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Abstract. O-6-methylguanine-DNA methyltransferase 
(MGMT) is an abundantly expressed nuclear protein deal-
kylating O6-methylguanine (O6-MG) DNA residue, thus 
correcting the mismatches of O6-MG with a thymine residue 
during DNA replication. The dealkylating effect of MGMT 
is relevant not only in repairing DNA mismatches produced 
by environmental alkylating agents promoting tumor patho-
genesis, but also when alkylating molecules are applied in 
the chemotherapy of different cancers, including glioma, the 
most common primary tumor of the central nervous system. 

Elevated MGMT gene expression is known to confer resis-
tance to the treatment with the alkylating drug temozolomide 
in patients affected by gliomas and, on the contrary, meth-
ylation of MGMT gene promoter, which causes reduction of 
MGMT protein expression, is known to predict a favourable 
response to temozolomide. Thus, detecting expression levels 
of MGMT gene is crucial to indicate the option of alkylating 
agents or to select patients directly for a second line targeted 
therapy. Further study is required to gain insights into MGMT 
expression regulation, that has attracted growing interest 
recently in MGMT promoter methylation, histone acetylation 
and microRNAs expression. The review will focus on the 
epigenetic regulation of MGMT gene, with translational appli-
cations to the identification of biomarkers predicting response 
to therapy and prognosis.

Contents

1.	 Role of MGMT in cancer
2.	 Nuclear transcription factors regulating the expression of  
	 MGMT gene
3.	 Effect of histone modifications
4.	 MGMT promoter methylation
5.	 MicroRNAs in MGMT expression regulation
6.	 MGMT expression as predictive biomarker
7.	 Manipulating MGMT expression to improve first line 
	 therapy of glioblastoma
8.	 Conclusions

1. Role of MGMT in cancer

O6-methylguanine (O6-MG) is one of the major mutagenic and 
carcinogenic lesions in DNA induced by alkylating mutagens, 
because of its preference for pairing with thymine instead of 
cytosine during DNA replication. O6-methylguanine-DNA 
methyltransferase (MGMT) is a ubiquitously expressed nuclear 
enzyme which removes alkyl groups from the O6-position of 
O6-MG (1). Each single alkyl group removed from O6-MG 
is transferred to a cysteine residue within the active site of 
MGMT in a stoichiometric second-order reaction, implying 
the inactivation of one molecule of MGMT enzyme for each 
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alkyl group removed from methylguanine, a process termed 
suicide inhibition (2). Consequently, the efficiency of O6-MG 
repair is limited by the number of molecules of MGMT 
enzyme available, also considering that the dealkylating 
function of MGMT does not possess redundant or alternative 
pathways. MGMT-mediated removal of alkyl groups from 
O6-MG is also relevant in alkylating chemotherapy of glioma, 
such as with temozolomide and nitrosourea derivatives. 
Massive DNA alkylation produced by temozolomide causes 
base mispairing (3,4). If O6-MG is not repaired because of low 
MGMT expression, O6-MG forms a base pair with thymine. 
The mismatched O6-MG to thymine base pair is recognized 
by the pathway involving the repair proteins MLH1, MSH2, 
MSH6 and PMS2, resulting in futile cycles of repair that 
lead to cell cycle arrest and cell death  (5). On the contrary, 
the methylation damage produced by temozolomide can be 
reversed by MGMT, as its DNA repairing activity provides 
resistance against the cytotoxic effects of guanine methyla-
tion. As already shown in clinical trials in patients affected 
by glioma that have been treated with the alkylating drug 
temozolomide, whose response to therapy is significantly 
ameliorated when MGMT expression is reduced because of 
promoter methylation (6).

2. Nuclear transcription factors regulating the expression 
of MGMT gene

MGMT gene (ID: 4255, NCBI Ref Seq NM_002412.3) has 
been cloned (1) and mapped to chromosome 10 in the cytoge-
netic location 10q26.3, where it spans 15 Kb in length (7). So 
far 142 single nucleotide variants of MGMT gene have been 
reported. Transcript of 1265 nucleotides is organized in 5 exons 
encoding a protein of 238 amino acid residues. A CpG island 
of 762 base pairs that includes 97 CpG dinucleotides spans the 
proximal promoter region and the first exon. Different tran-
scription factors have been found to activate the transcription 
of MGMT gene, including Sp1 (8), NF-κB (9), CEBP (10) and 
AP-1 (10,11). The cellular tumor antigen p53 has been associ-
ated with repression of MGMT transcription (12), possibly via 
sequestering the Sp1 nuclear transcription factor (13).

In  silico analysis on the putative consensus sequences 
for the binding of nuclear transcription factors in MGMT 
promoter sequence reveals further nuclear factors potentially 
involved in activating MGMT transcription, for instance AP-2, 
NF-IL6, and ER-α, besides Sp1, AP-1 and c/EBP, as shown in 
Fig. 1. As some of these consensus sequences include CpG 
dinucleotides, question has arisen on whether methylation of 
CpG dinucleotides in key consensus sequences could hinder 
the binding of the corresponding transcription factors, thus 
reducing the transcriptional activation of the MGMT gene. 
For instance, this inhibiting mechanism has been evidenced 
for Sp1-dependent, but not NF-κB-dependent activation of 
MGMT transcription (8,9), thus keeping the hypothesis open 
for other transcription factors. Noteworthy, MGMT expression 
has been found heterogeneous within histological sections of 
gliomas, being higher in the inner core of the tumor than in 
the periphery (14).

Further analyses correlated the high expression of MGMT 
with the presence of a hypovascular central core of the tumor, 
where activation of the hypoxia inducible factor (HIF)-1α 

will in turn promote expression of MGMT, particularly in the 
hypoxic glioma stem cells niches (14,15). The MGMT/HIF-1α 
regulatory axis has been further confirmed, since the expres-
sion of the bone morphogenetic protein 2 (BMP2) has been 
shown to downregulate MGMT expression through HIF-1α-
dependent downregulation (16). Moreover, hypoxia intervenes 
further on MGMT function as HIF-1α is known to induce also 
the expression of the hypoxia-inducible and steroid-inducible 
N-myc downstream regulated gene 1 (NDRG1) protein, which 
binds to and stabilizes MGMT protein  (17). In summary, 
although Sp1, AP-1, CEBP, NF-κB and HIF-1α as single tran-
scription factors have been proved to activate MGMT gene 
regulation  (8-11), the understanding of the synergy within 
these transcription factors in activating MGMT expression 
and the composition of the MGMT promoter enhanceosome 
need further investigation.

3. Effect of histone modifications

Epigenetic modifications of MGMT gene have been found 
to play a relevant role in MGMT expression in the context 
of cancer. Histone acetylation and methylation has been 
extensively investigated in relation to MGMT expression, in 
different cancer models including gliomas (18-24). Acetylation 
of lysine residues on histones H3 and H4 (H3Ac and H4Ac), 
that are associated with open chromatin and active transcrip-
tion, has been found elevated in cell lines expressing high 
level of MGMT, suggesting a role for these histone modifi-
cations (18). On the contrary, di-methylation of lysine 9 of 
histone 3 (H3me2K9) has been found relevant in silencing 
MGMT expression (20). 

The relevance of the role of histone acetylation on MGMT 
expression has been recently confirmed by testing in vitro 
the effect of the histone deacetylase (HDAC) inhibitor suber-
oylalanide hydroxamic acid (SAHA), which increased MGMT 
expression, thus strengthening resistance to the alkylating 
agent temozolomide (22). However, considering the multi-
plicity of the target genes that may be modulated by HDAC 
inhibitors, these drugs could have opposite effects when 
used in chemotherapy. For instance, the treatment of U251 
glioma cells with the HDAC inhibitor LBH589 increased the 
sensitivity to temozolomide. This could be explained with an 
increased expression of the heat shock protein 90 (HSP90), 
which in turn induced downregulation of expression of the 
epidermal growth factors receptor (EGFR) and the phospho-
protein p-Akt. This could be responsible for an increase of the 
pro-apoptotic effect of temozolomide, independently of the 
levels of expression of MGMT (23).

The major role of histone in the regulation of expression of 
MGMT is summarized in Fig. 2. Of note, histone acetylation 
and the expression levels of HDAC are therefore increasing 
in relation to the regulation of expression of MGMT, conse-
quently improving the response to therapy and the overall 
prognosis of patients affected by glioma (24).

4. MGMT promoter methylation

Methylation of MGMT promoter is found in 40% of cancer 
types such as glioma and colorectal cancer and in 25% of 
non-small cell lung carcinoma, lymphoma and head and neck 
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carcinoma (25). As promoter methylation is one of the major 
post-transcriptional mechanisms reducing protein expression, 
the methylation of CpG sites in the promoter and the overall 
extent of methylation could affect the levels of expression of 
the protein. Therefore, expression of MGMT protein is signifi-
cantly reduced in MGMT-methylated cancer cells, as detected 
by immunohistochemistry (25), and the levels of expression 
of MGMT protein have been associated with the efficacy of 
response of cancer cells to alkylating drugs in glioma tumor 
models in rodents in vivo (26,27). All these pieces of evidence 
prompted investigations on the relation between MGMT 
promoter methylation and the response to chemotherapy with 
alkylating drugs in patients affected by gliomas  (6). This 
original observation was soon extended into a large series of 
clinical investigations (28-84) in order to assess the potency 
of MGMT methylation as a predictive marker in relation to 
alkylating therapy in different conditions of adult and pedi-
atric gliomas, of both high and low grade according to WHO 
classification (85). 

The relevance of MGMT methylation as a biomarker has 
been strengthened by the widely accepted application of the 
consensus reached in Phase III clinical trials jointly conducted 
by European and North-American research networks, that were 
summarized in the so-termed ‘Stupp protocol’ for the first line 
treatment of patients affected by gliomas, which includes the 

post-surgery association of radiotherapy and temozolomide (47). 
The predictive value of MGMT methylation in response to 
temozolomide has reached over the years an overall confirma-
tory consensus, such that analysis of MGMT methylation has 
been included to stratify patients enrolled in major multicenter 
international clinical trials (38,47,58,60,71,74,75,86) and leading 
recommendations have been stated on how to treat patients 
affected by glioma, where the analysis of MGMT methylation 
is assumed as one of the key decision points in the therapeutic 
flow-chart (87). Besides the overall confirmatory consensus, 
different issues have been considered both to interpret the 
role and to improve the predictive role of MGMT methylation 
as clinical biomarker. For instance, the overall survival and 
the progression-free survival of patients treated with temo-
zolomide is related to the overall level of methylation of the 
MGMT promoter, assessed by quantitative methylation-specific 
techniques, as highly methylated samples are significantly 
associated with the best prognosis (50). However, within the 97 
CpG dinucleotides identified in the CpG island of the MGMT 
proxymal promoter, the extent of methylation can be variable, 
with different effects on the degree of gene silencing (18). 

Moreover, methylation of a specific CpG dinucleotide of 
the CpG island could have different impact on transcriptional 
downregulation. For instance, binding of the methyl-CpG 
binding (MCB) protein 2 (MeCP2) to methylated CpG islands 
have been found relevant in silencing MGMT expression (20). 
MGMT methylation could interfere with the activatory role 
of the transcription factor Sp1 (8), but the identification of 
the specific CpG dinucleotides involved has not been cleared. 
The expression of MGMT protein is heterogeneous within 
the glioma tissue. For instance, MGMT promoter methylation 
is not different among the concentric layers of glioblastoma 
specimens (15,88) whereas the core of the glioma often pres-
ents higher expression of MGMT protein than the peripheral 
areas (88), possibly because of the transcriptional activation 
of expression mediated by hypoxia and activation of HIF-1α 
pathway  (14,15). Thus, MGMT promoter methylation is a 
very relevant, but not a unique mechanism, to regulate the 

Figure 1. MGMT promoter: schematic of transcription factors and meth-
ylation islands. Schematic representation of the CpG dinucleotides (bold 
underlined) and the putative consensus sequences of the major nuclear 
transcription factors involved in MGMT transcriptional activation as iden-
tified in silico by Transcription Elements Search System (TESS) analysis 
(http://www.cbil.upenn.edu/tess). Color boxes indicate the position of the 
nuclear transcription factors SP-1, CEBP, AP-1, AP-2, NF-κB and NF-IL6.

Figure 2. Effect of histone modification on MGMT gene expression. 
Acetylation of histones H3 and H4 promotes MGMT transcription (18), 
whereas di-methylation of lysine 9 on histone H3 represses MGMT tran-
scription (20).
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expression of MGMT and the response to therapy with alkyl-
ating agents (89).

5. MicroRNAs in MGMT expression regulation

MicroRNAs (miRs) (www.mirbase.org) belong to a family of 
small (19 to 25 nucleotides in length) noncoding RNAs that 
target specific sequences of mRNAs thereby regulating gene 
expression (90,91), causing translational repression or mRNA 
degradation, depending on the degree of complementarities 
between miRs and the target sequences  (92,93). Although 
in silico analysis of the 3'-UTR of the MGMT gene has revealed 
several potential sequences that could be a site for interaction 
of miRs (94), miR-dependent regulation of MGMT expression 
is presently under intensive investigation. Different studies 
have been recently conducted in order to associate modulation 
of expression of specific miRs with the response to temozolo-
mide in patients affected by glioblastoma and in experimental 
cell models in vitro (95-127). However, only some of these 
investigations can be directly related to the therapeutic axis 
between temozolomide and MGMT expression. 

A genome-wide analysis of expression of 1,146 miRs 
performed in tissue samples obtained from 82 glioblastoma 
specimens was correlated with overall survival and further 
validated in The Cancer Genome Atlas (TCGA) dataset, 
which includes 424 glioma samples  (100). Comparative 
analysis evidenced the miR-181d expression in glioma tissues 
as inversely correlated with a favourable prognosis in these 
patients and that the favourable effect of miR-181d is, at least 
partially, related to its effect in downmodulating MGMT 
mRNA expression (100). Furthermore, miR-181d expression 
inversely correlated with that of MGMT mRNA in glioma 
tissue specimens; moreover, overexpression of miR-181d in 
A1207, LN340 and T98G glioblastoma cell lines reduced 
MGMT mRNA levels and conferred pro-apoptotic sensitivity 
to temozolomide (100). 

Additional information on miR-dependent regulation of 
MGMT expression has been provided by an investigation 
starting from a bioinformatics analysis in the TCGA data-
base related to glioblastoma (128), aimed to search inverse 
correlation between miRs levels and MGMT mRNA, taking 
into account also the contribution of the MGMT promoter 
methylation (106). The bioinformatics analysis confirmed 
the role of miR-181d and found miR-767-3p and miR-648 as 
novel potential regulators of MGMT gene expression (106). 
Validation in glioma tissues ex vivo and in experimental 
glioblastoma cell models in vitro supported the bioinfor-
matics analyses and indicated that downregulation of MGMT 
expression by miR-181d and miR-767-3p is due to degrada-
tion of the MGMT mRNA whereas miR-648 affects MGMT 
protein translation (106). Experiments performed in vitro 
confirmed that the overexpression of these three miRs 
reduces MGMT protein expression and confers sensitivity to 
temozolomide (106). A third contribution was focused on the 
paralogues miR-221 and miR-222 (114), known to be highly 
expressed in glioblastoma tissues (128,129). They have been 
found to downregulate MGMT expression and to confer 
increased sensitivity to temozolomide (114). These results 
need to be confirmed, since a pro-apoptotic effect of glio-
blastoma cell lines was obtained using antagomiR molecules 

against miR-221 and the expression of the 221/222 cluster was 
associated to chemio- and radio-resistance (130-133). 

A fourth major contribution was obtained by testing 
significant reduction of MGMT protein expression with a 
genome-wide miR screening performed by transfecting 885 
known miRs into the T98G glioblastoma cell line, which 
is characterized by high levels of the MGMT protein (122). 
The miRs identified by the first screening were validated by 
in silico analysis of putative binding sites in the 3'-UTR region 
of MGMT gene utilizing different algorithms, which restricted 
the potentially relevant miRs to a limited series, that was veri-
fied for inverse correlation of expression with MGMT in the 
Chinese Cancer Genome Atlas, then tested in LN340 glioblas-
toma cell line in vitro (122). Some of the previously reported 
miRs (such as miR-221, -222 and -648) did not consistently 
downregulate MGMT expression in LN340 cells, whereas 
miR-181d and miR-767-3p had a positive effect (122). 

In addition, the novel regulatory miR-603, which directly 
interacts with the 3'-UTR region of MGMT gene, produced 
a 6-fold decrease of both MGMT mRNA and protein upon 
transfection in glioblastoma cell line in vitro and sensitized 
glioblastoma cells to temozolomide (122). Therefore, although 
considering that temozolomide sensitivity of glioblastoma can 
be modulated by different miRs independently of the regula-
tion of MGMT expression, six miRs have been reported to be 
involved in the regulation of MGMT protein expression either 
by degrading MGMT mRNA, namely miR-181d, -767-3p, -221, 
-222, -603 (100,106,114,122), or affecting the MGMT protein 
translation, such as miR-648 (106). Considering that this series 
of miRs have been identified with different approaches and that 
the inverse correlation expected between MGMT expression 
and the expression of each miR is not usually characterized by 
very high and significant correlation coefficient, possibilities 
are open that further miRs will be revealed as regulators of 
MGMT expression and that the MGMT downregulation might 
require the synergy of action of these and/or other miRs, which 
presently requires further investigation.

6. MGMT expression as predictive biomarker

Inactivation of expression of MGMT gene as an effect of MGMT 
promoter methylation has been found as a relevant predictive 
biomarker of the response to the alkylating drug temozolomide 
in patients affected by glioma (6) and the original observation 
was basically confirmed by several replication studies (28-84). 
These studies raised the question on the most reliable method 
to evaluate MGMT expression, either directly or indirectly, 
in relation to its clinical predictivity to alkylating therapy of 
gliomas. MGMT clinical testing assays have been extensively 
reviewed elsewhere (134) and thus only briefly summarized 
here. The most direct assay to detect the effect of MGMT in 
dealkylating O6-MG would be in principle measuring enzyme 
activity (135). However, the method proposed and originally 
tested in glioma specimens is cumbersome for routine clinical 
applications and requires radioactive isotopes and availability 
of fresh tissue (135). After the initial studies (135,136), it has 
not been extensively investigated in relation to the response to 
alkylating agents. Immunohistochemistry of MGMT protein 
has been first compared with enzyme activity (137) and then 
correlated with response to temozolomide (2,138-140). 
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Initial analyses were performed by immunofluorescence 
in order to quantify by digital image analyses the levels of 
expression, whereas often the immunohistochemistry assay of 
MGMT protein was restricted to the count of positive cells, 
thus excluding the information on the real amount of expres-
sion in each cells, which is in principle the most relevant 
piece of information to predict the resistance to temozolo-
mide (2,138‑140). Moreover, the quantification of the percentage 
of positive cells could be discordant between different patholo-
gists (141). Possibly because of these limitations, the reliability 
of immunohistochemistry of MGMT protein to predict 
response to alkylating agents in glioma has been strongly 
criticized (141,142) and not widely utilized in clinical practice. 
Although MGMT mRNA might not always represent MGMT 
protein expression, MGMT transcript has been tested in few 
studies in relation to glioma, mainly by quantitative reverse-
transcription polymerase chain reaction (RT-qPCR) and less 
frequently by in situ hybridization (143‑150). 

Low MGMT mRNA expression has been found predic-
tive of better response to temozolomide in at least two recent 
observational studies (89,150), consistently with the elevated 
methylation pattern of MGMT promoter. However, MGMT 
mRNA quantitation is not largely utilized as clinical predic-
tive biomarker, possibly because so far these analyses on 
transcripts were performed in total RNA obtained from fresh 
tissue samples during neurosurgery (89,150), in order to cope 
with the instability of RNA. Therefore, more clinical observa-
tions on MGMT mRNA and clinical response to temozolomide 
and the feasibility of performing these analyses either from 
fresh tissue or from the routine tissue slices of formalin-fixed 
paraffin-embedded samples will be useful. Thus, for practical 
reasons mainly related to the stability of DNA, the most widely 
utilized clinical assay to estimate MGMT expression levels 
is the analysis of MGMT promoter methylation  (151,152). 
Non-quantitative methylation-specific polymerase chain reac-
tion (MS-PCR) assay after bisulfite conversion of the MGMT 
promoter has been utilized in the first clinical studies investi-
gating the predictive role of MGMT methylation in response to 
temozolomide (6,34,38,41,49,52,60,68,149,153-157). MGMT 
promoter methylation has been also extended from a non-
quantitative to a quantitative assay using pyrosequencing 
technique (158,159). 

Noteworthy, the quantitative MGMT methylation, as 
assessed by pyrosequencing, has been correlated with progres-
sion-free survival and overall survival of patients treated with 
temozolomide. Patients stratified in ranges of percentage of 
MGMT methylation were significantly correlated with clinical 
outcome (50), which is consistent with an inverse correla-
tion between promoter methylation and protein expression. 
Further applications of the quantitative MS-PCR assay in large 
clinical trials confirmed its reliability (72,74,75). Importantly, 
different method comparisons concluded that non-quantitative 
MS-PCR assays are scarcely reproducible within and between 
laboratories (55,160-163), whereas at the present time quantita-
tive MS-PCR by pyrosequencing technique has become the 
technique of choice for clinical routine applications (164). 

In summary, the most widely utilized assay to analyze the 
levels of expression of MGMT gene in clinical routine are 
based on the indirect analysis of MGMT promoter methyla-
tion. Evidence are growing on the need of stratifying patients 

in terms of quantitative methylation, utilizing reliable and 
reproducible techniques such as pyrosequencing. Further 
observations on quantitative assays for MGMT mRNA and 
quantitative MGMT methylation levels will accomplish 
the role of MGMT expression as biomarker predicting the 
response to alkylating chemotherapy, in order to provide more 
rational bases for decisions on the therapeutic options avail-
able for patients affected by glioma.

7. Manipulating MGMT expression to improve first line 
therapy of glioblastoma

Glioblastoma is the most common primary tumor of the 
central nervous system, accounting for 12-15% of all intra
cranial tumors and 50-60% of gliomas  (165). Patients die 
within a few months if untreated and surgery followed by 
radiotherapy in addition to temozolomide prolongs median 
survival to 12-15 months, although disease progresses within 
6-9 months, with 2-years survival <25% (165). The exponential 
increase of available anti-cancer targeted therapies provides 
new hope in improving the prognosis of these patients, since 
repositioning different drugs tested in other cancers to glio-
blastoma patients are under intensive investigation (166). For 
instance, anti-angiogenic targeted therapy with bevacizumab 
was found to increase the median progression-free survival 
of 4.4 months (167,168). Considering that reduced expression 
or silencing of MGMT gene due to promoter methylation in 
glioma specimens increased median overall survival after 
temozolomide of 6.4 months (34) and of 15.1 months comparing 
the group of non-methylated versus that of highly methyl-
ated tumor samples (50), reduction of MGMT expression in 
patients presenting non-methylated MGMT promoter could be 
of relevant benefit in relation to the pace of the advancements 
in the therapy of this specific malignant tumor. 

Temozolomide itself has been shown to partially deplete 
the extent of expression of MGMT protein in tumor specimens 
of one patient affected by metastatic melanoma (2), possibly as 
a result of the inactivation and degradation of one molecule of 
MGMT protein each cycle of dealkylation of O6-MG, but the 
large series of clinical trials performed in patients affected by 
glioblastoma considering MGMT methylation indicated this 
mechanism is not sufficient in routinary clinical applications 
aimed to overcome the resistance to temozolomide in MGMT 
unmethylated glioma cells (38,47,58,60,71,74,75,86). Different 
alternative small organic molecules to bypass the limitations 
of temozolomide in MGMT unmethylated patients have been 
devised, as reviewed extensively elsewhere  (169), such as 
1,3-bis(2-chloroethyl)1-nitrosourea (BCNU), also known as 
carmustine, or 3-[(4-amino-2-methyl-5-pyrimidinyl) methyl]-
1-(2-chloroethyl)-1-nitrosourea hydrochloride (ACNU), also 
known as nimustine. However, the frequent severe hematolog-
ical side effects of these drugs, such as thrombocytopaenia and 
neutropenia in 18-23% of patients, are presently limiting the 
application of these drugs in patients with glioblastoma (169). 

A further alternative was to sensitive tumor cells to 
temozolomide by concomitant use of the pseudosubstrate 
O6-benzylguanine (O6-BG) which also depletes MGMT 
by activating its ‘suicidal’ dealkylation mechanism  (170). 
However, a Phase  II clinical trial with temozolomide and 
concomitant O6-BG produced grade 4 hematological adverse 
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events in 48% of the patients, halting further attempts to use 
this concomitant therapy (171). Thus, alkylating drugs alterna-
tive to temozolomide or MGMT pseudosubstrates to bypass or 
potentiate temozolomide are presently under scrutiny in terms 
of advantages for patients with unmethylated MGMT gene and 
suggest the need of exploring other approaches.

The present knowledge on the mechanisms of regula-
tion of MGMT gene expression at different transcriptional 
and post-transcriptional levels could be utilized to design 
innovative tools to manipulate its expression. For instance, 
RNA-based molecules and analogues, locked nucleic acids 
(LNAs) and peptide nucleic acids (PNAs), are novel tools to 
upmodulate or downmodulate miRs expression  (172-176), 
by molecular mimicry or competitive sequestration, respec-
tively, with potential experimental therapeutic applications on 
post-transcriptional gene expression modulation, in principle 
feasible also in glioblastoma models (130).

8. Conclusions

MGMT expression in patients affected by glioblastoma is a 
double-edged sword as low levels favour cancer pathogenesis 
by affecting repair of DNA from environmental alkylating 
agents whereas high levels are responsible for the resistance 
to the most effective drug presently utilized, the alkylating 
molecule temozolomide. 

Some of the molecular pathways of regulation of expres-
sion of MGMT gene have been now cleared, as summarized 
in Fig. 3, being the post-transcriptional regulation by miRs 
still an open field of investigation. MGMT expression is 
widely utilized in clinical practice as a predictive marker for 
the response to alkylating chemotherapy, and quantitation of 
methylation of MGMT promoter by pyrosequencing is the 
method of choice to identify non responders to temozolomide 
that can take advantage of alternative second line targeted 
therapies. 

Artificial manipulation to silence MGMT expression in 
patients with unmethylated MGMT promoter to be treated 

with temozolomide should be explored with both innovative 
chemical inhibitors of MGMT function and novels molecular 
biology tools aimed to reduce MGMT expression by targeting 
MGMT mRNA stability or MGMT mRNA translation.
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