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Abstract. Glaucoma is a group of progressive optic neuropa-
thies that have in common characteristic optic nerve head 
changes, loss of retinal ganglion cells and visual field defects. 
Among the large family of glaucomas, primary open‑angle 
glaucoma (POAG) is the most common type, a complex and 
heterogeneous disorder with environmental and genetic factors 
contributing to its pathogenesis. Approximately 5% of POAG is 
currently attributed to single‑gene or Mendelian forms of glau-
coma. Genetic linkage analysis and genome‑wide association 
studies have identified various genomic loci, paving the path 
to understanding the pathogenesis of this enigmatic, blinding 
disease. In this review we summarize the most common vari-
ants reported thus far and their possible clinical correlations.
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1. Introduction

Glaucoma represents a group of chronic and progressive 
optic neuropathies with distinctive pattern of progressive 

visual field loss and optic disc damage, and is the leading 
cause of irreversible blindness worldwide. This enigmatic 
and heterogeneous disease has affected 3.5% of the world's 
population with approximately 5.7 million people visually 
impaired and 3.1 million blind, and an estimate to affect 
111.8 million people by 2040 (1). Primary open‑angle glaucoma 
(POAG), the most common representative, is characterized by 
a normal, open anterior chamber angle and elevated intraocular 
pressure (IOP) or even normal IOP, named normal tension 
glaucoma (NTG). Two hallmark theories attempt to explain 
the pathway of the disease; the mechanical and vascular 
theory. Although both present postulated mechanisms of 
progressive retinal ganglion cell (RGC) damage and eventual 
optic neuropathy, the exact etiology still remains unknown (2). 
The well recognised risk factors for POAG include higher age, 
high IOP, decreased central corneal thickness (CCT), African 
descent, high myopia and a positive family history  (3,4). 
Amongst them, high IOP remains the only modifiable risk 
factor for the development and prognostic factor for the 
progression of POAG (3).

POAG has long shown a strong genetic component with 
60% of patients with a positive family history and family 
based studies identifying a 10‑fold increased risk of POAG for 
first degree relatives (5). Heritability of POAG can be divided 
into two major categories: direct association (increased 
POAG risk) and indirect (increased risk for a component of 
the disease). The first one deals with several genes linked to 
POAG through family‑based genetic linkage analysis, with 
major examples being myocilin (MYOC), optineurin (OPTN), 
WD repeat domain 36 (WDR36), cytochrome P450, family 1, 
subfamily B, polypeptide 1 (CYP1B1) and neurotrophin 4 
(NTF4) (6‑10). With heritability ranging from 0 (no genetic 
component) to 1 (phenotype determined by genes), these genes 
attribute to POAG heritability at ~0.81 (11). The second factor 
refers to the endophenotype traits related to POAG pathogen-
esis, highly heritable and polymorphic. Notable examples are 
IOP (0.55), vertical cup‑to‑disc ratio (VCDR=0.48‑0.66), CCT 
(0.72), cup area (CA=0.75) and disc area (DA=0.72) (12,13).

Genome‑wide association studies (GWAS) have been used 
in the past decade in an attempt to uncover genetic variants 
of complex diseases. For POAG, over 70 single‑nucleotide 
polymorphisms (SNPs) have been identified and linked to 
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POAG or its endophenotypes, changing our understanding of 
the molecular pathways of the disease (14). Identification of 
the genes associated with the disease may also provide useful 
information for both patients and their physicians, by enabling 
the design of genetic screening tests that may help physicians 
assess the risk of patients for disease as well as to differentiate 
between clinically similar disorders. Valuable research avail-
able has provided details for many SNPs related to POAG. In 
this review the authors summarize the most common variants, 
present their possible clinical correlations and highlight their 
interactions.

2. Search strategy

A MEDLINE/PubMed search was performed for articles 
in English from January 2010 to January 2020. Keywords 
included glaucoma, primary open angle glaucoma, genetics, 
genetic association studies, GWAS and SNP. Further search 
was performed in the database upon relative findings in the 
articles.

3. Genomic loci

Genetic linkage analysis was the first genetic decoding of 
glaucoma. Classically used for Mendelian traits or mutations 
in a single gene, this method reveals chromosomal regions 
associated with a specific phenotype. Followed by GWAS in 
various populations, a number of variants and interactions 
unfolded, thus forming the complicated image of POAG. 
These genomic loci are marked GLC1A through GLC1P and 
show high heterogeneity (14,15) (Table I).

4. Common variants

Although a number of SNPs has been linked to POAG, those 
summarized in Table  II, appear to be the most commonly 
studied in the literature.

MYOC/trabecular meshwork‑induced glucocorticoid 
response protein (TIGR). Located on chromosome 1q24, 
MYOC encodes protein MYOC, which is believed to have a 
role in cytoskeletal function and represents the first gene to 
be associated with POAG (14). Mutations in MYOC (alter-
natively TIGR) are linked to the GLC1A locus (14,16). Over 
100 POAG‑associated mutations have been identified in 
the MYOC gene making it accountable for 3‑5% of POAG 
cases (15). Primarily associated with juvenile‑onset POAG, 
expresses an autosomal dominant and highly penetrant 
severe phenotype, with highly elevated IOP which often 
requires surgical management (10,17). A less severe form 
is observed in the adult onset form, the most prevalent 
one  (10). Other associations include primary congenital 
glaucoma (18). The effect of MYOC mutations appears to 
be on the trabecular meshwork (TM) and aqueous humor 
outflow (19).

CYP1B1. Located on chromosome 2p22.2, CYP1B1 belongs 
to the cytochrome P450 superfamily of enzymes. Mutations 
in CYP1B1, although classically linked to anterior segment 
dysgenesis and congenital glaucoma, may also contribute to 

the GLC1A phenotype through a digenic inheritance, acting 
as a modifier for MYOC (20).

OPTN. Located on chromosome 10p13, OPTN encodes the 
coiled‑coil containing protein OPTN that plays an important 
role in the maintenance of the Golgi complex, in membrane 
trafficking and exocytosis. Mutations in OPTN are linked to 
the GLC1E locus. Even though variable mutations have been 
recognised, E50K has been strongly linked to glaucoma (21). 
Primarily associated with NTG, it has also been reported 
in patients with amyotrophic lateral sclerosis (ALS) (22). A 
variety of interactions and cellular effects have been reported 
for OPTN, notably its role in autophagy and apoptosis (23,24). 
It has been reported that although MYOC overexpression has 
no effect on OPTN expression, OPTN overexpression upregu-
lates endogenous MYOC in TM cells (25). Noteworthy, the 
most notable is the interaction of OPTN with TANK‑binding 
kinase 1 (TBK1) as they may share a common pathway (23,26).

TBK1. Located on chromosome 12q14, mutations in TBK1 are 
linked to the GLC1P locus (10). Responsible for approximately 
1% of NTG through a copy number variant (CNV) consisting 
of duplications in the TBK1, mutations have also been reported 
in patients with ALS and other central nervous system disor-
ders (22,27,28). TBK1 is a kinase that regulates the expression 
of genes in the NF‑κB signaling pathway, playing an essential 
role in regulating inflammatory responses to foreign agents 
and is also implicated in autophagy (29).

WDR36. Located on chromosome 5q22, WDR36 encodes 
a member of the WD repeat protein family that is involved 
in T‑cell activation. Mutations in WDR36 are linked to the 
GLC1G locus (10). Linked to an increased risk for POAG, 
mutations in WDR36 were initially reported to be responsible 
for 1.6 to 17% of POAG (8,30,31). WDR36 appears to nega-
tively affect TM cells via apoptotic cell death (32).

NTF4. Located on chromosome 19q13.33, NTF4 encodes a 
neurotrophic factor that signals predominantly through the 
tyrosine kinase receptor B (TrkB) receptor tyrosine kinase. 
Mutations in NTF4 are linked to the GLC1O locus. Negatively 
affecting the activation of TrkB, NTF4 mutations have been 
found in 1.7%  of POAG patients in a study of European 
patients (9).

Ankyrin repeat and SOCS box containing  10 (ASB10). 
Located on chromosome 7q36, ASB10 encodes a protein that is 
a member of the ASB family of proteins. Mutations in ASB10 
are linked to the GLC1F locus  (33). ASB10 transcription 
appears to reduce aqueous humor outflow facility (34).

Atonal bHLH transcription factor 7 (ATOH7). Located on 
chromosome 10q21, ATOH7 encodes a transcription factor 
that appears to play a role in the differentiation of the RGCs 
and determination of DA, possibly during embryogenesis. It is 
associated with DA, VCDR, CA and POAG risk (35,36).

Caveol in1/caveol in2  (CAV1/CAV2).  L ocated  on 
chromosome 7q31, CAVs are involved in a number of cellular 
processes such as transcellular transport, cell proliferation 
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and signal transduction (37). CAV1 and CAV2 are found to be 
expressed in ciliary muscle, TM, Schlemm's canal and retinal 

cells, and variants in the CAV1/CAV2 region are associated 
with IOP changes, possibly through alterations of aqueous 

Table I. Glaucoma genomic loci (GLC1A‑P), candidate genes and locations and their associated glaucoma type.

Locus	 Gene	L ocation	 Glaucoma type

GLC1A	 MYOC	 1q24.3-q25.2	 POAG/JOAG
GLC1B	 -	 2cen-q13	 POAG, early onset
GLC1C	 -	 3q21-q24	 POAG
GLC1D	-	  8q23	 POAG, early onset
GLC1E	 OPTN	 10p13	 POAG/NTG
GLC1F	 ASB10	 7q36	 POAG
GLC1G	 WDR36	 5q22	 POAG
GLC1H	-	  2p16-p15	 POAG
GLC1I	-	  15q11-q13	 POAG
GLC1J	-	  9q22	 JOAG
GLC1K	-	  20p12	 JOAG
GLC1L	 -	 3p22-p21	 POAG
GLC1M	-	  5q22	 JOAG
GLC1N	-	  15q22-q24	 JOAG
GLC1O	 NTF4	 19q13.3	 POAG
GLC1P	 Possibly TBK1	 12q24	 POAG

MYOC, myocilin; OPTN, optineurin; ASB10, ankyrin repeat and SOCS box containing 10; WDR36, WD repeat domain 36; NTF4, neuro-
trophin 4; TBK1, TANK‑binding kinase 1.

Table II. Candidate genes and their possible association to glaucoma pathogenesis.

Gene	L ocation	 Possible glaucoma mechanism/effect

MYOC/TIGR	 1q24	 TM, outflowa

CYP1B1	 2p22.2	 Anterior segment dysgenesis
OPTN	 10p13	A utophagy, apoptosis
TBK1	 12q14	 Autophagy, inflammatory response
WDR36	 5q22	 TM via apoptosis
NTF4	 19q13.33	 Impaired neuronal survival
ASB10	 7q36	 Outflow
ATOH7	 10q21	 DA, VCDR, CA, POAG risk
CAV1/CAV2	 7q31	 IOP changes, outflow
CDKN2B-AS1	 9p21	 VCDR
SIX6	 14q23	 VCDR, myopia, reduced RNFL thickness
TMCO1	 1q24.1	 IOP changes, increased POAG risk
ABCA1	 9q31	 Inflammatory response, neurodegeneration
AFAP1	 4p16.1	U nknown
ARHGEF12	 11q23.3	 IOP changes, outflow
TXNRD2	 22q11	O xidative stress
FOXC1	 6p25.3	 Anterior segment dysgenesis
ATXN2	 12q24.12	 Neurodegeneration
GAS7	 17p13	CA , IOP changes
GALC	 14q31.3	 Increased POAG risk

aOutflow, aqueous humor outflow. TM, trabecular meshwork; DA, disc area; VCDR, vertical cup-to-disc ratio; CA, cup area; POAG, primary 
open angle glaucoma; RNFL, retinal nerve fiber layer.
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outflow resistance (37‑39). A possible direct, cell type specific 
interaction of CAV1 with ATP‑binding cassette, subfamily A, 
member 1 (ABCA1), also supports a possible role in POAG (40).

Cyclin‑dependent kinase inhibitor 2B antisense RNA  1 
(CDKN2B‑AS1). Located on chromosome  9p21, in the 
CDKN2B‑CDKN2A gene cluster, CDKN2B protein is 
expressed in the inner nuclear layers of the retina and the 
ganglion cell layer. CDKN2B‑AS1 is detected in the retina, 
ciliary body and optic nerve and variants have been associated 
with VCDR changes and NTG especially in women, as well as 
various non-ocular disorders, namely myocardial infarction 
and intracranial aneurysms; an association of POAG risk and 
these conditions has not been made however (41‑47).

Six homeobox 6 (SIX6). Located on chromosome 14q23, SIX6 
gene encodes homeobox proteins, critical for ocular develop-
ment. The protein encoded by this gene is a homeobox protein 
that is similar to the Drosophila ‘sine oculis’ gene product and 
is thought to be involved in eye development. Variants in this 
locus have been linked to POAG through VCDR, myopia and 
reduced retinal nerve fiber layer (RNFL) thickness. An inter-
esting interaction of the POAG‑risk His141 SIX6 variant with 
CDKN2B‑AS1 has been proposed as the former has been shown 
to elevate expression of the latter. A possibly protective Asn141 
SIX6 variant remains to be further observed (44,47,48‑52).

Transmembrane and coiled‑coil domains protein 1 (TMCO1). 
Located on chromosome 1q24.1, TMCO1 encodes a trans-
membrane protein playing a key role in calcium homeostasis. 
It is expressed, among other ocular tissues, in the TM and 
retina. Sequence variants have been associated with IOP and 
increased POAG risk to a degree of 1.7‑fold per risk allele, 
making it a significant quantitative trait (46,50,53‑55).

ABCA1. Located on chromosome 9q31, ABCA1 encodes a 
protein complex associated with extracellular and intracellular 
membrane transport. Although the locus is mainly associated 
with familial high‑density lipoprotein deficiency and Tangier's 
disease, ABCA1 is also expressed in numerous ocular tissues, 
namely TM, ciliary body and RGCs. Sequence variants have 
been linked to POAG and IOP, possibly through an inflamma-
tory and neurodegenerative mechanism (56,57).

Actin filament‑associated protein 1 (AFAP1). Located on 
chromosome 4p16.1, AFAP1 encodes an adaptor protein that 
modulates changes in actin filament integrity in response to 
cellular signals. It is expressed, among others, in the retina and 
TM cells. Sequence variants have been associated with POAG 
through a still unknown mechanism (41,57).

RHO guanine nucleotide exchange factor 12 (ARHGEF12). 
Located on chromosome  11q23.3, ARHGEF12 encodes a 
guanine nucleotide exchange factor (GEF) that may form a 
complex with G proteins and stimulate Rho‑dependent signals. 
An intronic variant has been associated with POAG and IOP, 
possibly through activation of RhoA and subsequent ROCK 
activation, leading to decreased outflow and elevated IOP. 
An interesting interaction is that with ABCA1 protein, with 
ARHGEF12 preventing ABCA1 degradation (58‑60).

Thioredoxin reductase 2 (TXNRD2). Located on chromo-
some 22q11, TXNRD2 gene encodes a mitochondrial protein 
important for scavenging reactive oxygen species in mitochon-
dria. It belongs to the family of flavoenzymes that catalyze 
redox reactions, thus controlling the levels of reactive oxygen 
species. TXNRD2 is found, among others, in the retina and 
optic nerve and sequence variants have been associated with 
POAG, possibly through a protective effect of TXNRD2 
against oxidative stress of the RGCs (41,61,62).

Forkhead box C1 (FOXC1). Located on chromosome 6p25.3, 
FOXC1 is found next to GDP‑mannose 4,6‑dehydratase 
(GMDS) gene. It encodes a protein that has been shown to 
play a role in the regulation of embryonic and ocular develop-
ment. Although mainly linked to anterior segment dysgenesis 
and Axenfeld‑Rieger syndrome, sequence variants within the 
GMDS gene as well as variants located upstream of FOXC1 
have been associated with POAG (41,57).

Ataxin 2 (ATXN2). Located on chromosome 12q24.12, ATXN2 
is involved in regulating mRNA translation through its inter-
actions with the poly (A)‑binding protein. It is also involved 
in the formation of stress granules and P‑bodies, which also 
play roles in RNA regulation (63). ATXN2 is expressed, among 
others, in the ciliary body, retina, and optic nerve. Although 
mainly linked to spinocerebellar ataxia and ALS, variants in 

Figure 1. Common variants and their associations to POAG risk and/or endophenotypes and interactions. POAG, primary open‑angle glaucoma; IOP, intra-
ocular pressure; CCT, central corneal thickness; CA, cup area; DA, disc area; VCDR, vertical cup-to-disc ratio; RNFL, retinal nerve fiber layer.
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ATXN2 have been associated with POAG possibly through 
neurodegeneration (41,64).

Growth arrest‑specific  7 (GAS7). Located on chromo-
some 17p13, GAS7 encodes a protein that plays a putative 
role in neuronal development as well as maturation and is 
primarily expressed in vivo, in terminally differentiated brain 
cells. GAS7 has been associated with increased cup volume 
and IOP (47,54,55,65).

Galactosylceramidase (GALC). Located on chromosome 
14q31.3, GALC encodes a lysosomal enzyme called 
galactosylceramidase, which is mainly linked to Krabbe 
disease, a rare disorder of the myelin sheath with progressive 
optic neuropathy. GALC has been associated with a 5-fold 
increased risk of POAG when heterozygous for a CNV 
deletion (66,67).

5. Additional genes associated with POAG

Single SNPs in the MYOC, COL8A2, COL1A1 and ZNF469 
gene regions have shown marginal association with POAG in 
a study conducted in South Africa (68). Although the number 
of the subjects enrolled in the study was small, it was demon-
strated that the main POAG‑associated susceptibility alleles 
found in other populations, play a reduced role in populations 
of African ancestry. Moreover, a GWAS performed in India 
identified a novel candidate gene for POAG, called membrane 
palmitoylated protein 7 (MPP7), which is dysregulated under 
cyclic mechanical stress in the TM, thus causing dysfunction 
of cell to cell interaction (69), while another study in India 
led to an novel association of POAG with Opticin (OPTC) 
gene (70).

6. Endophenotypes and clinical association

Endophenotypes are stable, heritable quantitative traits, disease 
independent, that are usually helpful in analysing heteroge-
neous or variably phenotypic diseases. For POAG, these traits 
include IOP, CCT, VCDR, DA and RNFL thickness and as 
mentioned, contribute separately in the heritability of the 
disease (14). Studying the Endophenotypes helped dissect the 
disease and focus on separate components that are linked to 
clinical practice; nonetheless the variety of POAG endopheno-
types highlights the complexity of the disease (Fig. 1).

IOP. Independent of the genetic component, IOP remains 
the only modifiable risk factor and IOP reduction the most 
commonly used treatment of POAG. Of the aforementioned 
genetic variants, TMCO1, CAV1/CAV2, ARHGEF12, ABCA1 
and GAS7 have been linked to IOP through GWAS, among 
other susceptibility loci (43,54,55). Of great interest is that 
the combined heritability of these loci regarding IOP is less 
than 2%, meaning that the majority is still to be explained (55). 
This observation could mean that further investigating the IOP 
endophenotype could clarify its role in glaucoma both as a 
contributing factor and a therapeutic target.

CCT. Well recognized as an independent risk factor for POAG, 
over 26 loci have been identified for CCT (3,71). With a highly 

heritable trait, CCT shows association with ethnicity, with 
lower values in populations of African descent  (11,72). Of 
the many sequence variants identified for CCT, of interest is 
fibronectin type III domain‑containing protein 3B (FNDC3B) 
which appears to be involved also in IOP changes (71).

VCDR. Increased VCDR is one of the cardinal clinical signs 
of glaucomatous optic neuropathy. Of the above mentioned 
genetic variants, ATOH7, CDKN2B‑AS1 and SIX6 have been 
linked to VCDR, among other susceptibility loci (73,74).

DA and CA. For DA 14  loci have been identified, 5  of 
which are also associated with VCDR. Of these, perhaps 
the most interesting is ATOH7, associated with DA, CA 
and VCDR, that appears to affect the differentiation of the 
RGCs (35,73,74). Approximately 27 variants have been asso-
ciated with CA, notably ATOH7, CDKN2B‑AS1 and SIX6 
which, as mentioned previously, have also been linked to 
VCDR (49,75).

RNFL. Two susceptibility loci have been identified for RNFL 
thickness through linkage analysis. As previously discussed, a 
SIX6 coding variant is one of them (51,76).

7. Conclusion

Since the turn of the century there has been an explosion of 
research using genetic and next generation, high‑throughput 
DNA sequencing technologies and it is unquestionably 
expected that they will be extensively employed also for further 
investigation and diagnosis of glaucoma. We aimed to present 
the basic role of the most studied sequence variants regarding 
POAG and their complex interaction. Although many more 
have been identified and many remain to be further clarified, 
linkage analysis initially and, recently, GWAS, have opened 
the road to the admittedly enigmatic and heterogenic disease 
that is POAG. As regards the issue of genetic counselling, 
genetic testing for glaucoma may obviously be helpful in some 
specific situations, such as screening of family members with 
a known genetic mutation in autosomal dominant POAG of 
early onset, although at a population level this is not presently 
justified (77).

With various components and differential clinical expres-
sion, the identification of genetic factors either directly linked 
to the disease or endophenotype‑related, brings us closer 
to understanding the molecular and cellular mechanisms 
and, eventually, to the development of efficient therapeutic 
approaches targeted at the root cause of the condition.
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