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Abstract. The vestibular system may have a critical role in 
the integration of sensory information and the maintenance 
of cognitive function. A dysfunction in the vestibular system 
has a significant impact on quality of life. Recent research 
has provided evidence of a connection between vestibular 
information and cognitive functions, such as spatial memory, 
navigation and attention. Although the exact mechanisms 

linking the vestibular system to cognition remain elusive, 
researchers have identified various pathways. Vestibular 
dysfunction may lead to the degeneration of cortical vestibular 
network regions and adversely affect synaptic plasticity and 
neurogenesis in the hippocampus, ultimately contributing to 
neuronal atrophy and cell death, resulting in memory and 
visuospatial deficits. Furthermore, the extent of cognitive 
impairment varies depending on the specific type of vestib‑
ular disease. In the present study, the current literature was 
reviewed, potential causal relationships between vestibular 
dysfunction and cognitive performance were discussed and 
directions for future research were proposed.
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1. Introduction

The vestibular system consists of the peripheral vestibular 
organs in the inner ear and the associated extensive central 
nervous system projections (1,2). By sensing the position and 
movement of the head, this system maintains the coordina‑
tion of the eyes and the balance of the head and body via 
reflex mechanisms such as the vestibulo‑ocular reflex and 
vestibulo‑spinal reflex (2,3).

Epidemiological studies have shown that >35% of individ‑
uals aged 40 years and above experience vestibular problems, 
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with a one‑year incidence of 11.9% (4‑7). In addition to balance 
disorders, patients with vestibular dysfunction also suffer from 
cognitive impairment, including deficits in attention, working 
memory, executive function and spatial orientation  (8‑11). 
These cognitive impairments can persist even after systematic 
drug treatment and vestibular rehabilitation and may exacer‑
bate patients' disabilities in both the spatial and non‑spatial 
domains  (12‑15). However, it is unclear how vestibular 
dysfunction and cognitive dysfunction are related at this time.

Various classification schemes for cognitive functions 
exist in the literature; however, a predominant approach 
in the majority of studies encompasses executive function, 
attention, memory and spatial ability (16). Wherein, spatial 
cognitive ability refers to the ability to understand and 
organize information about the environment in the two‑ and 
three‑dimensional space, which is more closely related to 
the vestibular system. It includes a variety of skills, such as 
spatial memory, spatial navigation and mental rotation (14,17). 
Spatial memory pertains to the recollection of locations, paths 
and spatial layouts. Navigation involves recognizing and 
memorizing paths, locations and directions. Mental rotation 
involves egocentric rotation and object‑based transformation. 
Nonspatial cognitive ability is subdivided into domains such 
as working memory, attention, concentration and executive 
function. Working memory pertains to hold memory tempo‑
rarily, attention and concentration is generally divided into two 
global subdomains: Selective attention and sustained attention. 
The domain of executive functioning includes complex tasks 
including planning, problem solving, manipulating mazes and 
other tasks requiring the administration of different cognitive 
capacities. The main cognitive domains are shown in Fig. 1.

The information provided by the vestibular system to the 
limbic system and neocortex via the ascending pathway is 
crucial for higher‑order cognitive processes, such as spatial 
memory and navigation (18). The hippocampus is an impor‑
tant component of the limbic system, located in the medial 
temporal lobe, and is closely associated with encoding, storing 
and retrieving of memories (19). Bilateral atrophy of the hippo‑
campus was observed in vestibular disorder patients (13), and 
substantial evidence suggests the hippocampus is the main 
brain region mediating the cognitive dysfunction brought on 
by vestibular disorders.

Since the pathologies of most vestibular illnesses remain 
poorly understood, the cognitive symptoms and etiology of 
each vestibular disorder may vary (2,20,21), and the present 
review highlighted the research progress on various types 
of vestibular disorders and their specific impacts on cogni‑
tion. In the current study, the recent literature regarding the 
relationship between vestibular dysfunction and cognitive 
performance was summarized, and the importance for clinical 
practitioners to not only assess the vestibular functional status 
of the diseases themselves but also to comprehensively eval‑
uate their effects on cognitive states was highlighted (22). The 
review methods are provided in the supplemental information.

2. Relationship between the vestibular system and cognitive 
function

Evidence for the involvement of the vestibular system in 
cognitive function. Clinical research observed that patients 

with vertigo and vestibular disorders often report symptoms of 
memory loss, such as ‘brain fog’, mental confusion and diffi‑
culties with memory and concentration (14,23). A four‑fold 
increase in cognitive impairment was observed in patients 
with vestibular disorders, with 12% reporting limited mobility 
due to memory problems or confusion (24‑26).

Since the early 2000s, numerous animal studies have 
discovered that the thalamus and hippocampus undergo 
abnormal plasticity following the loss of vestibular function. 
Multiple studies have consistently shown that, in rodents, 
vestibular inputs have a more crucial role than visual inputs 
in navigation. These vestibular inputs provide essential 
self‑movement cues for tracking trajectory (27‑29). Spatial 
memory deficiencies continued and were able to deteriorate 
even in chronic stages of vestibular injury, where compensa‑
tory processes were more likely to be activated. One study, 
for instance, found that rodents showed more severe deficits 
in spatial memory tasks 14 months after bilateral vestibular 
damage in comparison to only 5 months after the insult (30).

Mechanisms of vestibular system involvement in cognitive 
function. The vestibular signal is sent by four main ascending 
pathways to the hippocampus and the entorhinal cortex, which 
are both involved in spatial cognition. These pathways include 
the thalamo‑cortical pathway, theta‑generating pathway, 
cerebello‑cortical pathway and head direction pathway. 
Figs. 2 and S1 offer a comprehensive depiction, presenting 
both an overview and detailed diagrams illustrating the four 
proposed pathways responsible for transmitting vestibular 
information to the cortical centers implicated in cognition. 
The neural nuclei involved in this process are also exhibited. 
The thalamic nuclei, specifically the lateral posterior, ventral 
posterior, medial geniculate and ventrolateral geniculate 
nuclei, transmit the outputs from the vestibular nucleus 
complex to several cortical areas, including the visual and 
parietal cortices. The vestibulo‑cerebellar‑cortical route also 
transmits vestibular data to the parietal and retrosplenial 
cortices, which in turn project to the hippocampus via the 
entorhinal cortex (31,32). The head‑direction cell system is a 
network of cells distinguished by firing only in response to the 
head direction. The dorsal tegmental nucleus, which connects 
to the lateral mammillary nucleus and then to the postsu‑
biculum and anterodorsal thalamic nucleus, two regions that 
have finely tuned head‑direction cells, is where the vestibular 
nucleus complex fibers first make contact (33). Finally, it has 
been proposed that the theta wave‑generating system, which 
includes the medial septum, supramammillary nucleus and 
pedunculopontine tegmental nucleus, transmits vestibular 
information to the entorhinal cortex and the hippocampus (34). 
Overall, a significant amount of highly processed vestibular 
information is received by the entorhinal‑hippocampal system, 
which may be crucial for processing spatial information and 
navigation.

Electrophysiologic and neuroimaging studies have deter‑
mined that multisensory integration occurs at the vestibular 
thalamus, specifically the ventral posterolateral and ventral 
posteromedial nuclei, and the vestibular cortex, specifically the 
insular, parietal operculum, temporoparietal junction, posterior 
parietal, cingulate, somatosensory and frontal cortices (35). 
Thalamic nuclei receive vestibular signals from both vestibular 
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and cerebellar nuclei (36); thalamocortical circuits form the 
canonical building blocks of the brain networks supporting 
the most complex cognitive functions  (33). Sensitization 
at the level of the thalamus in addition to the convergence 
of sensory modalities at the cortex level causes perceptual 
hypersensitivity common in patients with vestibular dysfunc‑
tion (37). Thus, vestibular dysfunction can be described as 
central hypersensitization and aberrant sensory integration in 
vestibulo‑thalamic‑cortical processing.

Spatial navigation refers to the complex process by which 
animals construct a navigational map in the brain based on 
the external environment, and move freely in the spatial 
environment to perform various tasks (38,39). By recording 
the firing activity of neuronal cells in the spatial environment 
of an organism, researchers have identified a series of spatial 
navigation‑related cells, including position cells, grid cells, 
headward cells, interneurons, boundary cells, integrating cells 
and motion‑sensitive cells. The head direction cell code in the 
dorsal brainstem tegmentum, anterior thalamus, subiculum 
and entorhinal cortex, the place cell code in the hippocampus 
and the grid cell code in the entorhinal cortex are all disrupted 
in rodents with bilateral vestibular damage, resulting in severe 
and persistent navigation deficits (40,41).

The vestibular cortical projection areas can be defined 
as the cortical areas activated during selective stimulation of 
the vestibular system (e.g., whole body rotation in darkness, 
excluding visual and proprioceptive stimulation) (42). A total 
of six cortical regions respond to the movement of the head and 
simultaneously activate the vestibular nuclei: Dorsal premotor 
cortex, vestibular related cingulate cortex 23c, somatosensory 
areas 2v and 3av, parietoinsular vestibular cortex and tempo‑
roparietal polysensory cortex (42,43).

The core vestibular network is structurally  (44) and 
functionally (45) linked to regions involved in visuospatial 
processing, arousal and attentional modulation [e.g., anterior 

insula (46‑48)], sensory gain control, proprioceptive [supra‑
marginal gyrus (SMG)  (49,50)], sensorimotor [SMG and 
cingulate cortex (51,52)], cognitive‑perceptual (53) and affec‑
tive processes [SMG, subgenual cortex and anterior insula 
(54‑58)]. Furthermore, the ‘core’ cortical vestibular system's 
parieto‑insular and temporoparietal cortex, along with the 
cerebellum, frontal‑prefrontal, superior parietal and temporal 
cortices, as well as the posterior fossa, all generate cerebral 
potentials in response to naturalistic and artificial vestibular 
stimulation (59). Therefore, the vestibular function may be 
related to egocentric orientation and motor planning through 
body ownership and representation (10,60). In addition, it has 
been demonstrated that the vestibular system substrates are 
necessary for processing visuospatial memory, navigation, 
motion perception and even object‑based mental picture trans‑
formations (53). All of these functions can be interfered with 
in situations of vestibular dysfunction.

Vestibular dysfunction causes cognitive impairment through 
the hippocampus. Studies on the neuroanatomical basis of 
the vestibular system have shown that the vestibular pathway 
is involved not only in the afferent input of head movement 
direction information, but also in the transmission of spatial 
learning and memory information, in which the internal 
olfactory cortex of the hippocampus is the main integration 
center of spatial information (61). In a circuit with the hippo‑
campus, head direction and place cells, along with angular 
head velocity and grid cells, have a role in spatial orienta‑
tion and navigation (62). They are located across the medial 
entorhinal cortex's layers, including the parasubiculum and 
postsubiculum (63,64).

The hippocampus is thought to be important for spatial 
representation processes that depend on the integration of 
both self‑movement and allocentric cues; it also has signifi‑
cant interactions with areas associated with voluntary motor 

Figure 1. Domains of cognitive function. Cognitive functions can be divided into spatial cognitive functions, including spatial memory, spatial navigation and 
mental rotation, and non‑spatial cognitive functions, including non‑spatial memory, attention and executive functions.
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control, such as the striatum in the basal ganglia (62,65). The 
vestibular system has direct connections with the amygdala 
and hippocampus, both key components of the limbic system 
involved in emotion and memory processing (65‑67). Studies 
have shown that vestibular input can modulate activity in the 
amygdala and hippocampus, and that the limbic system can 
influence vestibular processing (68,69).

The hippocampus is essential for spatial navigation and 
memory, suggesting a potential interaction with the vestibular 
system. Spatial memory deficits observed in the virtual Morris 
Water Maze (vMWM) task correlate with a bilateral atrophy 
of the hippocampus of patients with bilateral vestibular loss, as 
reported originally (61,70). Interestingly, in cases of acute and 
chronic unilateral vestibular dysfunction, a reduced volume 
was observed in the right presubiculum of the hippocampus 

and the left supramarginal gyrus, while the total hippocampal 
volume remained similar to that of healthy controls (71).

Vestibular disorders may cause cognitive impairment through 
the hypothalamic‑pituitary‑adrenal (HPA) axis. Vestibular 
deafferentation could be responsible for the HPA axis acti‑
vation  (72,73). Anatomical evidence of vestibular nucleus 
complex projections to the paraventricular nucleus (PVN) 
in rats and cats has supported the idea that the HPA axis is 
influenced by vestibular inputs (74,75). Empirical evidence for 
a significant increase in Fos‑like immunoreactive neurons in 
the hypothalamic PVN of unilaterally vagotomized rats (76) 
and unilaterally vestibular neurectomized cats suggests 
neuroendocrine plasticity in response to the stress induced 
by vestibular deafferentation. Falls and continued postural 

Figure 2. Overview showing the four proposed pathways to transmit vestibular information to cortical centers involved in cognition: i) Thalamo‑cortical 
pathway (blue arrows); ii) theta generating pathway (green arrows); iii) cerebello‑cortical pathway (red arrows); and iv) head direction pathway (orange arrows) 
[reproduced from (178)]. ADN, anterodorsal nucleus of the thalamus; DTN, dorsal tegmental nucleus; Int, interpositus; FN, fastigial nucleus; LMN, lateral 
mammillary nuclei; EC, entorhinal cortex; MG, medial geniculate nucleus; Parietal C, parietal cortex; Post HT, posterior hypothalamus; PPT, pedunculopon‑
tine tegmental nucleus; Pulv, pulvinar; RPO, reticularis pontis oralis; SuM, supramammillary nucleus; VLN, ventral lateral nucleus of the thalamus; VNC, 
vestibular nucleus complex; VP, ventral posterior nucleus.



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  53:  36,  2024 5

instability for the mammals are presumably stressful events 
that keep the HPA axis chronically activated.

Alterations in neurochemicals, cytoarchitecture remod‑
eling, synaptic plasticity, neural activity and neurogenesis take 
place in the hippocampus as the severity, intensity and duration 
of stress increases, and these changes can have an impact on 
subsequent cognitive processes, such as learning and memory, 
and contribute to psychopathologies  (77,78). According to 
results of rat research, the glucocorticoid‑induced changes in 
synaptic plasticity, neurogenesis, neuronal atrophy and cell 
death cause the cognitive impairments brought on by excessive 
hippocampal exposure to glucocorticoids. The ‘glucocorticoid 
cascade hypothesis’ states that the hippocampal damage 
brought on by excessive glucocorticoid exposure should result 
in a decrease in the feedback inhibition mediated by cortisol, 
via the hippocampus, on corticotropin‑releasing hormone 
secretion, leading to further excessive cortisol secretion and 
creating a cascade of hippocampal damage (79). This theory, 
which was first proposed in 1986, is now widely recognized as 
a pathophysiological route leading to alterations in the brain 
that are connected to intense and prolonged stress. Under the 
influence of glucocorticoids, cellular cytokines and macro‑
phage migration inhibitory factors (MIF) within the immune 
system increase, thereby activating the HPA axis. Elevated 
leukocyte‑derived MIF levels in the peripheral circulation can 
promote the onset of depression, while MIF from the central 
nervous system has a crucial role in neurogenesis, mood 
modulation and cognitive functions such as learning and 
memory (80). However, only a small number of studies have 
examined the neuroendocrine response following vestibular 
deafferentation and during the vestibular compensatory 
process.

On the other hand, brain‑derived neurotrophic factor 
(BDNF) has crucial roles in the development and survival of 
auditory and vestibular ganglion neurons through signaling 
via neurotrophic tyrosine kinase receptors type 2 and 3 (81). 
In the developing mouse brain, BDNF protein is expressed 
in the piriform cortex and hippocampus (82). Some research 
underscores the pivotal role of BDNF in long‑term potentia‑
tion in the hippocampus, a process fundamental to memory 
and learning (83,84). Furthermore, a clear link exists between 
reduced BDNF levels and acute stress responses  (85‑87). 
One research found that mice undergoing unilateral labyrin‑
thectomy exhibited a decline in spatial cognitive abilities, 
attributing this to a decrease in BDNF (86). However, the link 
between the decrease in BDNF and cognitive impairment 
caused by vestibular dysfunction still lacks strong evidence 
and requires further research.

Potential relationship between vestibular compensation and 
cognitive function. Vestibular compensation is a remark‑
able process wherein the central nervous system adjusts to 
changes in vestibular input. However, this adaptation is not 
always complete and the degree of recovery differs among 
individuals (88).

In animal studies, functional compensation after 
unilateral labyrinthectomy has been studied in guinea pigs 
in both postural and locomotor behavior and in squirrel 
monkeys (89,90). Vestibular information contributes to dead 
reckoning and suggests possible recovery of function over 

time after the lesion (91,92). The impact of unilateral labyrin‑
thectomy on the angular orientation task is evident. While this 
effect diminishes over time, there is considerable variability 
among animals, with some exhibiting notable recovery in task 
performance (93).

Evidence indicated that patients with vestibular loss have 
a significant impairment in spatial memory and naviga‑
tion (20,94). According to human studies, numerous individuals 
undergo substantial recovery in cognitive functions related to 
spatial orientation and balance following vestibular compen‑
sation  (95‑97). However, the extent of recovery may vary, 
particularly in challenging or dynamic environments (98,99). 
The success of compensation is contingent on various factors, 
including the nature and severity of vestibular dysfunction, 
overall health and the efficacy of interventions or rehabilita‑
tion strategies employed.

Of note, patients may allocate cognitive resources to 
compensate for vestibular pathology. Research emphasizes a 
finite quantity of cognitive resources available for tasks during 
compensation stages  (100). These attentional limitations 
contribute to diverse compensation profiles in patients, regard‑
less of the presence of cognitive dysfunction, depending on the 
compensation stage.

Following vestibular compensation, there appears to be 
a potential for improved long‑term spatial memory recovery, 
while less consistent evidence was obtained for working 
memory recovery  (20,91,98). However, there is no robust 
evidence to support these observations and the underlying 
mechanisms remain unclear. In short, the impact of vestibular 
compensation on cognitive function in humans remains incon‑
clusive. The lack of a definitive conclusion may be attributed 
to variations in detection methods.

3. Cognitive impairment in different vestibular disorders

Persistent postural‑perceptual dizziness (PPPD). PPPD is one 
of the most common causes of chronic dizziness, characterized 
by non‑spinning vertigo and perceived unsteadiness (101‑103). 
According to an epidemiologic study, PPPD accounts for 
15‑20% of the cases encountered at the clinical centers for 
vertigo (104). The newest study showed that the prevalence of 
PPPD in patients with dizziness was 19% (105).

PPPD, often triggered by a peripheral or central vestibular 
disorder, was indicated to be associated with dysfunctional 
visual and visuospatial processing  (106,107). Patients 
frequently report feeling disconnected from themselves and 
their surroundings (mild depersonalization and derealiza‑
tion) (108‑110). Dissociative symptoms are characterized by 
a sense of brain fog or non‑specific sensations of disorienta‑
tion, as well as a variety of more specific cognitive symptoms, 
such as short‑term memory loss, difficulty concentrating and 
impairments in multitasking  (108). Adaptation abilities to 
dizzying trigger events, including high‑risk postural control 
strategy, increased vigilance awareness of imbalance and dizzi‑
ness, and visual dependency in processing spatial orientation, 
are persistently impaired in patients with PPPD. Patients with 
PPPD performed significantly worse in the vMWM spatial 
navigation test (111). Neuroimaging techniques have identi‑
fied differences in brain activity and connectivity within the 
visual‑vestibular networks of individuals with PPPD compared 
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to healthy individuals  (112‑114). It has been observed that 
traits such as neuroticism and introversion, which are associ‑
ated with agoraphobia and PPPD, can influence how the brain 
responds to vestibular and visual motion stimuli in patients 
with PPPD (112).

Currently, the pathogenesis of PPPD remains a hot debate. 
The research on the pathogenesis of PPPD included structural 
and functional neuroimaging. Using sound‑evoked vestibular 
stimulation, one study examined changes in brain activa‑
tion and connectivity in patients with PPPD (115). Patients 
with PPPD displayed lower activity than healthy controls in 
the parieto‑insular vestibular cortex (PIVC), hippocampus, 
inferior frontal gyrus, the posterior and the anterior insula, 
and the anterior cingulate cortex. The primary innervation of 
the vestibular cortex, or PIVC, is responsible for processing 
vestibular inputs, self‑motion perception, verticality estimation 
and processing of visual motion, particularly motion coherent 
with gravity (116‑119). Additional research revealed decreased 
functional connectivity between PIVC with the hippocampus, 
inferior frontal gyrus and anterior cingulate cortex. In addition, 
hippocampal hypofunction in subjects with chronic subjective 
dizziness may make it harder for them to put space‑motion 
stimuli in the correct context while also making it harder 
for them to judge the importance of this information due to 
decreased activity in the anterior insula and anterior cingulate 
cortex (115). The frontal operculum and anterior tissues play a 
part in determining the prominence of sensory stimuli (120).

In conclusion, the vestibular‑cognitive network combines 
knowledge of the space‑motion context in which people live 
and work with vestibular inputs, which are largely processed 
in the PIVC at the cortical level (primarily dependent on 
hippocampal function). The lower cortical activation and poor 
cortical connectivity may account for cognitive symptoms in 
patients with PPPD.

Bilateral vestibulopathy (BVP). BVP is a chronic vestibular 
syndrome characterized by impairment or complete loss of 
function of the peripheral labyrinths or the eighth cranial 
nerve. Patients with BVP suffer frequent falls, dizziness, oscil‑
lopsia and vertigo, resulting in high disability and affecting 
the quality of life. The prevalence of BVP is 280 per 100,000 
individuals and about half of the cases are idiopathic, together 
with other causes, including ototoxic medications, brain injury, 
Meniere's disease and vestibular neuritis (121).

The increasing evidence of cognitive impairment in 
patients with BVP has fueled concern regarding a possible link 
between peripheral vestibular loss and dementia (122‑126). 
Although still controversial clinical studies have found that, 
compared to controls, patients with bilateral vestibulopathy 
show poorer spatial learning and navigation ability and 
more severe spatial anxiety in the vMWM accompanied 
by a significant hippocampal volume loss  (61,70,127,128). 
Additional studies have shown that patients with BVP have 
difficulty completing mental rotation tasks (11,129). Patients 
with BVP performed worse compared to the cognitive perfor‑
mance of subjects without vestibular loss, with poorer average 
performance in immediate memory, attention, language and 
visuospatial abilities (130). Furthermore, patients with bilateral 
vestibular loss exhibited more pronounced cognitive impair‑
ments compared to those with unilateral vestibular loss (131), 

and heterocentric strategic ability was decreased in patients 
with BVP and egocentric strategic ability was decreased in 
subjects with unilateral vestibular loss (132,133). Unilateral 
vestibular loss causes spatial disturbance and the extent of 
vestibular impairment showed a direct correlation with the 
magnitude of deficits in visuospatial abilities (134). A recent 
study found that patients with BVP performed worse than 
healthy controls when a new route needed to be reorganized, 
and their difficulty in building a mental model of a novel 
environment was consistent with the navigation‑induced brain 
activation pattern in BVP (135).

Vestibular migraine (VM). VM is considered the most 
common cause of recurrent spontaneous vertigo attacks 
lasting minutes to days (136). It has a lifetime prevalence of 
~1% and a 1‑year prevalence of 0.9% (137,138). The diagnosis 
of VM is based on recurrent vestibular symptoms, a history 
of migraine, the temporary association between vestibular 
symptoms and migraine symptoms, and elimination of other 
causes of vestibular symptoms (136,139).

Unlike simple migraine, patients with VM have obvious 
cognitive impairment and a decline in life quality (140). A 
common complaint in VM is ‘brain fog’, described as diffi‑
culty in thinking, attention and memory (140‑146).

Research in animals and humans has revealed the effect 
of the vestibular system in cognition (147), which concerns 
self‑motion perception, bodily self‑consciousness, spatial 
navigation, spatial learning, spatial memory and object recog‑
nition memory (30,148,149).

The pathophysiology of VM is not fully known. However, 
the growing body of knowledge regarding migraine in 
general points to possible central as well as peripheral mecha‑
nisms  (150). The dorsal raphe nuclei, locus coeruleus and 
lateral tegmentum, which have tight inter‑neural connections 
with the vestibular system, as well as the connections between 
the inferior, medial and lateral vestibular nuclei and the caudal 
trigeminal nucleus, strongly suggest that the nociceptive and 
vestibular systems interact at the brain stem level (150). The 
brainstem auditory evoked potential (BAEP) reflects the 
degree of auditory pathway and brainstem ischemia, and is 
highly sensitive to synaptic dysfunction. BAEP is widely 
used to evaluate functional impairment of brainstem auditory 
pathway and auditory system diseases in the central nervous 
system. Using BAEP examinations and Addenbrooke's cogni‑
tive examination‑revised scale, researchers found that patients 
with VM have more severe brainstem dysfunction and cogni‑
tive impairment than patients with migraine, suggesting that 
patients with VM have central nervous system damage (151).

Meniere's disease (MD). MD is a chronic condition with a 
prevalence of 200‑500 per 100,000 in population‑based studies 
and characterized by episodic vertigo, fluctuating or progres‑
sive sensorineural hearing loss and aural fullness (152,153). 
Despite the vertigo attacks initially progressing in the early 
stage, they typically diminish gradually over the years, while 
the hearing loss worsens (154).

Clinically, there were deficits in attention, recognition 
and recall in verbal memory, recall in visual memory, visual 
spatial construction, planning skills and executive functions 
in patients with Meniere's disease (155,156). A study revealed 
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that individuals with MD and right‑sided hearing loss exhib‑
ited more prominent memory and concentration difficulties 
than those with left‑sided hearing loss (157). Previous research 
has indicated that individuals with MD display signs of 
hippocampal atrophy, which could potentially contribute to 
their cognitive decline (158,159). A recent study found that 
patients with MD were more likely to have cognitive deficits 
than benign paroxysmal positional vertigo (160). Furthermore, 
the improvement of vertigo and cognitive function of patients 
were partially correlated before and after treatments (155,161). 
Specific physical and emotional subscales may help under‑
stand changes/improvements in cognitive dysfunction after 
treatment.

While the relationship between vestibular dysfunc‑
tion and cognitive impairment was increasingly supported 
by evidence, the complexity increased due to the separate 
recognition of hearing loss as an independent risk factor 
for dementia  (123,162). Furthermore, the unpredictability 
of vertigo attacks, chronic dizziness and hearing loss may 
increase complexity to clarify the correlation between cogni‑
tive performance and multiple clinical features of MD.

Benign paroxysmal positional vertigo (BPPV). BPPV is the 
most common peripheral origin of vertigo (163,164), charac‑
terized by head position shift‑induced rotatory vertigo and 
nystagmus, with a lifetime prevalence of 2.4% and a one‑year 
prevalence of 1.6% (165).

A population‑based cohort study (166) identified the rela‑
tionships between BPPV and subsequent dementia; the risk of 
dementia was 1.24 times higher in patients with BPPV than in 
the controls. Although BPPV shares similar risk factors with 
cognitive impairment, such as cardiovascular disorder and 
head trauma, it has not been determined whether BPPV is the 
original cause or comorbidity of dementia.

Vestibular schwannoma (VS). VS, benign tumors originating 
from the myelin‑forming Schwann cells within the vestibular 
segment of the vestibulocochlear nerve, constitute ~8% of 
intracranial tumors and account for ~80% of tumors located 
in the cerebellopontine angle (167). The estimated occurrence 
rate ranges from 3 to 5 cases per 100,000 individuals annu‑
ally (168).

Patients with VS often experience cognitive prob‑
lems (169‑171). Clinical researches discovered that patients 
with VS exhibited impaired general cognitive function, 
memory, psychomotor speed, visuospatial ability, attention 
and processing speed, and executive function, compared with 
the matched controls  (169,172,173). Another clinical study 
performed neuropsychological examination within 57 months 
of post‑surgical follow‑up and determined that 32% of the 
patients with VS experienced cognitive disturbance after 
transtemporal removal of acoustic neuromas. This could be 
attributed to the temporal lobe lesion (170).

Surgery for neurinomas may lead to vestibular deficits, 
resulting in volume reductions in critical brain regions 
and decreased functional connectivity for cognitive 
processing  (170,174). A significant decrease in functional 
connectivity between the default mode network (DMN) and 
auditory cortical subregions was observed in patients with VS 
after surgery (175). Given that internalized cognitive processes 

linked to planning, encoding and memory functions are associ‑
ated with the DMN, researchers hypothesize that the disruption 
of the DMN may contribute to the cognitive deterioration 
in patients with VS (169,175). Another study demonstrated a 
significant increase in regional homogeneity in the right ante‑
rior insular cortex in patients with VS compared to controls 
through whole‑brain regional homogeneity analysis (176). The 
insula cortex, a vital node in the central executive network, is 
closely linked to various cognitive functions, including execu‑
tive function, attention and working memory (169,177).

Table I provides a comprehensive summary of major studies 
investigating cognitive function in patients with vestibular 
disorders. The majority of these studies consistently indicate 
that individuals with vestibular disorders experience declines 
in both spatial and non‑spatial cognitive abilities. However, 
the extent of cognitive impairment varies depending on the 
specific type of vestibular disease. This variation highlights 
the importance of understanding the nuances of different 
disease types and their impact on cognitive function.

4. Conclusions

This review highlights that individuals with vestibular disor‑
ders may exhibit deficits in various cognitive domains, such 
as spatial navigation, memory and attention. The underlying 
mechanisms behind these cognitive deficits are not yet fully 
understood, although several assumptions and hypotheses 
have been made. One possible explanation is that vestibular 
dysfunction leads to disrupted networks responsible for 
transmitting vestibular information to the hippocampus, 
particularly information associated with spatial learning 
and memory. The high comorbidity of affective disorders in 
individuals with vestibular dysfunction may additionally have 
a role in the development of cognitive dysfunction. Increased 
gaze and postural instability linked to vestibular loss may 
demand an elevated allocation of attentional resources for 
balance maintenance, leading to a reduction in resources avail‑
able for cognitive tasks. The mechanism by which vestibular 
dysfunction is associated with cognitive impairment is still 
unclear. However, existing research suggests four potential 
pathways, namely the thalamo‑cortical pathway, theta gener‑
ating pathway, cerebello‑cortical pathway and head direction 
pathway, as illustrated in Fig. 3. The findings underscore the 
importance of recognizing and addressing potential cognitive 
impacts in patients with vestibular dysfunction, with the hope 
that future research will contribute to improved management 
and interventions for these individuals.

5. Future direction

The vestibular system can serve as a promising area to inves‑
tigate brain function beyond balance maintenance, extending 
into realms of cognition, emotion and psychiatric symptoms. 
With a global aging population, the prevalence of age‑related 
vestibular dysfunction is expected to rise. More research 
is required to further elucidate the link between vestibular 
dysfunction and cognitive impairment.

Clinically, researchers should shift their focus towards 
delineating the distinct cognitive impairments that are 
responsible for each specific type of vestibular ailment. 



GUO et al:  VESTIBULAR DYSFUNCTION AND COGNITIVE IMPAIRMENT8

Table I. Clinical investigation on cognitive function in patients with vestibular diseases.

Author, 		  Cognitive 		
year	 Patients	 domain/measurements	 Main findings	 (Refs.)

Breinbauer, 	 PPPD (n=19)	 Spatial navigation‑virtual 	 Significant impairment in spatial navigational	 (111)
2020		  T‑maze	 abilities	
Donaldson, 	 VM (n=44)	 CFQ	 Moderate cognitive dysfunction in patients with	 (146)
2021			   VM	
Zhang, 	 VM (n=78); 	 Addenbrooke's cognitive 	 Patients with VM performed worse than	 (151)
2020	 Migraine (n=76);	 examination‑revised	 Migraine group in verbal fluency, language	
	 Control (n=79)		  and visuospatial ability	
Balci, 2018	 VM (n=32); 	 Stroop test	 Patients with VM performed worse than	 (143)
	 Migraine (n=32);		  migraine group	
	 Control (n=31)			 
Wang, 2016	 VM (n=40); 	 i) MMSE;	 Patients with VM performed worse than 	 (140)
	 Migraine (n=40);	 ii) The Rey‑Osterrieth 	 migraine group in general cognitive ability, 	
	 Control (n=40)	 complex figure test & tracing 	 tracing and memorizing, but better 	
		  score ‑ accuracy and 	 in perception, motion rates (processing speed) 	
		  visuospatial abilities;	 and attention	
		  iii) Recall score ‑ mnemonic 		
		  ability;		
		  iv) TMT ‑ perception and 		
		  motion rates (processing 		
		  speed) and attention;		
		  v) verbal fluency test‑		
		  language competence		
Eraslan 	 MD (n=18)	 MMSE, digit span test and	 Patients with MD performed worse than healthy	 (155)
Boz, 2023		  TMT, phonemic and semantic	 controls in Memory, recognition and verbal 	
		  fluency test, Stroop test,	 fluency	
		  Wisconsin card sorting test,		
		  Oktem verbal memory		
		  processes, Rey complex		
		  figure test, Benton judgment		
		  of line orientation		
Dornhoffer,	 MD (n=29)	 CFQ, DHI	 Cognitive ability of patients with MD positively	 (161)
2021			   correlates with the degree of vertigo	
Demirhan, 	 VM (n=19);	 i) MMSE; 	 No statistically significant difference	 (162)
2023	 MD (n=19)	 ii) Reading span test and 		
		  Stroop test (working memory, 		
		  cognitive processing, reading; 		
		  comprehension and attention);		
		  iii) TMT and Benton's		
		  judgment of line orientation		
		  test (visual processing,		
		  visuospatial skills, processing		
		  speed)		
Liu, 2019	 BPPV (n=13);	 Neuropsychiatric inventory	 Patients with VM or MD performed worse than	 (159)
	 VM (n=11);	 questionnaire; CFQ	 BPPV in general cognitive ability and	
	 MD (n=20)		  patients with MD performed worse than VM	
			   in attention and emotion	
Rizk, 2020	 VM (n=45); 	 CFQ	 General cognitive ability: PPPD had the lowest	 (160)
	 MD (n=32); 		  cognitive ability, followed by VMMD, VM and	
	 VMMD 		  MD with the highest cognitive ability	
	 (n=13); BPPV 			 
	 (n=82); PPPD (n=14) 			 
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Table I. Continued.

		  Cognitive 		
Author, year	 Patients	 domain/measurements	 Main findings	 (Refs.)

Gommeren,	 BV (n=38)	 Immediate and delayed	 Patients with BVP performed worse than	 (124)
2023		  memory, visuospatial/	 healthy controls in immediate memory	
		  constructional, language and		
		  attention. Repeatable battery		
		  for the assessment of		
		  neuropsychological status for		
		  hearing impaired individuals		
Dobbels, 	 BVP (n=64)	 Visuospatial, vMWM 	 Patients with BVP performed worse than	 (127)
2020			   healthy controls, though not statistically	
			   significant	
Dobbels, 	 BVP (n=64)	 Repeatable battery for the	 Patients with BVP performed worse than	 (130)
2019		  assessment of	 healthy controls in immediate memory/	
		  neuropsychological status for	 attention/ language/visuospatial ability, but	
		  hearing‑impaired individuals 	 better in delayed memory	
Ahmad, 	 BVL (n=25); UVL	 CFQ; neuropsychiatric	 Patients with BVL performed worse than UVL	 (131)
2022	 (n=14)	 inventory questionnaire;	 in visuospatial ability	
		  Neuro‑QoL		
Gammeri, 	 UVL (n=23); BVL	 Spatial navigation ‑ virtual 	 Heterocentric strategic ability was decreased	 (132)
2022	 (n=23)	 T‑maze	 in patients with BVP and egocentric strategic	
			   ability was decreased in UVL	
Saj, 2021	 VL (n=21)	 Subjective straight‑ahead	 UVL causes spatial disturbance, which	 (133)
		  direction	 manifests as a right‑leaning of the body	
			   representation	
Ayar, 2020	 Acute UVL (n=21)	 Bento's judgment of line, 	 BVL typically have visuospatial impairment	 (134)
		  orientation test, verbal and 	 as their primary cognitive weakness	
		  non‑verbal, cancellation tests, 		
		  Rey‑Osterrieth complex figure 		
		  test, MMSE, Oktem verbal 		
		  memory process test, forward 		
		  and backward digit span		
Popp, 2017	 BVL (n=18); UVL	 Visuospatial tasks measuring 	 All cognitive domains were impaired in BVLs;	 (125)
	 (n=16)	 working memory; executive 	 visuospatial cognitive domains were impaired	
		  function, processing speed	 in UVLs	
Brandt, 2005	 BVL (n=10)	 Spatial memory; vMWM	 Spatial memory was significantly impaired in BVLs	 (61)
Caixeta, 	 Chronic peripheral	 MMSE; clock test and	 Patients with vestibular dysfunction had	 (126)
2012	 vestibular	 verbal fluency test	 cognitive impairment and there was a low but	
	 dysfunction (n=76)		  significant negative correlation between
			   cognitive function and body balance disorders	
Fan, 2023	 VS (n=75)	 MMSE, memory and	 Patients with VS exhibited impaired general 	 (169)
		  executive screening, auditory	 cognitive function, memory, psychomotor 	
		  verbal learning test, adaptive	 speed, visuospatial ability, attention and 	
		  digit ordering test, Boston	 processing speed, and executive function	
		  naming test, grooved		
		  pegboard test, judgment of		
		  line orientation, Stroop color‑		
		  naming test, Stroop word‑		
		  reading test, Stroop color‑		
		  word interference test, 		
		  TMT‑A, TMT‑B, symbol		
		  digit modalities test and digit 		
		  span test		
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Table I. Continued.

Author, 		  Cognitive 		
year	 Patients	 domain/measurements	 Main findings	 (Refs.)

Deng, 2022	 VS (n=69)	 MoCA, Rey auditory verbal	 Both Left‑VS and Right‑VS patients developed 	 (172)
		  learning test immediate	 cognitive dysfunction such as memory, 	
		  memory and delayed memory,	 attention, executive function, movement speed 	
		  Stroop color‑word test A, B	 and information processing speed	
		  and C, symbol digit		
		  modalities test, TMT‑A and B,		
		  Hamilton depression scale and		
		  Hamilton anxiety scale		
Deng, 2022	 VS (n=64)	 fMRI	 Cognitive dysfunction occurs in patients with 	 (173)
			   VS. Cognitive decline in patients with VS 	
			   activates functional activity in some brain 	
			   regions, thereby compensating for cognition 	
			   decline	
Goebel, 	 VS (n=27)	 Visuo‑construction: Rey‑	 69% of patients showed impairment in at least 	 (171)
2018		  Osterrieth complex figure test;	 one neuropsychological test	
		  Visuo‑perception: Visual		
		  object and space perception		
		  battery; Attention and visuo‑		
		  motor speed: Wechsler memory		
		  scale, TMT, Testbatterie zur		
		  Aufmerksamkeitsprüfung;		
		  Executive functions: Digit		
		  span backwards, controlled		
		  oral word administration test,		
		  five‑point test; memory: Rey		
		  auditory verbal learning test;		
		  language: Aachener aphasie test		

PPPD, persistent postural‑perceptual dizziness; VM, vestibular migraine; MD, Meniere's disease; BPPV, benign paroxysmal positional vertigo; 
BVP, bilateral vestibulopathy; VS, vestibular schwannoma; CFQ, cognitive failure questionnaire; MMSE, mini‑mental state examination; DHI, 
dizziness disorder scale; UVL, unilateral vestibular loss; BVL, bilateral vestibular loss; SCWT, Stroop color‑word interference test; SDMT, 
symbol digit modalities test; TMT‑A, trail making test part A.

Figure 3. Conceptual model outlining the proposed mechanism by which cognitive impairment may arise from disturbances in the vestibular system. PVN, 
paraventricular nucleus; HPA, hypothalamic‑pituitary‑adrenal.
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Larger studies with well‑matched controls, along with 
prospective investigations tracking the temporal progression 
of vestibular disorders and cognitive function, would yield 
valuable insight. Furthermore, objective and comprehensive 
evaluations are essential. This may involve assessing factors 
such as the number, duration and frequency of vertigo attacks 
and exploring cognitive tasks across various subdomains. 
Incorporating neuro‑electrophysiological indexes, such as 
electroencephalogram or functional magnetic resonance 
imaging, in a larger sample of patients may offer a more 
nuanced understanding of the neural correlates of vestibular 
dysfunction and cognitive impairment. Lastly, healthcare 
professionals should be vigilant about the potential cognitive 
impacts of vestibular disorders. Integrating neuropsycholog‑
ical evaluations into routine clinical assessments can enhance 
diagnostic accuracy and guide personalized treatment plans. 
For instance, cognitive rehabilitation tailored to the specific 
cognitive deficits associated with vestibular dysfunction could 
significantly improve patient outcomes and quality of life.

From a foundational research perspective, the application 
of advanced techniques such as single‑cell sequencing could 
shed light on cellular changes in key brain regions and circuits 
associated with vestibular processing. This could pave the way 
for targeted interventions, potentially identifying specific cell 
types or molecular pathways that can be modulated to mitigate 
cognitive impairments associated with vestibular dysfunction.

In conclusion, by employing a multifaceted approach 
in clinical and basic research domains, we aspire to gain a 
more comprehensive understanding of the interplay between 
vestibular dysfunction and cognitive impairments. The 
integration of such knowledge with specific diagnostic and 
therapeutic strategies holds the potential to fundamentally 
transform management and intervention approaches, ulti‑
mately enhancing the quality of life of individuals affected.
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