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Abstract. The specific role and mechanism of ferroptosis 
in the development of pancreatic cancer (PC) remain to be 
elucidated. The present study aimed to investigate the effects 
of the overexpression of the KAI1 gene on the ferroptosis 
of the human PC cell line MIA PaCa‑2. MIA PaCa‑2 cells 
infected with pCMV‑KAI1 and selected by G418 and KAI1 
protein were analyzed by western blotting. The MIA PaCa‑2 
cells with a stable expression of the KAI1 gene were termed 
MIA PaCa‑2‑KAI1. The proliferative capacities of MIA 
PaCa‑2 and MIA PaCa‑2‑KAI1 cells were detected using Cell 
Counting Kit‑8. The reactive oxygen species (ROS) in the cells 
were compared by flow cytometry. The expressions of ferro‑
portin (FPN) and glutathione peroxidase 4 (GPX4) protein 
were analyzed by western blotting. The KAI1 stable expression 
cell line was confirmed and relabeled as MIA PaCa‑2‑KAI1. 
No significant differences in the proliferation of MIA PaCa‑2 
and MIA PaCa‑2‑KAI1 were identified. Following treatment 
with a ferroptosis blocker, the increase in the proliferation 
of MIA PaCa‑2‑KAI1 (from 2.06±0.02 to 2.75±0.02) was 
more evident compared with MIA PaCa‑2 (from 2.94±0.02 
to 2.95±0.02; P<0.05). The ROS in MIA PaCa‑2‑KAI1 was 
significantly higher compared with MIA PaCa‑2 (P<0.05). 
FPN and GPX4 protein demonstrated higher expression levels 
in MIA PaCa‑2‑KAI1 compared with MIA PaCa‑2. Moreover, 
KAI1 exerted an obvious promotion effect on FPN expression. 
This study identified that the high expression of the KAI1 gene 
promoted the occurrence of ferroptosis in PC cells through its 
extensive effect on FPN and GPX4. KAI1‑induced ferroptosis 
did not significantly inhibit the proliferation of PC cells.

Introduction

Pancreatic cancer (PC) is characterized by high mortality, low 
survival rate and poor prognosis. The statistics of the global 

cancer database (GLOBOCAN) in 2018 revealed 458,918 new 
patients with PC and 432,242 mortalities (1). PC incidence 
and mortality trends over the period of 2018‑2040 are hypoth‑
esized to demonstrate an increasing trend of incidence (+77.7% 
with 356,358 new cases) and mortality (+79.9%, 345,181). 
Hence, PC ranks 14th in terms of cancer incidence and 7th 
in terms of cancer mortality (2). Despite the continuous 
development of medical diagnosis and treatment technology, 
the 5‑year survival rate of PC patients remains <10% and the 
median overall survival period is only 6‑9 months (3). The 
cause of this clinical diagnosis and treatment problem is the 
unclear understanding of the relevant mechanism of PC cell 
death. Existing research results are not ideal to improve the 
prognosis of PC, and effective targets for inducing PC cell 
death remain lacking (4). Therefore, exploring the mechanism 
of PC cell death, the key target genes and related molecular 
biological mechanisms is an attractive focus for research.

In 2012, Dixon et al (5) first reported a new type of cell 
death mode other than apoptosis, necrosis and autophagy. 
This new type is characterized by the accumulation of reac‑
tive oxygen species (ROS) produced by iron metabolism and 
lipid peroxidation products. ROS causes oxidative damage 
to tissue cells and leads to cell death (6). As the process of 
the occurrence of ROS requires cells to be rich in available 
iron, the researchers termed it ferroptosis (5). This new mode 
of cell death has received an increasing amount of attention 
from researchers in recent years (7‑11). Ferroptosis occurs 
in a variety of tumors, including PC, and may possess an 
anticancer effect (4,12‑14). However, the occurrence and 
regulatory mechanism of ferroptosis in PC remain to be eluci‑
dated. Identifying new ways to treat PC has been challenging. 
Gemcitabine, a first‑line drug, is used alone or in combination 
for the treatment of patients with advanced pancreatic ductal 
adenocarcinoma (15). Heat shock 70‑kDa protein 5 improves 
the anticancer activity of gemcitabine by inducing ferrop‑
tosis (16). As well as gemcitabine, certain traditional Chinese 
herbs induce ferroptosis in PC. Furthermore, a number of 
molecules have been demonstrated to induce ferroptosis in PC 
cells. These may offer new options for PC treatment (4).

KAI1/CD82, which expresses membrane proteins, is 
an important tumor suppressor gene. It is a prostate cancer 
metastasis‑related suppressor gene discovered by Dong et al 
in 1995 (17). It belongs to the transmembrane 4 superfamily 
family and is located in the human chromosome 1lpl 1.2. It 
consists of 10 exons and 9 introns and is approximately 80 kb 
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in length (17). The KAI1 gene is used to inhibit metastasis 
in PC (18‑23). This gene has been recently identified to 
regulate the autophagy of PC cells (24,25). A number of 
studies have provided evidence to support the association 
between autophagy and ferroptosis in human diseases (26,27). 
Therefore, studying the regulatory effect of the KAI1 gene on 
ferroptosis in PC is warranted.

In the present study, the roles of KAI1 and ferroptosis in 
the onset of PC were evaluated in vitro. The objective was to 
provide evidence related to the KAI1 gene and its potential as 
a novel therapy target.

Materials and methods

Cell culture. Human PC cell lines of MIA PaCa‑2 were 
provided by the Shanghai Institute of Cell Biology, Chinese 
Academy of Sciences. The cells were grown as sub‑confluent 
monolayers in Dulbecco's modified Eagle medium (Cytiva) 
supplemented with 10% fetal calf serum (Cytiva), 2 mmol/l 
L‑glutamine, 100 IU/ml penicillin G and 100 µg/ml strepto‑
mycin (Beijing Solarbio Science & Technology Co., Ltd.) in an 
incubator (37˚C, 5% CO2 and saturated humidity). Cells were 
passaged at 85% confluence or were harvested for western blot 
analysis.

Cell transfection. KAI1 overexpression plasmid (pCMV‑KAI1 
DNA) was obtained from Dr Dong, Emory University School 
of Medicine, Atlanta, Georgia, USA (28) as a gift. According 
to a previous study (22), pCMV‑KAI1 DNA and pCMV DNA 
[empty pCMV vector (Beijing Biosynthesis Biotechnology 
Co., Ltd.)] were transfected with a low expression cell line 
of KAI1: MIA PaCa‑2. Cells (1x105) were plated in 96‑well 
plates. When the cells reached 90‑95% confluence, 1.0 µg 
pCMV‑KAI1 DNA or pCMV DNA, 1 µl Lipofectamine® 2000 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.), and 100 µl 
medium without serum were mixed and incubated for 15 min 
at room temperature and then added to each well. Cells were 
diluted to 1,000 cells/ml following transfection. The lowest 
concentration of G418 was selected in the concentration range 
of 100‑1,000 µg/ml. Positive clone screening was performed 
with 100 µg/ml of G418 for 4 weeks (21‑23). The transfected 
cells were obtained through screening and passage. At 
85% confluence, cells were lysed using radioimmunoprecipita‑
tion assay buffer (Beijing Solarbio Science & Technology Co., 
Ltd.). The expression of the KAI1 protein was confirmed by 
western blot analysis.

Detection of cell viability by Cell Counting Kit‑8 (CCK‑8) 
assay. Cells in the logarithmic phase were divided into 
liproxstein‑treated (liproxstein+) and non‑liproxstein‑treated 
(liproxstein‑) groups and then inoculated into 6‑well plates 
for 24 h. Cells were washed twice with PBS and digested 
with trypsin (2.5 g/l; containing 0.2 g/l EDTA). Cells were 
collected and centrifuged at 104.5 x g for 5 min at room 
temperature. The supernatant was discarded and the medium 
was gently mixed by pipetting. Cells were inoculated into 
96‑well plates following adjustment of the final concentra‑
tion to 1x105 cells/ml (100 µl in each well). After 24 h of 
incubation, 10 µl CCK‑8 solution was added, and incubation 
was performed in an incubator for 2 h. The absorbance was 

measured at a wavelength of 450 nm using a Multiskan FC 
microplate reader (Thermo Fisher Scientific, Inc.).

Detection of intracellular ROS by flow cytometric analysis. 
Cell suspensions from the logarithmic cells were inoculated 
into 6‑well plates at 2 ml per well. When the cells completely 
adhered to the wall, the old culture medium was discarded. The 
cells were washed twice with PBS and mixed with serum‑free 
culture medium containing H2DCFH‑DA fluorescent dye 
(Beijing Solarbio Science & Technology Co., Ltd.) for 30 min 
in suspension according to the manufacturer's protocol. The 
cells were incubated for 20 min in the dark at room tempera‑
ture and then washed twice with precooled PBS to remove 
the excess dye. Cells were collected and mixed gently with 
700 µl PBS. The mean fluorescence intensity of intracellular 
ROS was detected immediately by flow cytometry (excitation 
wavelength: 485 nm; emission wavelength: 530 nm) using 
a BD FACSAria II flow cytometer (BD Biosciences). The 
results were analyzed with FlowJo software (version 6.1.1; 
FlowJo LLC).

Western blot analysis. The total proteins of logarithmic 
growth cells were lysed using radioimmunoprecipitation 
assay buffer (Beijing Solarbio Science & Technology Co., 
Ltd.) and collected. Protein concentration was determined 
with the bicinchoninic acid method (Beijing Solarbio Science 
& Technology Co., Ltd.). Each sample (30 µg/lane) was 
resolved by 12% sodium dodecyl sulphate‑polyacrylamide gel 
electrophoresis, followed by transfer onto a polyvinylidene 
difluoride membranes (EMD Millipore). The membranes 
were then blocked with 5% skimmed milk for 2 h at room 
temperature. Membranes were incubated with rabbit poly‑
clonal anti‑KAI1 (1:200 dilution; cat. no. sc‑7179; Santa Cruz 
Biotechnology, Inc.), rabbit polyclonal anti‑ferroportin (FPN; 
1:100 dilution; cat. no. bs‑3579R; BIOSS), rabbit polyclonal 
anti‑glutathione peroxidase 4 (GPX4; 1:100 dilution; cat no 
bs‑3884R; BIOSS) or rabbit polyclonal anti‑GAPDH (1:200 
dilution; cat. no. bs‑0755R; BIOSS) primary antibodies over‑
night at 4˚C, followed by horseradish peroxidase‑conjugated 
goat anti‑rabbit IgG secondary antibody (1:2,000 dilution; 
cat. no. sc‑2749; Santa Cruz Biotechnology, Inc.) for 1 h at 
room temperature. Immunoreactive bands were visualized 
using a Western Lightning Chemiluminescence Reagent Plus 
kit (PerkinElmer, Inc.). The signals were detected using a 
Las‑4000 mini CCD camera (GE Healthcare). With GAPDH 
as the internal reference, the relative expression of protein was 
analyzed by densitometry using Quantity One 1‑D analysis 
software (version 4.6.9; Bio‑Rad Laboratories, Inc.) following 
internal reference calibration. Protein expression was derived 
from the grey ratio of the target band to the internal reference 
band.

Stat ist ical analysis. Data were expressed as the 
mean ± standard deviation of at least three independent 
experiments. Statistical analysis within groups was performed 
using repeated measures of analysis of variance followed 
by Bonferroni's post hoc test. Between groups analysis was 
performed using Student's paired t‑test. SPSS 16.0 (SPSS, Inc.) 
was used for all statistical analyses. P<0.05 was considered to 
indicate a statistically significant difference.
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Results

Construction of KAI1 stable expression. Western blot 
analysis revealed that the MIA PaCa‑2 line transfected with 
KAI1 plasmid exhibited strong protein bands, whereas the 
untransfected cells and transfected with empty pCMV vector 
cells exhibited weak bands (Fig. 1A). MIA PaCa‑2‑KAI1 
cell morphology did not show the scattering and acquisition 
of fusiform and fibroblastic phenotype compared with MIA 
PaCa‑2 cells (Fig. 1B). The MIA PaCa‑2 cells that demon‑
strated a stable expression of the KAI1 gene were labelled as 
MIA PaCa‑2‑KAI1.

Cell viability. CCK‑8 detection revealed that KAI1 over‑
expression had no significant effect on the viability of MIA 
PaCa‑2. Following treatment with liproxstein, a type of 
ferroptosis inhibitor, for 24 h, the increased viability of 
MIA PaCa‑2‑KAI1 (from 2.06±0.02 to 2.75±0.02) was more 
apparent compared with that of MIA PaCa‑2 (from 2.94±0.02 
to 2.95±0.02; P<0.05; Fig. 2), thereby indicating that KAI1 
may promote ferroptosis.

ROS are affected by KAI1. As demonstrated by flow cytom‑
etry results (Fig. 3), the fluorescence intensity of ROS in MIA 
PaCa‑2‑KAI1 (43.63%) was significantly higher compared 
with that in MIA PaCa‑2 (1.42%; P<0.05). This suggested 
that KAI1 overexpression can induce ROS production in MIA 
PaCa‑2 cells.

KAI1 gene promotes FPN and GPx4 protein expressions. 
Western blot analysis was used to detect the proteins in the MIA 

PaCa‑2 and MIA PaCa‑2‑KAI1 cells. FPN and GPX4 protein 
expressions were higher in MIA PaCa‑2‑KAI1 compared with 
MIA PaCa‑2 (Fig. 4A). The comparison of the grey values, 
with GAPDH protein as the internal control, indicated that 
KAI1 promoted FPN protein expression (Fig. 4B).

Discussion

Previous studies have shown that ferroptosis inhibits the 
growth and proliferation of PC cells, thereby providing a new 
approach for the treatment of PC (18‑25). In the present study, 
the widely‑studied KAI1 gene was the research object. The 
KAI1 gene was highly expressed in the MIA PaCa‑2 cells by 
transfection and the occurrence of ferroptosis was detected. 
In the CCK‑8 experiment, it was identified that the viability 
of MIA PaCa‑2 cells was insignificantly inhibited by KAI1 
overexpression and that the inhibition was weakened by 
further treatment with the ferroptosis inhibitor liproxstein. It 
was hypothesized that the inhibitor blocked KAI1‑induced 
ferroptosis. KAI1 induced the MIA PaCa‑2 cells to produce 
ROS extensively, as detected by flow cytometry. Previous 
studies have confirmed that ROS serve an important role 
in promoting ferroptosis (29‑32). Previous research in our 
laboratory demonstrated that KAI1 induced autophagy in 
MIA PaCa‑2 cells (24,25). Previous studies have shown that 
the activation of the autophagy pathway promotes ferroptosis 
in fibroblasts and cancer cells (26,27). On the basis of the 
experimental results from the present study and literature 
reports, it was hypothesized that KAI1 overexpression can 
promote the ferroptosis of PC cells.

To identify the possible mechanism underlying this 
promoting effect, the changes in cell protein expression was 
detected. Genes, such as FPN, GPX4, system Xc‑, transferrin, 
transferrin receptor 1, divalent metal transporter 1, ferritin 
heavy chain 1, and ferritin lightchain, are the critical media‑
tors in the ferroptosis procedure (33). FPN and GPX4 were 
markedly expressed from the MIA PaCa‑2 cells, which 
highly express KAI1. In addition, the expression of FPN was 
greatly increased according to the densitometry analysis. 
Previous studies have confirmed that FPN is a multidomain 

Figure 2. Cell viability curve of MIA PaCa‑2‑KAI1 and MIA PaCa‑2 cells 
according to the CCK‑8 assay findings. With liproxstein, the increased 
viability of MIA PaCa‑2‑KAI1 was more marked compared with that of MIA 
PaCa‑2 (*P<0.05).

Figure 1. Transfection efficiency of pCMV‑KAI1. (A) Western blot analysis 
results for untransfected MIA PaCa‑2 cells and MIA PaCa‑2 cells transfected 
with pCMV‑KAI1 DNA and pCMV DNA. MIA PaCa‑2 cells transfected 
with pCMV‑KAI1 DNA demonstrated high KAI1 expression levels, whereas 
the untransfected cells and transfected with empty pCMV DNA cells demon‑
strated low KAI1 expression levels. (B) Phase‑contrast photomicrographs 
of morphology of MIA PaCa‑2 cells before and after transfection with 
pCMV‑KAI1 DNA (original magnification, x200).

https://www.spandidos-publications.com/10.3892/mmr.2020.11802
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Figure 3. Flow cytometry results demonstrate that the KAI1 gene can promote ROS expression. In the histogram, the expression of ROS in the cells is depicted 
by the black‑colored area. (A) In MIA PaCa‑2 cells, ~1.41% positive cells were identified. (B) In MIA PaCa‑2‑KAI1 cells, ~46.63% positive cells were identi‑
fied. (C) The detection intensity of ROS in MIA PaCa‑2‑KAI1 cells was significantly higher compared with MIA PaCa‑2 cells (*P<0.05). ROS, reactive oxygen 
species.

Figure 4. FPN and GPX4 protein expressions detected by western blot analysis. (A) FPN and GPX4 protein expressions were higher in the MIA PaCa‑2‑KAI1 
cells compared with the MIA PaCa‑2 cells. (B) The FPN grey value, with GAPDH protein as the internal control, was increased more notably in the MIA 
PaCa‑2‑KAI1 cells compared with the MIA PaCa‑2 cells (*P<0.05). No significant difference was observed in the GPX4 grey value between the MIA 
PaCa‑2‑KAI1 and MIA PaCa‑2 cells. FPN, ferroportin; GPX4, glutathione peroxidase 4.
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transmembrane protein encoded by SLC40A and is the only 
existing transmembrane iron export protein (6,34). Studies on 
a variety of tumor cells have shown that the high expression of 
FPN can cause iron outflow, which can lead to iron deficiency 
in cells and inhibit cancer cell growth (35‑38). Therefore, the 
results from the present study, indicating the promotion of 
FPN expression by KAI1, further confirmed that KAI1 over‑
expression can inhibit the proliferation of PC cells. In addition, 
increasing iron intake and reducing iron storage may lead to 
iron overload, which may in turn lead to ferroptosis (39,40). 
Therefore, it was hypothesized that the high expression of 
KAI1 promoted FPN expression and led to the transportation 
of excessive Fe2+ out of the cells, thereby causing the cancer 
cells to absorb large amounts of Fe3+. This condition breaks 
the iron homeostasis in cancer cells. Excessive iron transforms 
H2O2 and lipoperoxidation into ROS through the Fenton 
reaction and finally leads to ferroptosis (6).

The loss of GPX4 activity is another major source of ROS 
and is a key factor for inducing ferroptosis (41‑43). The results 
of the present study demonstrated that KAI1 can promote the 
expression of GPX4, although it may inhibit the occurrence 
of ferroptosis. Nevertheless, the effect of KAI1 on GPX4 
expression was weaker compared with that on FPN expression. 
Therefore, the high expression of the KAI1 gene promoted the 
occurrence of ferroptosis in PC cells through its comprehensive 
effects on FPN and GPX4. The limitation of the present study 
that should be acknowledged when interpreting the results is 
the lack of research on the in‑depth mechanism underlying the 
effects of KAI1 on FPN and GPX4, as well as the relationship 
between KAI1 and other ferroptosis‑related mediators.

As indicated by the results of the proliferation experi‑
ments, KAI1‑induced ferroptosis did not significantly inhibit 
the proliferation of PC cells. According to our previous 
findings on the KAI1 gene, it inhibits the epithelial‑mesen‑
chymal transition and the migration and lymphangiogenesis 
of PC cells (23). It was concluded that although the inhibi‑
tion of proliferation was not significant, it still limited the 
metastasis of PC cells to some extent. The present study 
added to the theoretical basis of KAI1 as a tumor suppressor 
gene and provided a new experimental basis for its clinical 
application.
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