
psychostimulants (85,169). Agonists of mGluR2/3 decrease 
extracellular dopamine efflux in the substantia nigra, nucleus 
accumbens and dorsal striatum (157,170‑173). The activation 
of mGluR2/3 functions as an autoregulator to decrease gluta‑
mate release, makes it a target for the development of agonists 
for treatment of SZ (157,174). Additionally, in preclinical trials, 
mGluR2/3 agonists (LY354740 and LY379268) decrease 
NMdAR antagonist‑induced hyperlocomotion (175‑178) 
and behavioral stereotypes (175,179) and behavioral and 
electrophysiological effects and head twitches induced by 

(+/‑)1‑(2,5‑dimethoxy‑4‑iodophenyl)‑2‑aminopropane (dOI) 
in mice (180) and improve SZ‑like symptoms induced by 
prenatal stress and postnatal isolation (157,181,182). In negative 
symptom models, the agonists improve deficits in social inter‑
action (183‑185) and mobility attenuated by dizocilpine in the 
swimming test (157,178). For cognitive symptoms, mGluR2/3 
agonists decrease deficits in discrete‑trial delayed alternation 
task (175) and errors in the 5‑cSRT (157,186). However, it has 
also been shown that agonists can impair cognitive symptoms. 
Impaired cognition by inhibiting hippocampal synaptic trans‑
mission (187) and exacerbated deficits in the 5‑CSRT have 
been observed (157,188).

mGluR2 is associated with the serotonergic receptor 
5‑HT2AR based on the behavioral, pharmacological, and 
biochemical results observed when antagonizing receptor 
signaling (157,189‑191). The antipsychotic properties of 
mGluR2 have been attributed to the effects on the serotonin 
receptor and it has also been observed that 5‑HT2AR antago‑
nism in mice with atypical antipsychotics decreases expression 
of GRM2 encoding mGlu2 through a decrease in histone 
deacetylase 2 (157,192).

The least explored receptors are those in group III. 
All receptors in this group have been studied in KO mice 
models (180,184‑197). The administration of a group III agon
ist (1S,3R,4S)‑1‑aminocyclo‑pentane‑1,3,4‑tricarboxylic acid 
(AcTP‑1) decreases hyperlocomotion induced by MK‑801 and 
amphetamines and improves head twitches induced by dOI 
in mice (157,193). The mGluR4 is expressed throughout the 
brain but is most densely expressed in the cerebellum; KO 
mice can present impairments in cerebellar synaptic plasticity 
and motor learning of complicated tasks and altered spatial 
memory performance. These receptors are key in regula‑
tion of GABAergic absence seizures in the thalamocortical 
region (148,194‑196). In positive symptom animal models, the 
administration of mGluR4 agonist (LSP1‑2111 and LSP4‑2022) 
improves psychosis symptoms (hyperlocomotion and head 
twitches) (157,197,198). mGluR4 agonists also improve deficits 
in social interaction and novel object recognition (157,198). 
mGluR6, which is primarily expressed in the retina, presents 
delayed response when retinal bipolar cells are stimulated 
with light in mGluR6 KO mice (148,199,200). There have been 
reports of photoreceptor and bipolar and retinal ganglion cell 
(RGC) dysfunction in SZ (201,202). RGC signaling deficit is 
associated with SZ, particularly in patients that experience 
visual hallucinations (202). 

The mGluR7 receptor is widely expressed but has 
a lower affinity to glutamate than other receptors and 
downregulates overstimulation by glutamate (148), as 
indicated by the epileptic phenotype observed in mGluR7 
KO mice (148,203). mGluR7 KO mice exhibit worse 
short‑term neural plasticity in the hippocampus (85,204,205), 
memory and learning deficits (204,206‑209) and an altered 
fear (209) and anxiety response (20,85,148,204,210). In 
preclinical studies, mGluR7 negative allosteric modulators 
6‑(4‑methoxyphenyl)‑5‑methyl‑3‑pyridin‑4‑ylisoxazolo[4,5‑c]
pyridin‑4(5H)‑one and (+)‑6‑(2,4‑dimethylphenyl)‑2‑
ethyl‑6,7‑dihydrobenzo[d]oxazol‑4(5H)‑one improves 
symptoms caused by MK‑801 and dOI‑induced head 
twitches (85,211‑213), while an mGuR7 agonist (AMN082) 
produces the opposite effects (157,197).
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mGluR8 is less expressed than mGluR4 and ‑7; it is 
primarily expressed presynaptically and widely throughout 
the brain (148,157). This receptor serves as an autoreceptor in 
the lateral prefrontal path of the dentate gyrus, therefore gating 
glutamatergic transmission into the hippocampus (157,214), 
which is why mGluR8 KO mice exhibit deficiency in 
hippocampal‑mediated learning (157,215). Unlike the other 
group III receptors, mGluR8 agonist [(S)‑3,4‑dcP] does not 
affect NMdAR or amphetamine hyperactivity, suggesting that 
it might be an ineffective target for SZ treatment (157,216).

Purinergic receptors. P2Y metabotropic purinoceptors are a 
family of proteins divided into eight subtypes (P2Y1, 2, 4, 6 
and 11‑14) that can be activated by several nucleotides such 
as ATP, AdP, UTP, UdP and UdP‑glucose (217). Activation 
of these receptors induces biological effects due to the subse‑
quent activation of different effectors, including MAPK, 
ρ‑associated protein kinase, phospholipase A2, nitric oxide and 
the transactivation of growth receptors (218). Several signaling 
pathways activated by ATP and other nucleotides via P2Y, 
participate in regulation of cNS development. Stimulation 
of the P2Y1 receptor promotes adult neurogenesis (219,220). 
The P2Y receptors have been suggested to be involved in SZ. 
P2Y1 receptor agonist (MRS2365) to the PFc in rats impairs 
WM and other behavioral responses that may be involved in 
conditions that increase ATP concentration, such as SZ (221). 
Perisomatic interneurons, which modulate γ oscillations, 
express P2Y1Rs (222). These cells have been implicated in SZ 
and cognitive deficit (222) and γ oscillations and PPI altera‑
tions have been reported in SZ animal models (223,224).

The role of the purinergic signaling system in SZ has gained 
interest (225,226). Based on modulation of glutamatergic and 
dopaminergic systems by adenosine, it has been theorized that 
complications during the early stages of brain development 
lead to an excessive release of adenosine that induces brain 
changes. The dysfunctional activation of adenosine receptor 
A1R decreases activity of dopamine, consequently increasing 
cytotoxicity through glutamate (227). Adenosine A2A receptor 
(A2AR) KO mice showed that, in astrocytes, these receptors 
disrupt glutamate homeostasis, leading to psychomotor and 
cognitive impairment, which may be involved in the develop‑
ment of SZ (228). Moreover, A2ARs can form heterodimers 
with d2 receptors. A2ARs are highly expressed in certain brain 
regions implicated in SZ and may modulate d2 receptors. 
However, no difference in expression of these receptors is 
observed in male patients with SZ treated with antipsychotic 
medication compared with healthy controls by measuring a 
tracer through positron emission tomography (229). 

Wnt/FRIZZLED (FZD) receptors. Wnts transduce signaling 
cascades to regulate Sc differentiation in various types 
of tissues such as skin, muscle, colon and bone marrow; in 
addition, they promote cell proliferation and differentiation to 
regulate maintenance of the adult hippocampus and neuronal 
progenitors of the subventricular zone (230,231). A distinctive 
aspect of Wnt signaling is its ability to favor tissue growth 
while inducing cell proliferation, serving as a directional 
growth factor and preventing the formation of amorphous 
structures, an essential feature during tissue development and 
homeostasis in adults (232,233). 

Neuroinflammation and immune dysfunction could be 
involved in the pathogenesis of SZ, supported by the higher 
incidence of autoimmune disease in patients with SZ. The 
inflammatory process is mediated by Wnt/β‑catenin dysregu‑
lation, with the primary effector being NF‑κB, stimulating 
production of inflammatory markers, including various cyto‑
kines, and favoring oxidative stress. Many of these processes 
promote psychotic symptoms. SZ is associated with a decrease 
in Wnt/β‑catenin pathway activity, leading to an upregulation 
of PPARγ and downregulation of PPARα (234‑236). The 
increase of PPARγ increases oxidative stress and inflam‑
mation (234). The Wnt/β‑catenin pathway is involved in the 
pathogenesis of numerous neuropsychiatric disorders. There 
have been reports of myelin and oligodendrocyte dysfunction 
in SZ (88,237), indicating that the Wnt/β‑catenin pathway 
could be altered in this illness. The levels of β‑catenin are 
decreased in the hippocampal region of patients with SZ 
and downstream alterations in this pathway have been also 
observed (238). 

Genome‑wide SNP analysis has identified multiple SNPs 
associated with SZ, including the FZd1 gene at chromosome 
7q21.13 (239), as well as FZd3 gene on the chromosome 
8p21 (240‑242). FZd3 SNPS are also implicated in meth‑
amphetamine psychosis (243). There is aberrant Wnt gene 
expression at multiple levels of the signaling pathway. 
Microarray analysis demonstrates that patients with SZ 
exhibit dysregulated mRNA expression of genes that attenuate 
β‑catenin signaling and favor non‑canonical signaling, while 
transcription factor nuclear factor of activated T cells 3, which 
is activated downstream by the non‑canonical pathway, is 
upregulated (244).

Cannabinoid receptors. cannabinoid receptor subtypes 1 
and 2 (cB1 and cB2) are metabotropic receptors primarily 
coupled to Gi/o proteins. Activation of these receptors inhibits 
the enzymatic activity of Ac), and decreases the intracellular 
levels of cAMP (245). These receptors couple to Gq/11 or 
Gs, inducing different responses (246). They are expressed 
in neuroglia, immune cells and neurons in the cNS (247). 
Furthermore, olfactory (248) and neural Scs (NScs) express a 
functional endocannabinoid system (249).

cB2 receptors are usually absent in neurons, although they 
are functionally active in Scs and, together with cB1, modu‑
late processes such as proliferation, cell cycle maintenance, 
and NSc differentiation via the PI3K/Akt pathway (250‑253).

Excessive activation of the endocannabinoid system 
through cB1 receptors of inhibitory GABAergic interneu‑
rons in the ventral tegmental area, basolateral amygdala 
and the medial PFc generates a hyperdopaminergic and 
hypoglutamatergic environment, causing SZ (254,255). 
Through in vivo and postmortem studies, it has been shown 
that gene, mRNA and protein levels of these receptors 
are decreased and dysregulated in multiple brain regions 
of patients with SZ (256‑258). In animal models, chronic 
blockade of cB2 receptors has been shown to induce 
anxiolytic action (259). Treatment with a selective cB2 
agonist reduces depressive‑like behaviors (260). Maternal 
deprivation induces a significant increase in CB2 receptor 
immunoreactivity in the hippocampus, suggesting partici‑
pation of this receptor in psychiatric neurodevelopmental 
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Table II. Effect of different agonistic and antagonistic treatments targeting GPcRs in patients with schizophrenia.

drug Typical GPcR‑associated signaling Atypical GPcR‑associated signaling

Aripiprazole dopamine Antagonist (√√√) d2 Gi ↓cAMP Serotonin Antagonist (√√√) 5HT1a Gs  cAMP;
 ↓ca2+ ↓IK+; (√√) d3 Gi ↓ cAMP; (√) d4 Gi (√√√) 5HT2a ca2+ PLc; (Ö) 5HT2c ca2+ PLc;
 ↓cAMP ↓ca2+ ↓IK+ (√) 5HT7 Gs↑ cAMP
  Adrenergic Antagonist (√√) a1 Gq IP3/ca2+

  Histamine Antagonist (√) H1 Gq IP3/ca2+

Azepine dopamine Antagonist (ÖÖÖ) d2 Gi ↓cAMP Serotonin Antagonist (√√√√) 5HT2a ca2+ PLc;
 ↓ca2+ ↓IK+; (√) d3 Gi ¯cAMP (√√) 5HT1a Gs  ↑cAMP; (√√) 5HT1b Gi

  ↓cAMP; (√√) 5HT2c ca2+ PLc; (√) 5HT6 Gs

    ↑cAMP; (√) 5HT7 Gs  ↑camp
chlorpromazine dopamine Antagonist (√√√) d1 Gs  ↑cAMP; Serotonin Antagonist (√√√) 5HT1a
 (√√) d5 Gs  ↑cAMP; (Ö) d2 Gi ↓cAMP ↓ca2+ Gs  ↑cAMP; (√√√) 5HT2a ca2+ PLc
 ¯IK+; (√) d3 Gi ↓cAMP
  Adrenergic Antagonist (√√) a1 Gq IP3/ca2+;
  (√√) a2 Gi ↓cAMP
  Histamine Antagonist (√) H1 Gq IP3/ca2+

  Muscarinic Antagonist (√) M1 Gq IP3/ca2+; (√)
  M2 Gi ↓cAMP ¯IK+

clozapine dopamine Antagonist (√√√) d1 Gs   cAMP; Serotonin Antagonist (√√√) 5HT2a ca2+ PLc
 (√√) d4 Gi ↑ cAMP ;(Ö) d2 Gi ↓ cAMP ↓ ca2+ Adrenergic Antagonist (√√)   a1 Gq IP3/ca2+

 ↓IK+; (√) d3 Gi ↓ cAMP Muscarinic Antagonist (√√) M1 Gq IP3/ca2+; 
  (√) M2 Gi ↓cAMP ¯IK+; (√) M3 Gq IP3/ca2+

  Muscarinic Agonist (√) M4 Gi ↓cAMP ↓IK+

Fluphenazine dopamine Antagonist (√√√) d2 Gi Muscarinic Antagonist (√√) M1 Gq IP3/ca2+

 ↓cAMP ↓ca2+ ↓IK+ Adrenergic Antagonist (√√) a1 Gq IP3/ca2+

  Histamine Antagonist (√) H1 Gq IP3/ca2+

Haloperidol dopamine Antagonist (√√√) d1 Gs  ↑ cAMP; Muscarinic Antagonist (√) M1 Gq IP3/ca2+

 (√√) d2 Gi ↓cAMP ¯ca2+ ↓IK+ Adrenergic Antagonist (√) a1 Gq IP3/ca2+

Olanzapine dopamine Antagonist (√√√) d1 Gs  ↑ cAMP; Serotonin Antagonist (√√√) 5HT2a ca2+ PLc;
 (√√) d5 Gs  ↑ cAMP; (√√) d2 Gi ↓cAMP ¯ca2+ (√√√) 5HT2c ca2+ PLc
 ↓IK+; (√) d3 Gi ↓cAMP Adrenergic Antagonist (√√) a1 Gq IP3/ca2+

  Muscarinic Antagonist (√√)  M1 Gq IP3/ca2+;
  (√) M2 Gi ↓ cAMP ↓IK+; (√) M3 Gq IP3/ca2+;
  (√) M4 Gi ↓cAMP ¯IK+; (√) M5 Gq IP3/ca2+

  Histamine Antagonist (√) H1 Gq IP3/ca2+

Quetiapine dopamine Antagonist (√√) d1 Gs  ↑ cAMP; Serotonin Antagonist (√√√) 5HT2 ca2+ 
 (√√) d2 Gi ↓cAMP ↓ca2+ ↓IK+ PLc; (√√√) 5HT1 Gi ↓cAMP ¯IK+

  Histamine Antagonist (√) H1 Gq IP3/ca2+

  Adrenergic Antagonist (√√) a1 Gq IP3/ca2+;
  (√) a2 Gi ↓ cAMP
Perphenazine dopamine Antagonist (√√) d2 Gi ↓cAMP Adrenergic Antagonist (√√) a1 Gq IP3/ca2+

 ↓ca2+ ↓IK+

Risperidone dopamine Antagonist (√√) d2 Gi ↓cAMP Serotonin Antagonist (√√√) 5HT2 ca2+ PLc
 ↓ca2+ ¯IK+; (√) d3 Gi ↓ cAMP Adrenergic Antagonist (√√) a1 Gq IP3/ca2+

  Histamine Antagonist (√) H1 Gq IP3/ca2+

  Muscarinic Antagonist (√√) M1 Gq IP3/ca2+;
  (√√) M2 Gi ↓cAMP ¯IK+

Thioridazine dopamine Antagonist (√√) d2 Gi ¯cAMP Adrenergic Antagonist (√√) a1 Gq IP3/ca2+

 ↓ca2+ ↓IK+

Trifluoperazine Dopamine Antagonist (√√)   d2 Gi ↓cAMP Adrenergic Antagonist (√√) a1 Gq IP3/ca2+

 ↓ca2+ ↓IK+
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diseases such as SZ (261). Polymorphisms in the genes for 
cannabinoid receptors and the endocannabinoid system 
are associated with SZ (28) and quality of the response to 
antipsychotics (262).

Sphingosine‑1‑phosphate (S1P) receptors. S1P is produced in 
all cell types during the catabolic degradation of membrane 
glycosphingolipids and sphingomyelin, which results in 
sphingosine that is phosphorylated by sphingosine kinase 
(SphK) to S1P, a bioactive signaling molecule that serves as 
a ligand for GPcRs of the Gi/o, G12/13, and Gq types (263). 
Various hormones, cytokines and growth factors can activate 
the SphK/S1P signaling pathway, modulating cell prolif‑
eration, migration and survival. The SphK/S1P pathway 
has been associated with stem/progenitor cells and tissue 
self‑renewal in the vascular, immune, muscular and nervous 
systems (264‑267).

In the pathogenesis of SZ, there are alterations in myelin, 
white matter integrity and metabolism of lipids. Recent 
targeted mass spectrometry‑based analysis found that post‑
mortem samples of the corpus callosum of patients with SZ 
have lower levels of S1P (268). Furthermore, one study divided 
patients with SZ into those that present an upregulation of 
S1PR1 and those that have levels comparable to controls (269). 
This may be used as a biomarker since S1PR1 can be detected 
through positron emission tomography (269). 

Neuropeptide Y (NPY) receptors. NPY is a 36‑amino acid 
peptide produced by GABAergic interneurons that is widely 
expressed in the cNS and PNS during development and adult‑
hood. The Y receptors are a family of proteins divided into five 
subtypes (Y1, Y2, Y4, Y5, and Y6) that are activated by the NPY 
family of hormones, which consists of three native peptide 
ligands (NPY, pancreatic polypeptide and peptide YY). All 
NPY receptors are involved in the Gi signaling cascade; 
upon activation, the α subunit decreases cAMP production 
and the b/g subunit activates various kinase cascades. This 
ligand‑receptor interaction can lead to decreased ca2+ channel 
activity and increased G‑protein‑coupled inward rectifying 
potassium currents (270,271). 

NPY serves an important role in the regulation of learning, 
memory, feeding and endocrine secretion (272). NPY is 
found in the olfactory neuroepithelium, where it stimulates 

proliferation of olfactory Scs (273). Additionally, NPY regu‑
lates the response of olfactory receptors, apoptosis and cell 
regeneration (274) and protects sensory neurons from death 
due to excessive GluR activation by decreasing ca2+ entry into 
the presynaptic nerve terminal via PKA‑ and p38K‑associated 
signaling (275). 

NPY participates in adult neurogenesis in the hippocampal 
dentate gyrus, caudal subventricular zone and subcallosal 
zone (276). In vivo, by fusing NPY vectors with a brain 
transport peptide (apolipoprotein B), proliferation of neural 
precursor cells in the subgranular zone of the hippocampus 
increases substantially without neuronal differentiation (277). 
Furthermore, NPY promotes the proliferation of olfactory and 
hippocampal Scs (272,273,278).

NPY gene and mRNA expression is decreased in PFc of 
patients with SZ (279,280); these prefrontal deficits depend on 
regional supply of brain‑derived neurotrophic factor through a 
miRNA‑regulated mechanism (279). Additionally, activation 
of the Y2 subtype of NPY receptor regulates central dopamine 
signaling, which is closely related to the pathophysiology of 
psychotic symptoms (281,282).

Chemokine receptors. chemokines are a family of small cyto‑
kines (cXc, cc or β‑chemokines, c, and cX3c), that regulate 
chemotaxis, hematopoiesis, angiogenesis, survival, prolifera‑
tion, migration and degranulation of leukocytes by coupling 
with their respective GPcRs (283). chemokine receptors 
are divided into four subtypes according to their activating 
chemokine ligands (284). chemokines are key regulators of 
SCs in specific tissues (268,285) and can mediate migration 
of multipotent Scs (286). cXcR4 modulates growth factor 
signaling and is expressed in vitro in adult human and murine 
NScs and cells from the embryonic murine subventricular 
zone (287).

In addition to chemotactic functions, it has been observed 
that chemokines participate in neuromodulation, neuro‑
transmission and neurogenesis, exert a pleiotropic effect and 
exacerbate inflammation, which is why their dysregulation 
is associated with neurobiological processes associated with 
mental illnesses such as SZ (284,288). A systematic review 
demonstrated an association between chemokines and 
neuroinflammation and the pathogenesis of SZ, highlighting 
that there is a genetic association of SZ with polymorphisms 

Table II. continued.

drug Typical GPcR‑associated signaling Atypical GPcR‑associated signaling

Ziprasidone dopamine Antagonist (√√) d2 Gi ↓cAMP Serotonin Antagonist (√√√) 5HT2a ca2+ PLc;
 ↓ca2+ ↓IK+ ; (√) d3 Gi ↓cAMP (√√) 5HT2c ca2+ PLc; (√√) 5HT1d Gi ↓cAMP
  ↓ca2+ ↓IK+

  Adrenergic Antagonist (√) a1 Gq IP3/ca2+

  Histamine Antagonist (√) H1 Gq IP3/ca2+

(√√√) High effect; (√√) Moderate effect; (√) Mild effect; ↓ decreased effect; ↑ increased effect. The information of this table was taken 
from (2,292,303). GPcR, G protein‑coupled receptor; IK, potassium current; 5‑HT, serotonin; PLc, phospholipase c; IP3, inositol 1,4,5‑trispho‑
sphate; Gi, G inhibitory; Gs, G stimulatory.
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of chemokine receptor genes, blood levels of cXcL8/IL‑8, 
ccL2/(monocyte chemoattractant protein 1, chemokine 
(C‑C motif) ligands 4 (CCL4)/macrophage inflammatory 
protein 1β (MIP‑1β), and ccL11/eotaxin‑1 are increased 
and chemokine expression and their receptors are changed 
in brain regions and peripheral immune cells of patients with 
SZ and animal models have revealed molecular mechanisms 
associated with deregulation of the cX3cL1‑cX3cR1 and 
cXcL12‑cXcR4 axes, demonstrating that deregulation of 
chemokine expression may contribute to the neurobiological 
processes that cause SZ (284).

5. GPCRs as therapeutic targets in SZ

Management of patients with SZ consists of pharmacotherapy 
and/or psychotherapy and its principal goal is to improve 
quality of life and limiting side effects of treatment to main‑
tain adherence to the treatment. The primary pharmacological 
therapy used in SZ is based on total or partial antagonists of 
the dopamine d2 receptor, however, few patients fully recover 
or exhibit reversed negative symptoms (Table II). Moreover, 
the cognitive impairments of SZ are usually resistant to current 
antipsychotic treatment (289). 

GPcRs play an important role in the treatment of SZ 
because they transmit the extracellular signal into cells 
by activating the signaling cascade coupled to G proteins. 
Advances in pharmacology have made it possible to identify 
drugs that can modify the interaction of GPcRs related to 
dopaminergic and serotonergic activity in the treatment 
and management of SZ (290,291). Understanding the role 
of GPcRs in the signal transduction of SZ is fundamental 
for the discovery of pharmacological targets. The basis 
of pharmacological treatment for SZ requires a complete 
understanding of GPcR‑mediated signaling, transducers and 
associated second messengers. Structural plasticity of GPcR 
proteins underlying physiological regulation with pharma‑
cological implications in clinical use has been summarized 
previously (292).

considering SZ pathophysiology and ineffective 
antipsychotic therapy with severe side effects and poor 
adherence to the therapeutic regimen that diminishes 
quality of life and undermines the beneficial effects of the 
drugs, novel treatments directed at the whole symptom‑
atology as well as specific symptoms are needed. There 
are numerous clinical studies of GPcR targets, including 
those directed at general, positive, negative and cognitive 
symptoms (30,293,294).

6. Conclusion

The present review demonstrated that GPcR alterations can 
be associated with the pathophysiology of psychiatric disor‑
ders and neurodegenerative diseases, such as SZ. GPcRs are 
a therapeutic target of antipsychotics used in the treatment 
of SZ. To the best of our knowledge, however, experimental 
evidence regarding the functionality of these receptors in 
patients is scarce. Knowledge of GPcR signaling in human 
multipotent Scs and their progeny differentiated in neurons 
or neuroglia could widen the study of the pathophysiology of 
SZ and other diseases such as diabetes, myocardial infarction, 

stroke, Parkinson's disease, Alzheimer's disease and multiple 
sclerosis.

Some of the limitations of hONE as a model of study in 
SZ include lack of information about GPcRs functionality in 
hONE cells; also, since these cells are undifferentiated, they 
may have a distinct expression of channels and receptors than 
their differentiated progeny, and the results obtained in the 
undifferentiated cells should be corroborated in conventional 
SZ models based on differentiated dopaminergic and sero‑
toninergic neurons.

Models such as patient‑derived iPScs, transdifferenti‑
ated neurons, olfactory sensory neurons and cerebral 
organoids can provide understanding of SZ and facilitate 
the development of treatment. Particularly, the culture and 
cryopreservation of olfactory Scs have been characterized 
and used to identify several dysfunctional processes at a 
cellular level; this has been proposed as a model to under‑
stand the pathophysiology of neuropsychiatric disorders 
and detect biomarkers for diagnosis. This model could be 
useful to study the functionality of GPcR in SZ. GPcRs and 
their associated signaling pathways are possible therapeutic 
targets for SZ, although further research using experimental 
and bioinformatic tools is needed.
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