Oxidative stress in endometriosis: Sources, mechanisms and therapeutic potential of antioxidants (Review)
- Authors:
- Li Huang
- Ling Shi
- Maoya Li
- Xiaolan Yin
- Xiaoli Ji
-
Affiliations: Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China - Published online on: March 4, 2025 https://doi.org/10.3892/ijmm.2025.5513
- Article Number: 72
This article is mentioned in:
Abstract
Vallée A and Lecarpentier Y: Curcumin and endometriosis. Int J Mol Sci. 21:24402020. View Article : Google Scholar : PubMed/NCBI | |
Chapron C, Marcellin L, Borghese B and Santulli P: Rethinking mechanisms, diagnosis and management of endometriosis. Nat Rev Endocrinol. 15:666–682. 2019. View Article : Google Scholar : PubMed/NCBI | |
Singh N, Lata K, Naha M, Malhotra N, Tiwari A and Vanamail P: Effect of endometriosis on implantation rates when compared to tubal factor in fresh non donor in vitro fertilization cycles. J Hum Reprod Sci. 7:143–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
Scutiero G, Iannone P, Bernardi G, Bonaccorsi G, Spadaro S, Volta CA, Greco P and Nappi L: Oxidative stress and endometriosis: A systematic review of the literature. Oxid Med Cell Longev. 2017:72652382017. View Article : Google Scholar : PubMed/NCBI | |
Bellelis P, Dias JA Jr, Podgaec S, Gonzales M, Baracat EC and Abrão MS: Epidemiological and clinical aspects of pelvic endometriosis-a case series. Rev Assoc Med Bras (1992). 56:467–471. 2010.(In English, Portuguese). View Article : Google Scholar : PubMed/NCBI | |
Signorile PG and Baldi A: Endometriosis: New concepts in the pathogenesis. Int J Biochem Cell Biol. 42:778–780. 2010. View Article : Google Scholar : PubMed/NCBI | |
Taylor HS, Kotlyar AM and Flores VA: Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet. 397:839–852. 2021. View Article : Google Scholar : PubMed/NCBI | |
Seli E, Berkkanoglu M and Arici A: Pathogenesis of endometriosis. Obstet Gynecol Clin North Am. 30:41–61. 2003. View Article : Google Scholar : PubMed/NCBI | |
Marsh EE and Laufer MR: Endometriosis in premenarcheal girls who do not have an associated obstructive anomaly. Fertil Steril. 83:758–760. 2005. View Article : Google Scholar : PubMed/NCBI | |
Signorile PG, Baldi F, Bussani R, D'Armiento M, De Falco M and Baldi A: Ectopic endometrium in human foetuses is a common event and sustains the theory of müllerianosis in the pathogenesis of endometriosis, a disease that predisposes to cancer. J Exp Clin Cancer Res. 28:492009. View Article : Google Scholar : PubMed/NCBI | |
Benagiano G and Brosens I: History of adenomyosis. Best Pract Res Clin Obstet Gynaecol. 20:449–463. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bulun SE, Yilmaz BD, Sison C, Miyazaki K, Bernardi L, Liu S, Kohlmeier A, Yin P, Milad M and Wei J: Endometriosis. Endocr Rev. 40:1048–1079. 2019. View Article : Google Scholar : PubMed/NCBI | |
Augoulea A, Mastorakos G, Lambrinoudaki I, Christodoulakos G and Creatsas G: The role of the oxidative-stress in the endometriosis-related infertility. Gynecol Endocrinol. 25:75–81. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Goldberg JM, Aziz N, Goldberg E, Krajcir N and Agarwal A: Pathogenic mechanisms in endometriosis-associated infertility. Fertil Steril. 90:247–257. 2008. View Article : Google Scholar : PubMed/NCBI | |
Van Langendonckt A, Casanas-Roux F and Donnez J: Oxidative stress and peritoneal endometriosis. Fertil Steril. 77:861–870. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cacciottola L, Donnez J and Dolmans MM: Can endometriosis-related oxidative stress pave the way for new treatment targets? Int J Mol Sci. 22:71382021. View Article : Google Scholar : PubMed/NCBI | |
Halliwell B: Biochemistry of oxidative stress. Biochem Soc Trans. 35:1147–1150. 2007. View Article : Google Scholar : PubMed/NCBI | |
Carvalho LF, Samadder AN, Agarwal A, Fernandes LF and Abrão MS: Oxidative stress biomarkers in patients with endometriosis: Systematic review. Arch Gynecol Obstet. 286:1033–1040. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee A, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P and Ball WB: Mitochondrial reactive oxygen species in infection and immunity. Biomolecules. 14:6702024. View Article : Google Scholar : PubMed/NCBI | |
Dröge W: Free radicals in the physiological control of cell function. Physiol Rev. 82:47–95. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nasiri N, Moini A, Eftekhari-Yazdi P, Karimian L, Salman-Yazdi R and Arabipoor A: Oxidative stress statues in serum and follicular fluid of women with endometriosis. Cell J. 18:582–587. 2017.PubMed/NCBI | |
Prieto L, Quesada JF, Cambero O, Pacheco A, Pellicer A, Codoceo R and Garcia-Velasco JA: Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis. Fertil Steril. 98:126–130. 2012. View Article : Google Scholar : PubMed/NCBI | |
Turkyilmaz E, Yildirim M, Cendek BD, Baran P, Alisik M, Dalgaci F and Yavuz AF: Evaluation of oxidative stress markers and intra-extracellular antioxidant activities in patients with endometriosis. Eur J Obstet Gynecol Reprod Biol. 199:164–168. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ekarattanawong S, Tanprasertkul C, Somprasit C, Chamod P, Tiengtip R, Bhamarapravatana K and Suwannarurk K: Possibility of using superoxide dismutase and glutathione peroxidase as endometriosis biomarkers. Int J Womens Health. 9:711–716. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ota H, Igarashi S, Sato N, Tanaka H and Tanaka T: Involvement of catalase in the endometrium of patients with endometriosis and adenomyosis. Fertil Steril. 78:804–809. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lioudaki S, Verikokos C, Kouraklis G, Ioannou C, Chatziioannou E, Perrea D and Klonaris C: Paraoxonase-1: Characteristics and role in atherosclerosis and carotid artery disease. Curr Vasc Pharmacol. 17:141–146. 2019. View Article : Google Scholar : PubMed/NCBI | |
Verit FF, Erel O and Celik N: Serum paraoxonase-1 activity in women with endometriosis and its relationship with the stage of the disease. Hum Reprod. 23:100–104. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nam TG: Lipid peroxidation and its toxicological implications. Toxicol Res. 27:1–6. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mier-Cabrera J, Jiménez-Zamudio L, García-Latorre E, Cruz-Orozco O and Hernández-Guerrero C: Quantitative and qualitative peritoneal immune profiles, T-cell apoptosis and oxidative stress-associated characteristics in women with minimal and mild endometriosis. BJOG. 118:6–16. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hayashi S, Nakamura T, Motooka Y, Ito F, Jiang L, Akatsuka S, Iwase A, Kajiyama H, Kikkawa F and Toyokuni S: Novel ovarian endometriosis model causes infertility via iron-mediated oxidative stress in mice. Redox Biol. 37:1017262020. View Article : Google Scholar : PubMed/NCBI | |
Várnagy Á, Kőszegi T, Györgyi E, Szegedi S, Sulyok E, Prémusz V and Bódis J: Levels of total antioxidant capacity and 8-hydroxy-2′-deoxyguanosine of serum and follicular fluid in women undergoing in vitro fertilization: Focusing on endometriosis. Hum Fertil (Camb). 23:200–208. 2020. View Article : Google Scholar : PubMed/NCBI | |
Da Broi MG, de Albuquerque FO, de Andrade AZ, Cardoso RL, Junior AA and Navarro PA: Increased concentration of 8-hydroxy-2′-deoxyguanosine in follicular fluid of infertile women with endometriosis. Cell Tissue Res. 366:231–242. 2016. View Article : Google Scholar : PubMed/NCBI | |
Staniek K, Gille L, Kozlov AV and Nohl H: Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways. Free Radic Res. 36:381–387. 2002. View Article : Google Scholar : PubMed/NCBI | |
Khashchenko EP, Vysokikh MY, Marey MV, Sidorova KO, Manukhova LA, Shkavro NN, Uvarova EV, Chuprynin VD, Fatkhudinov TK, Adamyan LV and Sukhikh GT: Altered glycolysis, mitochondrial biogenesis, autophagy and apoptosis in peritoneal endometriosis in adolescents. Int J Mol Sci. 25:42382024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S and Xiong Y: Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 12:534–541. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ota H, Igarashi S, Hatazawa J and Tanaka T: Immunohistochemical assessment of superoxide dismutase expression in the endometrium in endometriosis and adenomyosis. Fertil Steril. 72:129–134. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Zhou Y, Hu C, Wang Y, Yan Z, Li Z and Wu R: Mitochondria and oxidative stress in ovarian endometriosis. Free Radic Biol Med. 136:22–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jendrach M, Mai S, Pohl S, Vöth M and Bereiter-Hahn J: Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion. 8:293–304. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pelicano H, Carney D and Huang P: ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 7:97–110. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cogliati S, Enriquez JA and Scorrano L: Mitochondrial cristae: Where beauty meets functionality. Trends Biochem Sci. 41:261–273. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen CL, Zhang L, Jin Z, Kasumov T and Chen YR: Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol. 322:C12–C23. 2022. View Article : Google Scholar : PubMed/NCBI | |
Musatov A and Robinson NC: Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Rese. 46:1313–1326. 2012. View Article : Google Scholar : PubMed/NCBI | |
Turrens JF and Boveris A: Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 191:421–427. 1980. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Sun L, Chen X and Zhang D: Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 8:2003–2014. 2013.PubMed/NCBI | |
Cho S, Lee YM, Choi YS, Yang HI, Jeon YE, Lee KE, Lim K, Kim HY, Seo SK and Lee BS: Mitochondria DNA polymorphisms are associated with susceptibility to endometriosis. DNA Cell Biol. 31:317–322. 2012. View Article : Google Scholar : PubMed/NCBI | |
Webb BD, Diaz GA and Prasun P: Mitochondrial translation defects and human disease. J Transl Genet Genom. 4:71–80. 2020.PubMed/NCBI | |
Govatati S, Deenadayal M, Shivaji S and Bhanoori M: Mitochondrial NADH:Ubiquinone oxidoreductase alterations are associated with endometriosis. Mitochondrion. 13:782–790. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shin MG, Kim HJ, Kim HR, Lee IK, Cho D, Kee SJ, Kook H, Hwang TJ, Shin JH, Suh SP and Ryang MD: Impaired activity of mitochondrial respiratory chain enzyme complexes and mitochondrial genomic aberrations in leukemia cells from patients with acute myeloid leukemia. Blood. 108:19182006. View Article : Google Scholar | |
Defrère S, Lousse JC, González-Ramos R, Colette S, Donnez J and Van Langendonckt A: Potential involvement of iron in the pathogenesis of peritoneal endometriosis. Mol Hum Reprod. 14:377–385. 2008. View Article : Google Scholar : PubMed/NCBI | |
Benjamín-Rivera JA, Otero MP and Tinoco AD: Reinforcing protein biochemistry: A two-week experiment studying iron(III) binding by the transferrin protein through stoichiometric determination, stability analysis, and visualization of the binding site. J Chem Educ. 101:1656–1664. 2024. View Article : Google Scholar : PubMed/NCBI | |
Alvarado-Díaz CP, Núñez MT, Devoto L and González-Ramos R: Endometrial expression and in vitro modulation of the iron transporter divalent metal transporter-1: Implications for endometriosis. Fertil Steril. 106:393–401. 2016. View Article : Google Scholar : PubMed/NCBI | |
Woo JH, Choi YS and Choi JH: Iron-storage protein ferritin is upregulated in endometriosis and iron overload contributes to a migratory phenotype. Biomedicines. 8:4542020. View Article : Google Scholar : PubMed/NCBI | |
Benaglia L, Paffoni A, Mangiarini A, Restelli L, Bettinardi N, Somigliana E, Vercellini P and Fedele L: Intrafollicular iron and ferritin in women with ovarian endometriomas. Acta Obstet Gynecol Scand. 94:646–653. 2015. View Article : Google Scholar : PubMed/NCBI | |
Van Langendonckt A, Casanas-Roux F, Eggermont J and Donnez J: Characterization of iron deposition in endometriotic lesions induced in the nude mouse model. Hum Reprod. 19:1265–1271. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pascolo L, Pachetti M, Camillo A, Cernogoraz A, Rizzardi C, Mikus KV, Zanconati F, Salomé M, Suárez VT, Romano F, et al: Detention and mapping of iron and toxic environmental elements in human ovarian endometriosis: A suggested combined role. Sci Total Environ. 864:1610282023. View Article : Google Scholar : PubMed/NCBI | |
Stowell SB, Wiley CM, Perez-Reyes N and Powers CN: Cytologic diagnosis of peritoneal fluids. Applicability to the laparoscopic diagnosis of endometriosis. Acta Cytol. 41:817–822. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lousse JC, Defrère S, Van Langendonckt A, Gras J, González-Ramos R, Colette S and Donnez J: Iron storage is significantly increased in peritoneal macrophages of endometriosis patients and correlates with iron overload in peritoneal fluid. Fertil Steril. 91:1668–1675. 2009. View Article : Google Scholar : PubMed/NCBI | |
Recalcati S and Cairo G: Macrophages and iron: A special relationship. Biomedicines. 9:15852021. View Article : Google Scholar : PubMed/NCBI | |
Kondo H, Saito K, Grasso JP and Aisen P: Iron metabolism in the erythrophagocytosing Kupffer cell. Hepatology. 8:32–38. 1988. View Article : Google Scholar : PubMed/NCBI | |
Iwabuchi T, Yoshimoto C, Shigetomi H and Kobayashi H: Oxidative stress and antioxidant defense in endometriosis and its malignant transformation. Oxid Med Cell Longev. 2015:8485952015. View Article : Google Scholar : PubMed/NCBI | |
Králíčková M, Losan P and Vetvicka V: Endometriosis and cancer. Women's Health (Lond). 10:591–597. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L and Liu K: Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother. 164:1149092023. View Article : Google Scholar : PubMed/NCBI | |
Wen Y, Fan L, Pang L, Zhao T, Li R, Zhang Y, Zhang L and Yang W: NeiyiKangfu tablets control the progression of endometriosis through inhibiting RAF/MEK/ERK signal pathway by targeting RKIP. Gynecol Endocrinol. 38:1136–1146. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim BY, Han MJ and Chung AS: Effects of reactive oxygen species on proliferation of Chinese hamster lung fibroblast (V79) cells. Free Radic Biol Med. 30:686–698. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jiménez LA, Zanella C, Fung H, Janssen YM, Vacek P, Charland C, Goldberg J and Mossman BT: Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and H2O2. Am J Physiol. 273:L1029–L1035. 1997.PubMed/NCBI | |
Cho YJ, Park SB and Han M: Di-(2-ethylhexyl)-phthalate induces oxidative stress in human endometrial stromal cells in vitro. Mol Cell Endocrinol. 407:9–17. 2015. View Article : Google Scholar : PubMed/NCBI | |
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T and Navarro-Tito N: Extracellular-Signal regulated kinase: A central molecule driving epithelial-mesenchymal transition in cancer. Int J Mol Sci. 20:28852019. View Article : Google Scholar : PubMed/NCBI | |
Ullah R, Yin Q, Snell AH and Wan L: RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 85:123–154. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dérijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ and Davis RJ: Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 267:682–685. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Noh SJ, Zhou G, Dixon JE and Guan KL: Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated hela cells. J Biol Chem. 271:3265–3271. 1996. View Article : Google Scholar : PubMed/NCBI | |
Terrell EM and Morrison DK: Ras-Mediated activation of the raf family kinases. Cold Spring Harb Perspect Med. 9:a0337462019. View Article : Google Scholar : PubMed/NCBI | |
Marshall M: Interactions between Ras and Raf: Key regulatory proteins in cellular transformation. Mol Reprod Dev. 42:493–499. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ushio-Fukai M, Griendling KK, Becker PL, Hilenski L, Halleran S and Alexander RW: Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 21:489–495. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ghosh M, Wang H, Kelley GG and Smrcka AV: Purification of phospholipase C beta and phospholipase C epsilon from Sf9 cells. Methods Mol Biol. 237:55–64. 2004.PubMed/NCBI | |
Rijkers GT, Henriquez NV and Griffioen AW: Intracellular magnesium movements and lymphocyte activation. Magnes Res. 6:205–213. 1993.PubMed/NCBI | |
Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marmé D and Rapp UR: Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature. 364:249–252. 1993. View Article : Google Scholar : PubMed/NCBI | |
Lee MW and Severson DL: Signal transduction in vascular smooth muscle: Diacylglycerol second messengers and PKC action. Am J Physiol. 267:C659–C678. 1994. View Article : Google Scholar : PubMed/NCBI | |
Codreanu SG, Adams DG, Dawson ES, Wadzinski BE and Liebler DC: Inhibition of protein phosphatase 2a activity by selective electrophile alkylation damage. Biochemistry. 45:10020–10029. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sunahori K, Nagpal K, Hedrich CM, Mizui M, Fitzgerald LM and Tsokos GC: The catalytic subunit of protein phosphatase 2A (PP2Ac) promotes DNA hypomethylation by suppressing the phosphorylated mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/Phosphorylated ERK/DNMT1 protein pathway in T-cells from controls and systemic lupus erythematosus patients. J Biol Chem. 288:21936–21944. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhuang S and Schnellmann RG: A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther. 319:991–997. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Hang Y, Zhang T, Tan L, Li S and Jin Y: USP10 promotes proliferation and migration and inhibits apoptosis of endometrial stromal cells in endometriosis through activating the Raf-1/MEK/ERK pathway. Am J Physiol Cell Physiol. 315:C863–C872. 2018. View Article : Google Scholar : PubMed/NCBI | |
Leconte M, Nicco C, Ngô C, Chéreau C, Chouzenoux S, Marut W, Guibourdenche J, Arkwright S, Weill B, Chapron C, et al: The mTOR/AKT inhibitor temsirolimus prevents deep infiltrating endometriosis in mice. Am J Pathol. 179:880–889. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pópulo H, Lopes JM and Soares P: The mtor signalling pathway in human cancer. Int J Mol Sci. 13:1886–1918. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yilmaz HBC, Sulaiman M, Isik OA and Cizmecioglu O: Class IA PI3K isoforms lead to differential signalling downstream of PKB/Akt. Turk J Biochem. 49:210–219. 2024. View Article : Google Scholar | |
Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cai SL, Tee AR, Short JD, Bergeron JM, Kim J, Shen J, Guo R, Johnson CL, Kiguchi K and Walker CL: Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol. 173:279–289. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang J and Manning BD: A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans. 37:217–222. 2009. View Article : Google Scholar : PubMed/NCBI | |
Proud CG: mTORC1 regulates the efficiency and cellular capacity for protein synthesis. Biochem Soc Trans. 41:923–926. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hong S, Zhao B, Lombard DB, Fingar DC and Inoki K: Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem. 289:13132–13141. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N and Hay N: Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 280:32081–32089. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shaw RJ: LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf). 196:65–80. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kma L and Baruah TJ: The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem. 69:248–264. 2022. View Article : Google Scholar : PubMed/NCBI | |
Östman A, Frijhoff J, Sandin Å and Böhmer FD: Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem. 150:345–356. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jang JY, Min JH, Chae YH, Baek JY, Wang SB, Park SJ, Oh GT, Lee SH, Ho YS and Chang TS: Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation. Antioxid Redox Signal. 20:2528–2540. 2013. View Article : Google Scholar : PubMed/NCBI | |
Makker A, Goel MM and Mahdi AA: PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: An update. J Mol Endocrinol. 53:R103–R118. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huu TN, Park J, Zhang Y, Park I, Yoon HJ, Woo HA and Lee SR: Redox regulation of PTEN by peroxiredoxins. Antioxidants (Basel). 10:3022021. View Article : Google Scholar | |
Lee SR, Yang KS, Kwon J, Lee C, Jeong W and Rhee SG: Reversible inactivation of the tumor suppressor PTEN by H202. J Biol Chem. 277:20336–20342. 2002. View Article : Google Scholar : PubMed/NCBI | |
Blanco-Aparicio C, Renner O, Leal JFM and Carnero A: PTEN, more than the AKT pathway. Carcinogenesis. 28:1379–1386. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY and Chiang CW: Regulation of phosphorylation of Thr-308 of akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to akt. J Biol Chem. 283:1882–1892. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shimura T, Sasatani M, Kamiya K, Kawai H, Inaba Y and Kunugita N: Mitochondrial reactive oxygen species perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of PP2A in lowdose irradiated human fibroblasts. Oncotarget. 7:3559–3570. 2015. View Article : Google Scholar : PubMed/NCBI | |
Makker A, Goel MM, Das V and Agarwal A: PI3K-Akt-mTOR and MAPK signaling pathways in polycystic ovarian syndrome, uterine leiomyomas and endometriosis: An update. Gynecol Endocrinol. 28:175–181. 2012. View Article : Google Scholar : PubMed/NCBI | |
Arosh JA, Sivakumar KK, Lee J and Banu SK: Effects of selective inhibition of prostaglandin E2 receptors EP2 and EP4 on the miRNA profile in endometriosis. Mol Cell Endocrinol. 558:1117282022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhu L, Kuokkanen S and Pollard JW: Activation of protein synthesis in mouse uterine epithelial cells by estradiol-17β is mediated by a PKC-ERK1/2-mTOR signaling pathway. Proc Natl Acad Sci USA. 112:E1382–E1391. 2015.PubMed/NCBI | |
Cinar O, Seval Y, Uz YH, Cakmak H, Ulukus M, Kayisli UA and Arici A: Differential regulation of Akt phosphorylation in endometriosis. Reprod Biomed Online. 19:864–871. 2009. View Article : Google Scholar : PubMed/NCBI | |
Laudanski P, Szamatowicz J, Kowalczuk O, Kuźmicki M, Grabowicz M and Chyczewski L: Expression of selected tumor suppressor and oncogenes in endometrium of women with endometriosis. Hum Reprod. 24:1880–1890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Li M, Zheng X, Sun Y, Wen Z and Zhao X: Endometriotic stromal cells lose the ability to regulate cell-survival signaling in endometrial epithelial cells in vitro. Mol Hum Reprod. 15:653–663. 2009. View Article : Google Scholar : PubMed/NCBI | |
Marquardt RM, Tran DN, Lessey BA, Rahman MS and Jeong JW: Epigenetic dysregulation in endometriosis: Implications for pathophysiology and therapeutics. Endocr Rev. 44:1074–1095. 2023. View Article : Google Scholar : PubMed/NCBI | |
Smolarz B, Szyłło K and Romanowicz H: Endometriosis: Epidemiology, classification, pathogenesis, treatment and genetics (Review of Literature). Int J Mol Sci. 22:105542021. View Article : Google Scholar : PubMed/NCBI | |
Szukiewicz D: Epigenetic regulation and T-cell responses in endometriosis-something other than autoimmunity. Front Immunol. 13:9438392022. View Article : Google Scholar : PubMed/NCBI | |
Redi CA and Garagna S: Chromosome variability and germ cell development in the house mouse. Andrologia. 24:11–16. 1992. View Article : Google Scholar : PubMed/NCBI | |
Garnica AB: The role of the molecular genetic approach in the pathogenesis of endometriosis. Molecular bases of endometriosis. Giovana Aparecida G: IntechOpen; Rijeka: p Ch 2. 2019 | |
Li J, Wang W, Zhang Y, Cieślik M, Guo J, Tan M, Green MD, Wang W, Lin H, Li W, et al: Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy. J Clin Invest. 130:2712–2726. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reske JJ, Wilson MR, Holladay J, Siwicki RA, Skalski H, Harkins S, Adams M, Risinger JI, Hostetter G, Lin K and Chandler RL: Co-existing TP53 and ARID1A mutations promote aggressive endometrial tumorigenesis. PLoS Genet. 17:e10099862021. View Article : Google Scholar : PubMed/NCBI | |
Mathur R: ARID1A loss in cancer: Towards a mechanistic understanding. Pharmacol Ther. 190:15–23. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maeda D and Shih IM: Pathogenesis and the role of ARID1A mutation in endometriosis-related ovarian neoplasms. Adv Anat Pathol. 20:45–52. 2013. View Article : Google Scholar : PubMed/NCBI | |
Winarto H, Tan MI, Sadikin M and Wanandi SI: ARID1A Expression is down-regulated by oxidative stress in endometriosis and endometriosis-associated ovarian cancer. Transl Oncogenomics. 9:11772727166898182017.PubMed/NCBI | |
Yamamoto S, Tsuda H, Takano M, Tamai S and Matsubara O: Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol. 25:615–624. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wilson MR, Reske JJ, Holladay J, Wilber GE, Rhodes M, Koeman J, Adams M, Johnson B, Su RW, Joshi NR, et al: ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion. Nat Commun. 10:35542019. View Article : Google Scholar : PubMed/NCBI | |
Kim HI, Kim TH, Yoo JY, Young SL, Lessey BA, Ku BJ and Jeong JW: ARID1A and PGR proteins interact in the endometrium and reveal a positive correlation in endometriosis. Biochem Biophys Res Commun. 550:151–157. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kim TH, Yoo JY, Wang Z, Lydon JP, Khatri S, Hawkins SM, Leach RE, Fazleabas AT, Young SL, Lessey BA, et al: ARID1A is essential for endometrial function during early pregnancy. PLoS Genet. 11:e10055372015. View Article : Google Scholar : PubMed/NCBI | |
Sekhon LH and Agarwal A: Endometriosis and oxidative stress. Studies on Women's Health. Agarwal A, Aziz N and Rizk B: Humana Press; Totowa, NJ: pp. 149–167. 2013, View Article : Google Scholar | |
Cottier H, Hodler J and Kraft R: Oxidative STress: Pathogenetic mechanisms. Forschende Komplementärmedizin. 2:233–239. 2009. | |
Clower L, Fleshman T, Geldenhuys WJ and Santanam N: Targeting oxidative stress involved in endometriosis and its pain. Biomolecules. 12:10552022. View Article : Google Scholar : PubMed/NCBI | |
Santanam N, Kavtaradze N, Murphy A, Dominguez C and Parthasarathy S: Antioxidant supplementation reduces endometriosis-related pelvic pain in humans. Transl Res. 161:189–195. 2013. View Article : Google Scholar : PubMed/NCBI | |
Facchin F, Barbara G, Saita E, Mosconi P, Roberto A, Fedele L and Vercellini P: Impact of endometriosis on quality of life and mental health: Pelvic pain makes the difference. J Psychosom Obstet Gynaecol. 36:135–141. 2015. View Article : Google Scholar : PubMed/NCBI | |
Anastasi E, Fuggetta E, De Vito C, Migliara G, Viggiani V, Manganaro L, Granato T, Panici PB, Angeloni A and Porpora MG: Low levels of 25-OH vitamin D in women with endometriosis and associated pelvic pain. Clin Chem Lab Med. 55:e282–e284. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mehdizadehkashi A, Rokhgireh S, Tahermanesh K, Eslahi N, Minaeian S and Samimi M: The effect of vitamin D supplementation on clinical symptoms and metabolic profiles in patients with endometriosis. Gynecol Endocrinol. 37:640–645. 2021. View Article : Google Scholar : PubMed/NCBI | |
Almassinokiani F, Khodaverdi S, Solaymani-Dodaran M, Akbari P and Pazouki A: Effects of vitamin D on endometriosis-related pain: A double-blind clinical trial. Med Sci Monit. 22:4960–4966. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mier-Cabrera J, Genera-García M, De la Jara-Díaz J, Perichart-Perera O, Vadillo-Ortega F and Hernández-Guerrero C: Effect of vitamins C and E supplementation on peripheral oxidative stress markers and pregnancy rate in women with endometriosis. Int J Gynaecol Obstet. 100:252–256. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bayu P and Wibisono JJ: Vitamin C and E antioxidant supplementation may significantly reduce pain symptoms in endometriosis: A systematic review and meta-analysis of randomized controlled trials. PLoS One. 19:e03018672024. View Article : Google Scholar : PubMed/NCBI | |
Bina F, Soleymani S, Toliat T, Hajimahmoodi M, Tabarrai M, Abdollahi M and Rahimi R: Plant-derived medicines for treatment of endometriosis: A comprehensive review of molecular mechanisms. Pharmacol Res. 139:76–90. 2019. View Article : Google Scholar : PubMed/NCBI | |
Markowska A, Antoszczak M, Markowska J and Huczyński A: The role of selected dietary factors in the development and course of endometriosis. Nutrients. 15:27732023. View Article : Google Scholar : PubMed/NCBI | |
Swarnakar S and Paul S: Curcumin arrests endometriosis by downregulation of matrix metalloproteinase-9 activity. Indian J Biochem Biophys. 46:59–65. 2009.PubMed/NCBI | |
Zhang J, Cui H, Yin J, Wang Y, Zhao Y, Yu J and Engelhardt UH: Separation and antioxidant activities of new acetylated EGCG compounds. Sci Rep. 13:209642023. View Article : Google Scholar : PubMed/NCBI | |
Matsuzaki S and Darcha C: Antifibrotic properties of epigallocatechin-3-gallate in endometriosis. Hum Reprod. 29:1677–1687. 2014. View Article : Google Scholar : PubMed/NCBI | |
Frémont L: Biological effects of resveratrol. Life Sci. 66:663–673. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen Z, Zhao X, Lin C, Hong S, Lou Y, Shi X, Zhao M, Yang X, Guan MX and Xi Y: Transcriptome-Based analysis reveals therapeutic effects of resveratrol on endometriosis in aRat model. Drug Des Devel Ther. 15:4141–4155. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tseng V, Sutliff RL and Hart CM: Redox biology of peroxisome proliferator-activated receptor-γ in pulmonary hypertension. Antioxid Redox Signal. 31:874–897. 2019. View Article : Google Scholar : PubMed/NCBI |