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Abstract. Identifying colon cancer subtypes based on 
molecular signatures may allow for a more rational, patient-
specific approach to therapy in the future. Classifications 
using gene expression data have been attempted before with 
little concordance between the different studies carried out. 
In this study we aimed to uncover subtypes of colon cancer 
that have distinct biological characteristics and identify a 
set of novel biomarkers which could best reflect the clinical 
and/or biological characteristics of each subtype. Clustering 
analysis and discriminant analysis were utilized to discover 
the subtypes in two different molecular levels on 153 colon 
cancer samples from The Cancer Genome Atlas (TCGA) 
Data Portal. At gene expression level, we identified two major 
subtypes, ECL1 (expression cluster 1) and ECL2 (expression 
cluster 2) and a list of signature genes. Due to the heterogeneity 
of colon cancer, the subtype ECL1 can be further subdivided 
into three nested subclasses, and HOTAIR were found upregu-
lated in subclass 2. At DNA methylation level, we uncovered 
three major subtypes, MCL1 (methylation cluster 1), MCL2 
(methylation cluster 2) and MCL3 (methylation cluster 3). We 
found only three subtypes of CpG island methylator pheno-
type (CIMP) in colon cancer instead of the four subtypes in 
the previous reports, and we found no sufficient evidence to 
subdivide MCL3 into two distinct subgroups.

Introduction

Colon cancer (~95% cases are adenocarcinoma cancer) is a 
sub-site cancer of colorectal cancer, but it is different from 

rectal cancer not only in the location but also in the treatments 
postoperatively, hence we could have unique considerations in 
the patient with colon cancer (1). Over all, it is one of the most 
common cancers in the developed countries.

Cancer arises as a consequence of the accumulation 
of epigenetic alterations and genetic alterations  (2). Most 
investigators divide colon cancer biologically into those with 
microsatellite instability (MSI) and those that are microsatellite 
stable but chromosomally unstable (CIN) in the genomic 
level (3). At expression level, many investigators with different 
purposes have identified many marker genes associated with 
prognosis and different stages (4). Wang et al utilized 74 colon 
cancer samples (31 relapsed in 3 years and 43 disease-free 
more than 3 years) with Dukes' B stage to reveal the 23-gene 
signature that predicted recurrence in Dukes' B patients (5). In 
2006, Barrier et al investigated 50 patients with stage II colon 
cancer to identify 30 prognosis genes (6). Oh et al applied unsu-
pervised hierarchical clustering analysis to gene expression 
data from 177 patients with colorectal cancer to determine a 
prognostic gene expression signature (7). They also found that 
two independent groups associated with overall survival and 
disease-free survival. Notably, Slattery et al used microRNA 
microarray data from 100 patients and discovered relation-
ship between tumor location and MSI/CIMP subtypes  (8). 
A TCGA group study indicated that colorectal tumors have 
three subtypes in gene expression level, MSI/CIMP, CIN and 
Invasive (3).

The concept ‘CpG island methylator phenotype’ (CIMP) 
was first proposed in 1999 by Toyota et al (9). It was char-
acterized by CpG island methylation in multiple regions (2). 
Weisenberger et al reported four epigenetic subtypes and a list 
of related marker genes (10,11). TCGA group also described 
four epigenetic subtypes, namely CIMP-H, CIMP-L, cluster 3 
and cluster 4, where the union of cluster 3 and cluster 4 was 
named as Non-CIMP (3). In other studies, Shen et al (12) and 
Yagi et al (2) identified three epigenetic subtypes and some 
hyper-methylation genes as markers.

Using the unsupervised clustering approach to 153 colon 
cancer samples, we reached interesting and different results 
compared to the early reports. We identified two subgroups in 
gene expression level and three subgroups in DNA methylation 
level, respectively. Due to the heterogeneity of samples, we 

Identifying molecular subtypes in human colon cancer using 
gene expression and DNA methylation microarray data

Zhonglu Ren1,2,  Wenhui Wang1,3  and  Jinming Li1,2

1Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University;  
2State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, 

Southern Medical University; 3Network Information Center, The Sixth Affiliated Hospital 
of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China

Received October 10, 2015;  Accepted November 11, 2015

DOI: 10.3892/ijo.2015.3263

Correspondence to: Professor Jinming Li, Department of 
Bioinformatics, School of Basic Medical Sciences, Southern 
Medical University, No. 1838 Guangzhoudadaobei, Guangzhou, 
Guangdong 510515, P.R. China
E-mail: jmli@smu.edu.cn

Key words: clustering analysis, CpG island methylator phenotype, 
discriminant analysis, HOTAIR, subtypes



ren et al:  Identifying molecular subtypes in colon cancer using microarray data 691

further identified nested subgroups in ECL1 and MCL3, and 
by examining the difference between these nested subgroups 
we ended up with our classification of colon cancer molecular 
subtypes. Our data suggested that the HOTAIR upregulated 
samples in CIN have higher metastasis rate and death rate.

Materials and methods

Patients and microarray data. All clinical information and 
microarray data in the two molecular levels were downloaded 
from TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/
tcgaHome2.jsp). A total of 153 colon Adenocarcinoma cancer 
samples with gene expression microarray data and DNA 
methylation microarray data had subtype labels from previous 
study (3). The platforms of gene expression and DNA methyla-
tion microarray are Custom Agilent 244K Gene Expression 
Microarray (AMDID019760) and Illumina Infinium DNA 
methylation (HumanMethylation27 BeadChip), respectively. 
The data level 3 in the data portal was used in this study, which 
means that the gene expression data was Lowess normalized 
and the ratio of the Cy5 channel and Cy3 channel were log2 
transformed to create gene expression values for 23199 probe-
sets, resulting in 17814 genes available for further analysis, 
and the DNA methylation data contain beta-value calculations, 
HUGO gene symbol, chromosome number and genomic coor-
dinate for each targeted CpG site on the array. Approximately 
27578 CpG sites were located in proximity to the transcription 
start sites of 14475 consensus coding sequences.

Gene expression microarray analysis. We combined gene 
expression data of 153 samples into one file, and imputed 
the missing value using KNN Imputed (13). The informative 
genes for clustering analysis were selected using a threshold 
standard deviation SD>1 across all samples, and this resulted 
in 1393 genes. To perform consensus clustering (14) we used 
K-mean approach with average linkage to detect robust clus-
ters, where the metric was 1 minus the Pearson's correlation 
coefficient. The procedure was run over 2000 iterations and 
with a sub-sampling ratio of 0.8. To evaluate the heterogeneity 
of the subtypes we applied silhouette width values to identify 
the most ‘core’ members of each subtype (15-17), and samples 
with Silhouette Score>0.5 were considered as core samples. 
Significance analysis of microarrays (18) (SAM) was applied 
to identify differentially expressed genes between subgroups, 
and the Prediction analysis of microarrays (19) (PAM) was 
used to obtain marker genes and establish classifiers. The 
training set for PAM is 70% of 153 samples selected randomly 
and the testing set is the other 30% of the samples. The Gene 
Ontology analysis was performed for each subtype using 
the Database for Annotation, Visualization, and Integrated 
Discovery (DAVID)  (20,21), and GeneMANIA  (22) was 
applied to find the co-expressed network of marker genes.

DNA methylation microarray analysis. After combining 
data into one file, we removed the probes containing any 
‘NA’ marked data points and the probes that were designed 
for the sequences on the X and Y chromosomes. We then 
conducted a filtering process to reach a final data matrix with 
1491 probes, which exhibited sufficient variable methylation 
levels with a threshold standard deviation value (SD>0.2) 

across all samples. The DNA methylation microarray data 
were β-value, following β-distribution. To use the consensus 
clustering method, a data set must be transformed so that 
it follows a normal distribution. We used the Transfer 
Function (23,24) to transform the β-value into M-value which 
is normally distributed, which was similar with RPMM (25) 
used in β-value in Hinoue et al (11). Since some subtyping 
systems were reported in early studies on DNA methylation of 
colon cancer, we only performed the PAM on all samples and 
did not build testing sets. DAVID and GeneMANIA were also 
used on DNA methylation data.

Statistical analysis of clinical parameters. All data analyses 
were done in R platform (Windows version 2.15.2) (26,27). 

Table I. Clinical data and subtypes identified by previous studies 
for 153 colon cancer samples.

Characteristics	 n (%)

Gender
  Male	 78 (51.0)
  Female	 75 (49.0)
Age
  Mean ± SD	 75±11.7
Tumor sub-site
  Left	 72 (47.1)
  Right	 80 (52.3)
  Unknown	 1 (0.6)
MSI-status
  MSI-H	 28 (18.3)
  MSI-L	 33 (21.6)
  MSS	 92 (60.1)
Expression subtypes
  CIN	 57 (37.3)
  Invasive	 37 (24.2)
  MSI/CIMP	 58 (37.9)
  Unknown	 1 (0.6)
Methylation subtypes
  CIMP-H	 29 (18.9)
  CIMP-L	 35 (22.9)
  Cluster 3	 44 (28.8)
  Cluster 4	 45 (29.4)
Tumor stage
  I	 28 (18.3)
  II	 61 (39.9)
  III	 39 (25.5)
  IV	 23 (15.0)
  Unknown	 2 (1.3)
Vital status
  Living	 138 (90.2)
  Deceased	 15 (9.8)
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For the categorical variables in clinical information table such 
as gender, tumor subtype (previous studies), oncogene muta-
tion (Yes or No), the Fisher's exact test was used to assess the 
significance of their association to the subtype derived in this 
study. For age levels, we used ANOVA to assess differences 
among subtypes. The package ConsensusClusterPlus was 
used to perform unsupervised clustering analysis. Package 
SAMr and PAMr were applied to identify the differentially 
expressed genes, to build the classifier and to determine the 
marker genes, respectively.

Results

Patient and tumor characteristics. Clinical and pathologic 
features of the patients and their tumors were summarized 
for further analysis. All 153 patients had information on age, 
gender, AJCC stage, vital status, tumor location and subtypes 
from earlier studies (Table I).

Subgroups identified by gene expression data. Unsupervised 
K-mean consensus clustering was used to uncover potential 

Figure 1. Unsupervised clustering on gene expression data. (A) K=2. (B) K=3. (C) K=4. (D) Cluster consensus values and consensus CDF when K=2 to 6.
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subgroups of colon cancer on the basis of the similarities of 
their gene expression values of 1393 informative genes. We 
let K=2 to 6 in core K-mean clustering, two subgroups could 
be identified when K=2 and the cluster consensus are 0.98 
and 0.99 for each subgroup (Fig. 1A and D), thus the first 
subgroup was named as ECL1 with 104 samples (68%) and 
the second subgroup was named as ECL2 with 49 samples 
(32%). When K=2 to 4, the ECL2 subgroup showed steady 
and consistency (Fig. 1A-C). The relationship between two 
subgroups and their clinical characteristics were listed in 
Table II.

In ECL2, the age of onset (73.3±11.47) is significantly 
higher than ECL1 (P<0.049, ANOVA). We found that the 
majority samples of ELC2 are right sided tumors. All the 
MSI-H samples were found in the ECL2, and all the CIN 
samples in the ECL1. Furthermore, these two subgroups 
showed no significant difference in AJCC stage and history of 
polyps. Mutations of KRAS, BRAF and TP53 were investigated 
in many studies, we found that all samples with BRAF muta-
tion were in ECL2 and most of samples with TP53 mutation 
were in ECL1 (Table III).

Nearly 62% of the samples in ECL1 were left sided tumors. 
Most of ECL1 samples were MSS status and the majority 
samples of Invasive subtype  (3) were in ECL1. Compared 
with those reported in previous studies, we found that ECL1 

contained both CIN and Invasive subtypes (3), and therefore 
we examined the heterogeneity of this subgroup (Fig. 2A).

We carried out unsupervised clustering analysis only 
on ECL1 samples with K=2 to 6. When K=3, we discovered 
three distinct subclasses with very clear boundaries (Fig. 3B). 
There are 87 samples with Silhouette Score >0.5 considered as 
core samples and retained, with 29 samples in subclass 1, 30 
samples in subclass 2 and 28 samples in subclass 3. There are 
18 CIN samples in subclass 1, 27 CIN samples in subclass 2, 
and 23 Invasive samples in subclass 3, and Fig. 2B demon-
strates the relationship between subtypes reported earlier (3) 
and the subclasses derived from ECL1 (P<1.065e-10, Fisher's 
exact test).

There were two subclasses correlated to the CIN subtype, 
and due to the heterogeneity of ECL1 subgroup we investi-
gated the difference of these two CIN groups. CIN samples 
extracted from two subclasses were compared using SAM 
with Wilcoxon rank sum test. There were 250 differentially 
expressed genes found with 2-fold change, and only 6 genes 
were upregulated in subclass 2, namely, SLC25A21, POPDC3, 
GREG2, HOTAIR, GYPB and SLC35F4. The proportion of 
either the metastatic samples or the death samples in subclass 2 
was roughly two-fold of that in subclass 1 (Table IV).

On the top level we identified two subgroups in colon 
cancer, ECL1 had relatively high heterogeneity and it was 

Figure 2. Subgroups delivered in clustering analysis overlapped with subtypes identified by TCGA group in gene expression level. (A) On top level. (B) Three 
subclasses divided from ECL1.
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associated with CIN and Invasive subtype derived from earlier 
studies, whereas ECL2 showed high homogeneity. On the 
secondary level, three subclasses were derived from ECL1, 
where the subclass 1 and 2 were associated with CIN subtype 
and the subclass 3 was associated with Invasive subtype.

Marker genes and their biological characteristics. PAM 
analysis was carried out to identify marker genes that could 
discriminate the two subgroups on the top level. When 
∆=4.16 (overall error rate 0.019 at minimum), 256 genes 
were selected from the 107 training samples. The testing 

set was used for independent validation, and only 2 samples 
were classified into wrong groups with an overall error rate 
of 0.043.

There were 137 genes out of the 256 marker genes that 
were upregulated in ECL2, among them SPP1 and POSTN 
were associated with metastasis and poor prognosis in 
colorectal cancer, which were reported in earlier studies. 
DAVID analysis showed that these 137 genes were enriched 
in immune response, defense response, response to wounding, 
inflammatory response and carbohydrate binding GO terms. 
Furthermore, the GSEA (28) analysis of these genes showed 
that they were upregulated in advanced gastric cancer and basal 
subtype of breast cancer. There were 119 genes upregulated 
in ECL1, and they were enriched in ERBB receptor signaling 
network, and β-oxidation of pristanoyl-CoA pathways. Finally, 
we plotted a heating map with the 256 marker genes for all 
153 cancer samples (Fig. 4) with sample resorted hierarchical 
clustering and only 5 samples were classified into incorrect 

Table II. Correlation between the clinical data and the sub-
groups identified in the gene expression data of the colon 
cancer samples.

	 Subgroups (%)
	 ----------------------------------------------
Characteristics	 ECL1	 ECL2	 P-value

Total sample no.	 104 (68.0)	 49 (32.0)
Gender
  Male	 59 (75.6)	 19 (24.4)	 0.06
  Female	 45 (60.0)	 30 (40.0)
Age (yrs.)
  Mean ± SD	 69.4±11.7	 73.3±11.4	 0.049
Tumor location
  Ascending	 11 (39.3)	 17 (60.7)	 3.6e-06
  Cecum	 17 (58.6)	 12 (41.4)
  Transverse	 13 (52.0)	 12 (48)
  Descending	 6 (100)	 0 (0)
  Sigmoid	 56 (87.5)	 8 (12.5)
  Unknown	 1 (100)	 0 (0)
Sub-site
  Left	 64 (88.9)	 8 (11.1)	 9.4e-08
  Right	 39 (48.8)	 41 (51.2)
  Unknown	 1 (100)	 0 (0)
AJCC stage
  I	 19 (67.9)	 9 (32.1)	 0.68
  II	 39 (63.9)	 22 (36.1)
  III	 28 (71.8)	 11 (28.2)
  IV	 17 (77.3)	 5 (22.7)
  Unknown	 1 (50.0)	 1 (50.0)
MSI status
  MSS	 78 (84.8)	 14 (15.2)	 2.2e-16
  MSI-H	 0 (0)	 28 (100)
  MSI-L	 26 (78.8)	 7 (21.2)
Expression subtype
  CIN	 57 (100)	 0 (0)	 2.2e-16
  Invasive	 35 (94.6)	 2 (5.4)
  MSI/CIMP	 11 (19.9)	 47 (81.0)
  Unknown	 1 (100)	 0 (0)

Table III. Correlation between the gene mutation and the 
subgroups identified in the gene expression data of the colon 
cancer samples.

	 Subgroups (%)
	 -----------------------------------------------
Mutation genes	E CL1	E CL2	 P-value

Total sample no.	 104 (68.0)	 49 (32.0)

BRAF mutation
  Yes	 0 (0)	 17 (100)	 1.8e-10
  No	 92 (78.6)	 25 (21.4)
  Unknown	 12 (63.2)	   7 (36.8)

KRAS mutation
  Yes	 31 (66.0)	 16 (34.0)	 0.69
  No	 61 (70.1)	 26 (29.9)
  Unknown	 12 (63.2)	   7 (36.8)

TP53 mutation
  Yes	 52 (81.2)	 12 (18.8)	 2.9e-03
  No	 40 (57.1)	 30 (42.9)
  Unknown	 12 (63.2)	   7 (36.8)

SOX9 mutation
  Yes	   7 (87.5)	   1 (12.5)	 0.43
  No	 85 (67.5)	 41 (32.5)
  Unknown	 12 (63.2)	 7 (36.8)

Table IV. Metastatic and death counts in two nested subclasses 
related to CIN.

Subclass 	 CIN	 Metastatic count (%)	 Death count (%)

Subclass 1	 18	 3 (16.7)	 1 (5.6)
Subclass 2	 27	 8 (29.6)	   4 (14.8)
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groups. This suggested that these genes could serve as feature 
genes for the subtype classification.

Subgroups identified by DNA methylation data. To investi-
gate the subtypes using DNA methylation data, we applied 
the same method to the transformed methylation array data. 
When K=3 or 4 (Fig. 5A and B), the clustering reached the 

highest consensus. When K=3, we named these subgroups as 
MCL1 with 57 samples (37%), MCL2 with 40 samples (26%) 
and MCL3 with 56 samples (37%). We found that the gender 
proportion among the three subgroups showed significant 
difference (P<0.029, Fisher's exact test). The age distribution 
among three subgroups also showed significant difference 
(P<2.24e-3, ANOVA, Table V).

Figure 3. Unsupervised clustering on ECL1. (A) K=2. (B) When K=3, we identified three subclasses in ECL1. (C) K=4. (D) Consensus CDF. (E) Silhouette 
Score in three subclasses. (F) Cluster consensus values.
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Majority of the samples in MCL1 were left tumors (~79%), 
of the minimum mean age, MSS status and no BRAF mutation. 
More than 50% of the samples in MCL1 had TP53 mutation 

and a few samples had KRAS mutation. Almost all samples 
in MCL2 were male, right tumors (~93%), of the maximum 
mean age and more than 50% of the samples were MSI-H 

Figure 4. Heat map of the 256 marker genes for all 153 cancer samples.
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status; all samples with BRAF mutation were in MCL2 and 
a few samples in this subgroup had KRAS mutation and 
TP53 mutation. More than 50% of the samples in MCL3 were 
female, right tumors, MSS status, and there were no BRAF 

mutation and nearly 50% of the samples had KRAS mutation 
and TP53 mutation (Table VI).

Compared with the results of TCGA and Hinoue et al (3,11) 
(Fig. 6A), most samples in cluster 4 fell into MCL1, and all 

Figure 5. Unsupervised clustering on DNA methylation data. (A) K=3. (B) K=4. (C) Consensus CDF when K=2 to 6. (D) Cluster consensus values when K=2 to 6.
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of CIMP-H samples were in MCL2; majority of the samples 
in CIMP-L and cluster 3 fell into MCL3 (P<2.2e-16, Fisher's 
exact test).

Characteristics of MCL3 were quite similar with CIMP2. 
The CIMP2 showed more heterogeneity than the other two (12), 
hence we further examined the subdivision of MCL3. When 
K=4, the four subgroups generated were largely overlapped with 
the previous classification (Fig. 6B), but the cluster consensus 
were lower than that when K=3 (Fig. 5D). To judge whether the 
CIMP-L and cluster 3 were distinct subtypes of colon cancer, 
we examined the data in Table I of Hinoue et al (11), and we 
found that tumor location and the frequence of TP53 mutation 
exhibited significant difference between the two clusters.

DNA methylation gene marker panels and their biological 
characteristics. PAM analysis was applied in these three 
subgroups to identify DNA methylation gene maker panels 
which could discriminate the subgroups. Firstly, MCL2 
(CIMP-H) was compared with the combination of the MCL1 
and MCL3 (Non-CIMP-H), when ∆=11.4, 52 probes corre-
sponding to 47 genes were selected as the first panel, and the 
overall error rate was 0.052. DSC3, LOX, RUNX3, SLC30A2 
and TLR2 harbored two hypermethylation sites in the samples 
from MCL2 subgroup. Secondly, regardless of MCL2, MCL1 
(cluster 4) was compared with MCL3, when ∆=6.99 and overall 

error rate was 0.079, 39 probes corresponding to 33 genes were 
selected as the second panel. ELMO1, JAKMIP1, NCAM1, 
NDRG4 harbored two hypermethylation sites in the samples 
from MCL3.

Combining two marker panels, there were 80 methylation 
genes. DAVID analysis on these genes showed that they were 
enriched in cell fate commitment, neuron differentiation, 
extracellular matrix, and sequence-specific DNA binding GO 
terms. We also used GeneMANIA to build the co-expression 
network of these 80 genes, and it turned out that the Wnt 
receptor signaling pathway and the digestive system develop-
ment pathway were involved in the network.

Overlapping of subgroups derived from two molecular levels. 
We performed hierarchical clustering on all 153 samples 
with the genes in the two panels and were able to find three 
subtypes in DNA methylation data. Labels of ECL1 and ECL2 
in each sample were also listed. Almost all samples in MCL2 
were overlapped with those in ECL2; moreover, the ECL1 
comprised MCL1 and MCL3 (Fig. 7).

Discussion

Two main subtypes were identified in gene expression level 
and three main subtypes were found in gene methylation level 

Figure 6. Subgroups delivered in clustering analysis overlapped with subtypes identified by TCGA group in DNA methylation level. (A) When K=3. 
(B) When K=4.
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(Fig. 8). For subtypes found in gene expression data, ECL2 was 
associated with MSI-H status, BRAF mutation, higher age and 
right tumor location; the samples from this subtype showed 
higher homogeneity than the samples in ECL1. Noteworthy, 

ECL1 could be further divided into three subclasses, both 
subclass 1 and 2 were related to CIN; and subclass 3 was related 
to Invasive type. We found that 6 genes, including HOTAIR, 
were upregulated in subclass 2. HOTAIR is an lncRNA that 

Figure 7. Heat map of the 91 DNA methylation probes in the two marker gene panels.

Figure 8. Workflow of the unsupervised clustering of 153 colon cancer samples in the two molecular levels.
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plays a key role in the initiation and progression of different 
types of cancer (29). Patients with high HOTAIR expression 
had higher recurrence rates and reduced metastasis-free 
and overall survival than patients with low HOTAIR expres-
sion (30). Hence, HOTAIR might be one of the most important 
marker genes contributing to the difference of metastasis rate 
and death rate between two CIN status-related subclass, and 
this supports the finding of Kogo et al (31). In addition, these 
results also suggested that samples with CIN status might be 
refined into two different subclasses.

A list of genes for discriminating two subtypes (ECL1 and 
ECL2) was also determined, and these genes were involved in 
some important pathway of colon cancer pathogenesis, such 
as the chemokine receptor binding chemokine  pathway and 

ERBB receptor signaling network. The chemokine receptor 
binding chemokine pathway is an upstream pathway of 
MAPK signaling pathway and JAK-STAT signaling pathway. 
Generally speaking, the alteration of genes influenced the 
changes of these pathways, finally resulting in different 
subtypes in colon cancer.

For subtypes found in DNA methylation level, MCL1 was 
association with cluster 4 which contained mostly sigmoid 
colon samples (68%). The tumors in cluster 4 were significantly 
enriched in the rectum compared with the other groups (11), 
whereas all of the samples we used were colon samples. This 
might be due to the fact that sigmoid and rectum are the 
closest in anatomy. The characteristics of the samples that 
belong to MCL1 are similar with LME subtype derived from 

Table V. Correlation between the clinical data and the subgroups identified in the DNA methylation data of the colon cancer samples.

	 Subgroups (%)
	 -------------------------------------------------------------------------------------------------------------------------
Characteristics	 MCL1	 MCL2	 MCL3	 P-value

Total sample no.	 57 (37.3)	 40 (26.1)	 56 (36.6)
Gender
  Male	 27 (37.5)	 25 (34.7)	 20 (7.8)	 0.029
  Female	 30 (37.0)	 15 (18.5)	   36 (44.5)
Age (yrs.)
  Mean ± SD	 66.8±12.7	 74.9±10.1	 71.6±10.7	 2.24e-3
Tumor location
  Ascending	   3 (10.7)	 14 (50.0)	 11 (39.3)	 4.1e-8
  Cecum	   6 (20.7)	 12 (41.4)	 11 (37.9)
  Transverse	   5 (20.0)	 11 (44.0)	   9 (36.0)
  Descending	   4 (66.7)	 0 (0)	   2 (33.3)
  Sigmoid	 39 (60.9)	 3 (4.7)	 22 (34.4)
  Unknown	 0 (0)	 0 (0)	  1 (100)
Sub-site
  Left	   45 (62.5)	 3 (4.2)	 24 (33.3)	 2.2e-12
  Right	 12 (15)	 37 (46.3)	 31 (38.7)
  Unknown	 0 (0)	 0 (0)	  1 (100)
AJCC stage
  I	 12 (42.9)	 6 (21.4)	 10 (35.7)	 0.348
  II	 19 (31.2)	 21 (34.4)	 21 (34.4)
  III	 13 (33.3)	 10 (25.6)	 16 (41.1)
  IV	 13 (56.5)	 3 (13.1)	   7 (30.4)
  Unknown	 0 (0)	 0 (0)	   2 (100)
MSI status
  MSS	 39 (42.4)	 11 (11.9)	 42 (45.7)	 1.5e-10
  MSI-H	   3 (10.7)	 23 (82.1)	 2 (7.2)
  MSI-L	 15 (45.5)	   6 (18.2)	 12 (36.3)
Expression subtype
  CIN	 32 (56.1)	 2 (3.5)	 23 (40.4)	 6.9e-12
  Invasive	   9 (24.3)	   5 (13.5)	 23 (62.2)
  MSI/CIMP	 16 (27.6)	 33 (56.9)	   9 (15.5)
  Unknown	 0 (0)	 0 (0)	  1 (100)
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Yagi et al (2) and CIMP-negative from Shen et al (12), although 
the frequency of MSI status, TP53 and KRAS mutation was 
lower than that reported in previous studies, this subgroup 
could still be taken as a specific subtype of colon cancer. 
MCL2 contained all samples in CIMP-H status and with 
BRAF mutation, right tumor and the highest mean age, and 
more than 50% of the samples in MSI-H status. This was quite 
similar with previous reported subtypes such as CIMP1 (12), 
HME (2) and CIMP-H (11). Of note, the frequency of male in 
MCL2 was higher than that of female patients (62.5%), and in 
MCL3 the frequency of female patients was higher than that 
of male patients (64.3%). This suggested that colon cancer 
was to some extent related to the gender (P<0.029, Fisher's 
exact test). We also found that samples in MCL2 exhibited 
high homogeneity.

MCL3 was comprised of CIMP-L and cluster  3 (11). 
The MCL3, which was the most heterogeneous subgroup, 
was similar with CIMP2  (12) and IME  (2), although the 
frequence of KRAS mutation was lower than that in CIMP2 
(92%), but this coincided with CIMP-L. We attempted to 
subdivide MCL3 and could not find sufficient evidence to 
support cluster 3 as a specific epigenetic subtype of colon 
cancer, except that the tumor location and the frequence 
of TP53 mutation exhibited significant difference between 
the two clusters. More experiments and analyses should be 
carried out to resolve this.

The genes in first marker gene panel were hypermethylation 
in MCL2, and the genes in second panel were hyper
methylation in MCL3. Almost all of the classic markers (32), 
such as RUNX3, LOX, CACNA1G and MYOCD were involved 

in the first panel, and SLC30A2, NEUROG2 were also found 
in this panel. NEUROG1, PRICKLE1 and SOX5 were found in 
the second panel. Furthermore, our data suggested that MCL2 
were overlapped with ECL2, and the ECL1 comprised MCL1 
and MCL3.

In this study, we only focused on the number of subtypes 
in different molecular levels of colon cancer, and did not 
explain molecular mechanisms forming these subtypes. Our 
findings might be helpful in understanding the subtypes 
of colon cancer in different molecular levels and provide a 
useful resource with clinical implications for further studies.
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