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Abstract. Since its first discovery as part of the Rous sarcoma
virus (RSV) genome, the c-SRC (SRC) proto-oncogene
has been proved a key regulator of cancer development and
progression, and thus it has been highlighted as an attractive
target for anti-cancer therapeutic strategies. Though the exact
mechanisms of its action are still not fully understood, SRC
protein mediates crucial normal cell functions, such as cell
development, proliferation and survival, and its dysregulation
is considered as an oncogenic signature and a driving force for
cancer initiation. In the present review, we present a flashback
to the history of the Src research, while focusing on the most
important milestones in the field. Moreover, we investigate the
proposed regulatory mechanisms and molecules that mediate
its action in order to designate putative therapeutic targets and
useful prognostic and/or diagnostic tools. Furthermore, we
present and discuss existing therapeutic approaches that are
explored in clinical settings.
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1. Introduction

The proto-oncogene c-SRC (SRC) is a non-receptor tyrosine
kinase, its expression and activity is enhanced in various
human cancers and correlates with malignancy progression
and development of distant metastasis (1-3). Since there
is increasing evidence of its crucial role in tumor progres-
sion (4,5) c-SRC has emerged as a promising target for
anticancer therapy. Consequently, SRC inhibitors have been
evaluated in the development of clinical therapies (6,7).
However, the exact mechanisms of action of ¢-SRC and the
critical respective pathway involved in malignancy are not
fully elucidated.

c-SRC is involved in the maintenance of normal cell
homeostasis regulating a wide range of cellular events,
including cell growth, differentiation, proliferation, survival,
adhesion, migration and motility (8,9). In normal cells, the
expression levels and activity of c-SRC are strictly regu-
lated by several mechanisms. The kinase activity of ¢c-SRC
is controlled by C-terminal SRC kinase (CSK), which
phosphorylates a conserved tyrosine residue in the c-SRC
carboxy-terminal domain (Tyr530). This is reversed by phos-
phatases such as protein tyrosine phosphatase 1B (PTP1B),
resulting in c-SRC activation. Additionally, activation of
growth-factor receptors leads to their association with the
¢-SRC homology 2 (SH2) domain, which disrupts inhibitory
intramolecular interactions to promote c¢-SRC activation.
Other proteins, such as CRK-associated substrate (CAS) and
FAK, bind to the ¢c-SRC SH2 and SH3 domains to stimulate
¢-SRC activation by a similar mechanism. Moreover, c-SRC
is also negatively regulated via the ubiquitin-proteasome
pathway, which is mediated by E3 ubiquitin-ligase Cbl
and Cullin-5 (10-12). Hence, c-SRC is regulated at both
transcriptional and post-translational levels by a variety of
mechanisms (10-12). The disruption of any of the c-SRC regu-
latory mechanisms may trigger cancer phenotypes through
uncontrolled proliferation, enhanced survival, and invasive-
ness, in cooperation with other oncogenic signals (2). Once
activated, as by growth factors or integrins, c-SRC triggers
downstream signaling pathways, including the RAS/MAPK,
phosphatidylinositol 3-kinase (PI3K)/AKT, and STAT path-
ways, leading to malignant phenotypic changes (13).
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2. Discovery of Rous sarcoma virus

In 1909, at the Rockefeller Institute, Peyton Rous started his
studies on a sarcoma that had been developed in the breast muscle
of a hen. In his original experiments, Rous managed to transmit
the tumor to other birds of the same species, by implanting frag-
ments of the initial tumor. In his subsequent experiments, he
developed a short protocol for the induction of tumors in chickens.
He used a chicken with sarcoma of breast muscle, removed the
mass and broke it up into small chunks of tissue. Subsequently
he ground up sarcoma with sand and filtrated it through a fine
pore filter. Finally, he injected the filtrate into a young chicken,
and observed the growth of sarcomas. He then hypothesized that
the tumor-inducing agent should be an oncogenic virus, later
becoming known as Rous sarcoma virus (RSV), since this agent
was possible to pass through a filter too fine to contain bacteria or
chicken cells and was capable of causing cancer with a predict-
able pattern (14,15). This finding was of great importance as it
was the first proof of viral carcinogenesis and thus triggered
the discovery of many other types of tumor-inducing viruses in
non-human primates such as mice, cats, rabbits (16-19) and later,
of the first oncogenic human virus, Epstein Barr in 1964 (20).
Additionally, the discovery of this pioneer oncogenic retrovirus
(RSV) was the hallmark of the onset of the development of
research on the molecular mechanisms of carcinogenesis (21).
For almost half a century the research interest was
focused on chemical carcinogenesis (22-27). The revival of
research regarding oncogenic retroviruses came in 1958 in the
Laboratory of Renato Dulbecco. Temin and Rubin developed a
quantitative in vitro bioassay for the transformation of normal
chicken embryonic fibroblasts with RSV. More specifically,
in their experiment, they showed that when the virus was
introduced to Petri dishes where embryonic fibroblasts where
cultured, the RSV(+) cells obtained an evolutionary advan-
tage and were transformed, acquiring cancer morphology
under the microscope, i.e., they were less adherent and often
rounded up, with increased size and/or number of nucleoli (28).
In 1966, the Nobel prize was finally awarded to Peyton Rous
for his discovery. The next question that arose was whether the
transformation of cellular phenotypes was due to the constant
influence of the RSV genome. In 1970, an experiment in
Berkeley confirmed the above hypothesis. In this experiment,
when fibroblasts where cultured with a heat-sensitive mutation
of RSV at permissible temperatures (37°C) the cells were
transformed. When the cultures containing these cells were
transferred to an impermissible temperature (41°C), the fibro-
blasts regained their normal morphology and they re-acquired
a cancerous morphology when re-exposed to 37°C. It was
evident that the transforming phenotype was maintained from
the ongoing effects of this protein (29-31). The Src oncogene of
RSV became the prototype for dozens of other transforming
genes in oncogenic viruses. Its product was identified by Brugge
and Erikson in 1977, as a protein with tyrosine-kinase activity.

3. Cellular origin of retroviral oncogenes

In 1961, the RSV was proved to contain an RNA genome (32),
whose continuous presence was necessary for maintaining cell
transformation. However, the mechanism by which the viral
RNA genome was incorporated into the infected cells remained

undefined. In 1970, the simultaneous research of Temin and
Baltimore led to the discovery of reverse transcriptase, an
enzyme that catalyzes the transcription of the retroviral RNA
into DNA (33), and that is also present in RSV. Through reverse
transcriptase, the monoclonal RNA of the virus is converted to a
double-stranded DNA, and the viral genome is then incorporated
into the nuclear DNA via another enzyme, called integrase (34).
Initially, it was considered that a copy of the src transforming
gene exists only within infected cells (35-38). In 1974, the labora-
tory of Michael Bishop and Harold Varmus, taking advantage
of the reverse transcriptase, undertook the design of a special
gene detector for src, in order to understand its properties and
origin. To their surprise, they found that the src detector could
also be hybridized with the genetic material of non-infected cells
of chicken and other species (two copies per genome of diploid
cells) (35,37,38). They also observed that the more distant the
evolutionary affinity with the chicken, the weaker the degree of
hybridization. The data supported the idea that the src sequences
found in non-infected cells, are actually part of their normal
genome (the cellular version of src=c-src) (35-39). In 1975,
the Nobel prize was awarded to Temin and Baltimore, for the
discovery of reverse transcriptase (33,34).

From 1976 to 1980 the research focused on the differences
between the c-src and, the v-src, which is located within the RSV
genome. The first one exhibited physiological cellular behavior
as opposed to the second, which acts as a potent oncogene. The
explanation was simple; the src gene of RSV was not initially
present in the primordial RSV retrovirus. A pre-existing virus
(ALV=src negative) was detected that caused leukosis in
birds and which, through genetic modifications, incorporated
sequences from the genome of infected cells (RSV=src posi-
tive). Subsequent experiments showed that the structure of the
RSV genome is closely related to this common infectious agent
of birds, called ALV (35-40). Both of them include three genes:
Gag, pol and env. The gag gene encodes for proteins that take
part in the formation of the nucleoprotein nucleus; the pol gene
encodes for integrase and reverse transcriptase; and the env gene
determines the glycoprotein precursors. The only difference
between the two genomes lies in the ability of the src gene to
cause cellular transformation (39,40). Thus, for the first time,
the concept of proto-oncogene was introduced, implying that a
normal gene can be altered by mutation or by a pre-viral inser-
tion, to become an oncogene, thereby contributing to cancer
development. Since 1980, retroviruses have been used as probes,
to detect the corresponding proto-oncogenes in humans, and
researchers have shifted the focus on chemical carcinogen-
esis (41-43). This second theory confirmed the cellular origin of
retroviral oncogenes and additionally contributed to the unravel-
ling of possible mechanisms for proto-oncogene activation, such
as amplification, pre-viral insertion, single nucleotide polymor-
phism and translocation (41-45). In 1989, the Nobel prize was
awarded to Bishop and Varmus for the discovery of the cellular
origin of retroviral oncogenes (46,47). The most important
historic milestones on Src research are presented in Fig. 1.

4.MicroRNAs as the fine tuners of SRC oncogenic signaling
As mentioned above, c-SRC is the first reported oncogene

and its product is the first non-receptor tyrosine kinase to
be identified (48). In many human neoplasms, including
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Figure 1. Historical retrospective of the major discoveries regarding the Src oncogene.

colorectal, breast, prostate, pancreatic, head and neck, and
lung carcinomas, gliomas and melanoma, SRC overexpression
has already been detected. In fact, its dysregulation could be
characterized as an oncogenic signature and as a key factor
for tumor progression (3,5,49). However, the molecular mecha-
nisms underlying c-SRC-mediated tumor progression are not
fully understood. Recent studies have highlighted several
microRNAs (miRNAs) as key molecules in SRC-mediated
tumor progression (50). miRNAs are a family of small,
endogenous and evolutionarily conserved non-coding RNAs
(containing about 22 nucleotides) involved in the regulation of
essential cellular and functional processes, including prolif-
eration, differentiation, survival and stress responses. The
majority of miRNAs are transcribed from DNA sequences into
primary miRNAs (pri-miRNAs) and processed into precursor
miRNAs (pre-miRNA), and finally mature miRNAs. Their
functionality is bimodal, since they locate complementary
mRNAs and either regulate protein translation or induce
degradation of the target mRNA (51). Hence, miRNAs act
either as oncogenes or tumor suppressors and are important
regulators of gene expression at the post-transcriptional
level (52). In subsequent experiments, microarray profiling
revealed that c-SRC regulates a set of miRNAs, which act as
tumor suppressors, when their expression is downregulated.
Generally, miRNAs are commonly silenced in human cancers
by mutation, methylation, loss of heterogeneity or by other
post-transcriptional modifications (53). Studies on the function
of these miRNAs uncovered miRNA-mediated c-SRC onco-
genic signaling and crosstalk between Src and other oncogenic
signaling pathways, such as the focal adhesion-mediated
pathway and the mammalian target of rapamycin, mTOR (50).

Recently, the mechanisms underlying SRC-mediated acti-
vation of mTOR signaling, a major downstream effector of the
PI3K pathway, were found to be regulated by miRNA expres-
sion in various cancer types (54,55). More precisely, functional
analysis showed that transcription of miR-99a, which is often
downregulated in various human cancers, and is regulated by
SRC-related oncogenic pathways, like the epidermal growth
factor receptor (EGFR) pathway. It was demonstrated that
mir-99a targets mTOR and fibroblast growth factor receptor

3 (FGFR3), both of which are strongly related with human
cancers (56,57). In conclusion, this study indicated that
miR-99a is the missing link between SRC and mTOR, which
have both been correlated with human cancer. Furthermore,
miRNA-mediated mTOR regulation has also been shown in
studies of miR-100 and miR-199-3p (58,59). Further studies
suggested that miRNAs also regulate focal adhesion and acti-
vation of downstream effectors in SRC-activated cancer cells.
More specifically, integrin-linked kinase (ILK) is targeted by
miR-542-3p, a downregulated miRNA in SRC-transformed
cells (60-63). Apart from the fact that downregulation of
miR-542-3p corresponds with upregulation of ¢c-SRC and ILK,
there is also a correlation between ILK upregulation and c-SRC
activation in human colon cancer tissues. Furthermore, it was
found that miR-542-3p-mediated ILK downregulation induces
inactivation of c-SRC and FAK in human colon cancer cells
(feedback loop).

Last but not least, miRNA mediates regulation of SRC
expression itself, and this could also be a logical explanation for
the resistance that is observed when SRC-targeting drugs are
used. In detail, miR-23b functions as a tumor suppressor and
as a mediator of metastasis in different cell lines (64). miR-27b,
which targets paxillin, a platform for adaptor proteins and a
critical component of the focal adhesion complex, is under the
control of the PI3K pathway (65-68). Taking into consideration
that both of them are downregulated in human castration-resis-
tant prostate cancers (69), c-SRC could be regulated by the
miR-23b/27b 24-1 gene cluster via adual mechanism: Regulation
of c-SRC kinase activity via either miR-27b or miR-23b medi-
ated regulation of paxillin. As a result, upregulation of c-SRC
expression may amplify the positive-feedback loop mediated
by the miR-23b/27b 24-2 gene cluster thus, inducing tumor
progression mediated by c-SRC activity (50).

5. miRNA-mediated SRC oncogenic signaling in selected
cancer types

As many miRNAs are down-regulated in human cancers
through various genetic and epigenetic alterations, such as
methylation and loss of heterogeneity, research was focused
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on the role of down-regulated miRNAs in ¢-SRC transforma-
tion (53). Subsequent experiments highlighted the key role of
miR-137 in the development of SRC-mediated human colon
cancer (70). To elucidate the role of miR-137 and its correlation
with SRC signaling, the HCT116 cell line, anti-sense miRNAs
and also dasatinib (a specific SRC kinase inhibitor) were used.
It was finally concluded that miR-137 is down-regulated in
the early stages of cancer progression (70). In another experi-
ment, the role of miR-129-1-3p in human colon cancer was
evaluated by assessing miR-129-1-3p expression in 10 pairs of
primary colon tumors and adjacent non-cancerous tissues using
gRT-PCR and western blot analysis to examine the activity of
SFK (SRC pY418). It was clarified that miR-129-1-3p was mark-
edly downregulated and SFK activity was greatly upregulated
in colon cancer tissues (71). Additional studies demonstrated
that certain miRNAs induce SRC oncogenic signaling by
targeting SRCIN1, a specific SRC kinase signaling inhibitor.
For example, miR-665 suppresses SRCIN1 expression, which
normally acts as a negative regulator of MAPK/ERK signaling
in ovarian cancer cells (72). In ovarian cancer, sustained activa-
tion of MAPK/ERK signaling is associated with strong cell
proliferation and metastatic potential (73). The western blotting
results showed that inhibition of miR-665 increased SRCIN1, at
both the mRNA and protein level, and inactivated MAPK/ERK
pathway in ovarian cancer (74). Similar findings were reported
in the case of miR-150. It was observed that miR-150 promotes
the proliferation and migration of lung cancer cells by targeting
SRC kinase signaling inhibitor 1 (SRCINI), therefore acting
as an oncogene (75). Subsequent studies examined the role
of miR-17-5p in the evolution of osteosarcoma and revealed a
component of the miR-17-5p/SRCIN1/EMT signaling pathway.
Furthermore, classic EMT markers such as N-cadherin,
E-cadherin and Snail were quantified by western blot analysis.
Finally, it was proven that SRCINT1 is a direct target of miR-17-5p
and silencing of this miRNA could change the expression of
EMT markers and arrest cell growth (76). SRCIN1 was found
to be downregulated in breast cancer in previous studies (77).
Moreover, miR-374a was shown to induce cell proliferation,
invasion and migration of gastric cancer cell via binding to
SRCINTI (78). It was also found to be involved in pancreatic
cancer through the axis miR-374a/SRCIN1/EMT (79). Finally,
a recent study focused on the identification of miR-373 levels
in metastatic neuroblastoma samples and its interaction with
SRCINI1 (80).

In conclusion, it becomes evident that miRNA dysfunction
is involved in various human cancers and miRNAs can func-
tion as both oncogenes and tumor suppressors (81,82). Due
to their implication in the regulation of sustained cell growth
signaling, miRNAs are considered as potential biomarkers and
therapeutic targets for cancer treatment (83).

6. Exosomes as the fine tuners of oncogenic signaling

As mentioned above, SRC functions as a molecular signaling
switch and plays a central role in the regulation of cell prolif-
eration, differentiation, adhesion, and migration in normal
cells (8), and is commonly upregulated in various human
cancer cells. The activation of SRC is strictly regulated by
several molecular mechanisms. For example, the kinase
activity of SRC is negatively regulated by the phosphorylation

of a regulatory tyrosine at its c-terminal tail, catalyzed by
CSK (84,85). On the other hand, SRC is positively regulated
through several extracellular signals, such as growth factors
and extracellular matrices, which lead to the interaction with
certain adaptor proteins, including FAK and Cas (49,86), and
consequently to the activation of downstream signaling path-
ways. Furthermore, cellular localization of SRC, determines
its activity. Inactive SRC is located to the perinuclear region,
and once activated, it is translocated to the plasma membrane,
under the control of members of the Rho family (87).

Recent studies have shown that activated SRC is downregu-
lated through degradation by either lysosomes or proteasomes,
with the functional difference between them remaining
unclear (10,88-90). More precisely, the E3 ubiquitin ligase Cbl
mediates the ubiquitination of SRC and induces its degradation
via the ubiquitin-proteasome pathway (89,90). In a recent study,
ubiquitination of activated SRC at Lys429 was demonstrated to
promote its secretion via small extracellular vesicles (SEVs) (91).
In this experiment, MDCK cells expressing a modified SRC
that can be activated by hydroxytamoxifen were used in order
to mimic SRC upregulated cancer cells. When proteasome
inhibition (MG132) was performed, no accumulation of ubiqui-
tinated SRC was noted, suggesting that ubiquitination of SRC
preferentially promotes its secretion via sEVs to decrease the
levels of activated SRC in these cells. It was also identified that
Lys 429 is a critical ubiquitination site required for sSEV-medi-
ated secretion. In an attempt to determine how the mutation
at Lys429 on SRC (R429) affects the cell, it was observed that
it caused resistance to ubiquitination and decreased its secre-
tion via sEVs. Additionally, since the cbl ablation caused a less
potent suppression of the SEV secretion, it was hypothesized
that other E3 ligases might also be required. In addition,
activation of R429 mutant enhanced SRC-induced invasive
phenotypes, supporting the hypothesis of a stronger activation
of FAK at the early stages (86,91). These findings have shed
light on this missing link between SRC ubiquitination and sEV
secretion, and suggest a tumor suppressive role for the secretion
of SRC via sEVs. The fact that SRC is detected in exosomes
from various cancer cells, such as colorectal (92), prostate (93),
and breast (94) cancer cells, indicates that secretion of SRC via
exosomes may be a common mechanism used to regulate SRC
in a wide array of cell types and seems to constitute a novel
promising therapeutic target (95).

7. SRC inhibitors as anticancer agents in clinical trials

The role of SRC in oncogenesis has prompted the detection
of other members of the SRC family of protein kinases and
the search for anticancer therapies. To this end, most of the
FDA-approved inhibitors of related protein kinases are directed
toward neoplastic diseases. However, since SRC is not a primary
driver of tumorigenesis, but rather a participant in pathways of
cell division, invasion, migration and survival, administration
of existing inhibitors of SRC as a monotherapy has not been
proved efficient in cancer treatment (96). Moreover, there are
currently no available prognostic biomarkers related to SRC
activity that could be used for patient selection in clinical trials.

Currently, four oral SRC/multi-kinase inhibitors have been
approved by the FDA for the treatment of various malignan-
cies. Bosutinib, a BCR-Abl, SRC, Lyn, Hck, Kit, and PDGFR
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Table I. Continued.

ClinicalTrials.gov

Clinical

Additional
molecular target(s)

Combinatorial

Results/Major side effects

phase Identifier

Cancer type

treatment

SRC inhibitor

The 6-month PFS rate was 29% (Px1 + S) vs. 34%

NCTO01196741 (119)

Phase II/111

Ovarian Cancer, Fallopian

Tube Cancer, Primary
Peritoneal Cancer

Chemotherapeutic

treatment

Paclitaxel

(wPx1 + P) (P=0.582). Median PFS was 4.7 vs. 5.3 months

(hazard ratio 1.00, 95% confidence interval 0.65-1.54;

0.99). Rate Response (complete + partial) was 29%
(wPx1 + S) vs. 43% (wPx1 + P), P-value=0.158. Grade 3/4

adverse events were 36% vs. 31% (P:

P=

0.624); the most

frequent G3/4 toxicities were vomiting, abdominal pain
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and diarrhea. Febrile neutropenia was more common in

the saracatinib arm (4.3%) than placebo (0%). Response,
PFS and Overall survival were all significantly (P<0.05)

better in patients with taxane interval =6 months/no prior

taxane (n=85) than those <6 months (n

randomisation.

22), regardless of

inhibitor approved for the treatment of Philadelphia-positive
chronic myeloid leukemia (Ph*CML) and acute lymphoblastic
leukemia (ALL), is currently evaluated in clinical trials for
the treatment of breast cancer, glioblastoma and other solid
tumors (97-99). Dasatinib, an inhibitor of BCR-Abl, SRC, Lck,
Fyn, Yes, PDGFR, and other kinases, approved for the treatment
of CML is currently evaluated in clinical trials against various
solid tumors (100). This inhibitor is also evaluated in combi-
nation with insulin-like growth factor 1 Receptor (IGF-1R)
antibody AMG479 against embryonal or alveolar rhabdomyo-
sarcoma. Ponatinib, an inhibitor of BCR-Abl, PDGFR, VEGFR,
members of the SRC family and other kinases, approved for the
treatment of CML and ALL is currently evaluated in clinical
trials against several leukemias (101). Vandetanib is an inhib-
itor of EGFR, VEGFR, RET, members of the SRC family and
other kinases, approved for the treatment of medullary thyroid
carcinoma and is currently evaluated in clinical trials against
numerous solid tumors (102-104). Saracatinib (AZD0530) an
SRC and BCR-ADI inhibitor is currently evaluated in clinical
trials against colorectal, gastric, ovarian, small and non-small
cell lung cancers and against metastatic osteosarcoma in the
lung (105-107). A related drug (AZD0424) alone or in combi-
nation with other agents is in Phase I clinical trials against
various types of solid tumors. KX2-391 is another orally
administered small molecule SRC kinase inhibitor with poten-
tial antineoplastic activity. Interestingly, instead of binding
to the ATP-binding site, like other SRC inhibitors, KX2-391
specifically binds to the peptide substrate binding site of SRC
kinase; in this way, kinase activity is eliminated, potentially
resulting in the inhibition of primary tumor growth and the
suppression of metastasis. This inhibitor is being evaluated in
clinical trials against multiple cancer types, either alone or in
combination with paclitaxel (108).

At present, there is a critical number of clinical trials that
investigate the therapeutic value of putative specific SRC
or SRC-related inhibitors as anti-cancer agents, alone or in
combination with other agents (Table I) (108). The clinical
efficacy of these agents against the above-mentioned cancer
types remains to be established.

8. Conclusion

The discovery of the Src gene was the trigger for the emergence
of other oncogenes, as well as the understanding of the genetic
basis of cancer. Therefore, different molecular mechanisms
are involved in tumor progression, differentiation and migra-
tion. Despite the fact that the src gene is now well studied,
the molecular pathways mediating cancer progression have not
yet been clarified. The contribution of miRNAs and exosomes
in the acquisition of malignant phenotype may contribute an
emerging therapeutic strategy of combinational therapies with
dual pathway inhibition, although further studies are needed.
Finally, both exosomes and miRNAs could be useful diag-
nostic, prognostic and predictive biomarkers in SRC-induced
carcinogenesis, thus contributing to a more rational and
effective classification and treatment of these patients.
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