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Abstract. amyotrophic lateral sclerosis (alS) is a progres‑
sive neurodegenerative disease. Through a genome‑wide 
association study (GWaS), the Sec1 family domain‑containing 
protein 1 (ScFd1) rs10139154 variant at 14q12 has emerged as 
a risk factor gene for alS. Moreover, it has been reported to 
influence the age at onset (AAO) of patients with ALS. The 
aim of the present study was to assess the association of the 
ScFd1 rs10139154 polymorphism with the risk of developing 
alS. For this purpose, 155 patients with sporadic alS and 155 
healthy controls were genotyped for the ScFd1 rs10139154. 
The effect of the ScFd1 rs10139154 polymorphism was 
then examined on the following parameters: i) The risk of 
developing alS; ii) the aao of alS; iii) the site of alS 
onset (patients with bulbar onset alS vs. healthy controls; 
and patients with limb onset alS vs. healthy controls); and 
iv) the aao of alS onset with subgroup analyses based on 
the site of onset (bulbar and limb, crude and adjusted for sex). 
The analysis of all the outcomes was performed assuming five 
genetic models. crude and adjusted analyses were applied. The 
threshold for statistical significance was set at 0.05. The results 
revealed no association between ScFd1 rs10139154 and any of 

the examined phenotypes in any of the models examined. on 
the whole, based on the findings of the present study, SCFD1 
rs10139154 does not appear to play a determining role in the 
risk of developing alS.

Introduction

amyotrophic lateral sclerosis (alS) is a neurodegenerative 
disease of a yet undetermined etiology, and it is estimated 
to be the most common type of motor neuron disease during 
adulthood (1). a great variation has been observed in terms 
of the frequency of alS between different countries, with 
males exhibiting a slightly elevated risk of developing alS 
compared with females, particularly as regards the form of 
alS with limb onset (2‑4). on the other hand, there is a slight 
female predominance in bulbar onset alS (2‑4).

alS can be phenotypically manifested with symp‑
tomatology from the upper (e.g., spasticity, weakness, 
hyperreflexia and pseudobulbar palsy) and lower (e.g. atrophy 
of muscles, fasciculations, hyporeflexia and muscle cramps) 
motor neurons (5). The consequent progressive and irrevers‑
ible muscular weakness and atrophy, leads to the paralysis of 
respiratory muscles and respiratory failure (6). apart from 
motor deficits, non‑motor symptoms [e.g., frontotemporal 
dementia (FTd)] can also develop with alS (7). The associa‑
tion between alS and FTd is evident through the crosstalk 
that exists between them clinically, genetically and neuro‑
pathologically (8).

From a neuropathological aspect, alS presents as a 
degeneration of motor neurons, while intraneuronal inclusions 
in glial cells and neurons can also be observed (9). While 
the etiology and the exact mechanisms that possible lead to 
the development of alS remain to be determined, a notable 
amount of research suggests that complex mechanisms, 
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that interact with each other, are possibly implicated in the 
development of alS (9,10). Mitochondrial dysfunction, 
inflammatory abnormalities, pathological protein aggregation, 
defective microtubule function, inadequate rna activity, 
oxidative stress and glutamate excitotoxicity, to mention 
a few, are among the pathological processes that have been 
found to confer susceptibility to alS (11,12).

The molecular pathways through which the aforementioned 
mechanisms can lead to alS are far from being completely 
elucidated (13). However, there are a number of indications that 
genetic, environmental and epigenetic factors all contribute to 
alS susceptibility (14). among the exogenous factors, head 
trauma, smoking, viral infections, exposure to pesticides and 
heavy metals, antioxidants, physical exercise, exposure to 
electromagnetic fields and body mass index have been previ‑
ously reported as possible triggers for the development of 
alS (15,16).

The contribution of genetic factors to alS is supported 
from robust data (17). Firstly, there is familial alS (falS; 
accounting for almost 5‑10% of all alS cases), where muta‑
tions >30 genes are considered as alS causative ones (10,18). 
namely, mutations in the chromosome 9 open reading 
frame 72 (c9orf72), superoxide dismutase type 1 (Sod1), Tar 
dna‑binding protein 43 (TdP‑43) and fused in sarcoma/trans‑
located in liposarcoma (FuS/TlS) genes are estimated to be 
the commonest ones (10,18). Mutations in these genes can 
lead to alS; however, there are some genotype‑phenotype 
associations, where patients with alS carrying specific 
mutations may exhibit specific sub‑phenotypes (19). For 
example, c9orf72 can lead to alS, behavioral variant FTd, 
or alS‑FTd, while mutations in the TdP43 gene can lead 
to alS with either bulbar or limb onset (19). Moreover, the 
remaining 85‑90% of all alS cases are considered as sporadic 
alS (salS) (5), where a large amount of genetic loci have 
been reported to modify the risk of developing alS (20). at 
this point, it is worth mentioning that the conferred risk from 
rare genetic variants suggests an oligogenic disease pattern 
concerning the alS architecture (21,22).

The Sec1 family domain containing 1 (ScFd1) protein, 
belongs to the Senc1/Munk 18 (SM) family of proteins (23). 
These proteins are vesicle‑trafficking proteins, working 
closely with a particular type of Snare proteins, the 
syntaxins (24,25). ScFd1 is implicated in a number of func‑
tions, such as cellular membrane fusion, oxidative‑stress, 
intra‑Golgi‑retrograde transport and apoptosis (23‑26).

in 2016, a genome‑wide association study (GWaS) identi‑
fied the SCFD1 rs10139154 variant at 14q12 as a genetic locus 
associated with alS in the discovery phase; however, statis‑
tical significance was not found in the replication phase (27). 
Moreover, recently, chen et al (28) examined the effect of the 
ScFd1 rs10139154 on a large chinese population with alS. 
Based on the results of that study, the ScFd1 rs10139154 poly‑
morphism was shown to be associated with the age at onset 
(aao) of patients with alS.

Taking into consideration that ScFd1 is involved in 
mechanisms (23‑26) that are also possibly implicated in alS 
pathogenesis (e.g., oxidative stress and apoptosis) (11,12), 
and that the studies examining the role of the ScFd1 
rs10139154 variant regarding alS have yielded inconsistent 
results (27,28), the present case‑control study was conducted 

with the aim of determining any possible association between 
the ScFd1 rs10139154 variant and alS. a Southeastern 
european caucasian (Sec) cohort (Greek) was analyzed, 
primary aiming at detecting any association between ScFd1 
rs10139154 and alS. The present study also wished to 
examine the effect of this polymorphism on several other alS 
endophenotypes.

Patients and methods

Study participants. in the current protocol, a total of 310 
participants were drafted. in greater detail, 155 patients with 
sporadic alS, as well as 155 healthy controls were included. 
The participants were recruited between March, 2017 and 
September, 2017 from the university Hospital of larissa 
(department of neurology), in larissa, Greece. consultant 
neurologists made the diagnoses of alS, following the 
el escorial criteria (29). The inclusion criteria for the 
participants with alS were as follows: i) an age >18 years; 
ii) Greek ethnicity; and iii) a diagnosis of alS based on 
the el escorial criteria. The respective inclusion criteria for 
healthy controls were the following: i) an age >18 years; 
ii) of Greek ethnic origin; and iii) no referred family or 
personal history of alS or other neurological disorders. 
The characteristics of the alS cohort have been previ‑
ously described (30‑33). The research study protocol of the 
present study was approved by the local ethics committee 
(university Hospital of larissa: 59295/23‑01‑2017) and it 
was deemed in accordance to the declaration of Helsinki. 
The experimental protocol was explained and all the partici‑
pants provided their written informed consent in order to be 
included in the study, with the freedom of withdrawing from 
the study at any given time.

Molecular genetics. The salting out method was used to 
isolate genomic dna from leucocytes (blood was collected 
with peripheral venipuncture from each participant), a method 
which has also been previously described (34,35). all the 
samples derived from the healthy volunteers and the patients 
with alS were genotyped for the ScFd1 rs10139154 variant. 
The method which was applied for genotyping was the TaqMan 
allele specific discrimination assay on an ABI PRISM 7900 
Sequence detection System. The results were then analyzed 
using SdS software (SdS 2.4). (applied Biosystems; Thermo 
Fisher Scientific, Inc.). In brief, this method consisted of an 
initial enzyme activation occurring as the first step of PCR at 
a 50˚C incubation for 2 min, followed by enzyme activation 
at 95˚C for 10 min (one cycle), denaturation at 95˚C for 15 sec 
and annealing/extension at 60˚C for 1 min (40 cycles for the 
last two points). The personnel who performed the genotyping 
was blinded to status of the samples.

Quality assessment. in order for the genotyping reproducibility 
be evaluated, a random 10% of the sample was re‑genotyped, 
with 100% concordance. Moreover, the threshold for the geno‑
type call rate (percentage of successfully genotyped samples) 
was set as ≥95%. Additionally, the deviation or not from the 
Hardy‑Weinberg equilibrium (HWe) was calculated with 
the chi‑squared test (36), in both the patients with alS and 
the healthy controls.
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Statistical analysis. The caTS Power calculator for Genetic 
Studies (center for Statistical Genetics, university of Michigan, 
ann arbor, Mi, uSa) was used for the statistical power of 
the current sample to be measured. With odds ratios (ors) 
along with the respective 95% confidence intervals (CIs), the 
study sample was examined for associations between ScFd1 
rs10139154 and alS using SnPStats software (https://www.
snpstats.net/) (36). Towards this, five genetic models were 
assumed: i) The co‑dominant model, where a P‑value with 2 
degrees of freedom and 2 ors were calculated [or1: (mt/wt 
vs. wt/wt) and or2: (mt/mt vs. wt/wt)]; ii) the dominant model 
(mt/mt + mt/wt vs. wt/wt); iii) the recessive model (mt/mt 
vs. mt/wt + wt/wt); iv) the overdominant model (mt/wt vs. 
mt/mt + wt/wt) and v) the log‑additive model, where mt/mt 
carriers have a double risk of disease compared with mt/wt, 
with wt/wt as a reference. In the analyses, the ‘C’ was defined 
as the wild‑type allele (wt) and the ‘T’ as the mutant allele 
(mt), for the ScFd1 rs10139154 variant. a P‑value <0.05 was 
considered to indicate a statistically significant difference. 
Both univariate (unadjusted) and multivariate (adjusted for age 
and sex) analyses were performed.

The primary outcome of the protocol of the present study 
was to examine the possible association between alS and 
ScFd1 rs10139154 (alS vs. healthy controls). unadjusted and 
adjusted for age and sex analyses were performed. in addition, 
the effects of ScFd1 rs10139154 on the following parameters 
were examined: i) The aao of alS (unadjusted and adjusted 
for sex); ii) the site of alS onset (patients with bulbar onset 
alS vs. healthy controls; and patients with limb onset alS vs. 
healthy controls; unadjusted and adjusted for age and sex); and 
iii) the aao of alS with subgroup analyses on the basis of 
the site of onset (bulbar and limb, crude and adjusted for sex). 
The analysis of all the outcomes was performed on the basis of 
the aforementioned genetic models.

Results

a total of 310 individuals were recruited in the present 
study; 155 patients with definite alS [77 (49.7%) female, 
age (mean ± standard deviation), 63.74±11.30 years], and 
155 healthy volunteers (control group) matched for age and 
sex. approximately 7 out of 10 (67.1%) patients with alS 
confirmed a history of alcohol consumption, while 68.4% had 
a history of smoking. The most common site of alS onset 
was the lower limbs (34.8%) and the bulbar type (32.3%). The 
characteristics of the patients with alS have been formerly 
reported (30‑32).

The genotype call rate was 98.06% (304/310). Furthermore, 
no deviation from the HWe was observed in both patients with 
alS and the healthy controls (P=0.37 and P=0.23, respec‑
tively) (Table i). The analysis for the power of the sample 
size of the study was 80.4 to detect a significant association 
(P<0.05) between alS and ScFd1 rs10139154, with the 
frequency of the minor T allele set at 37%, an alS prevalence 
of 5/100,000, and an approximate relative risk of 1.59 for the 
multiplicative mode of inheritance.

The frequency of the minor allele (T) was 35 and 38% for 
the patients with alS and healthy controls respectively. The 
genotypic frequencies c/c, c/T and T/T for the patients with 
alS, were 44, 42 and 14%, respectively, while in the group of 

healthy volunteers, the corresponding frequencies were 41, 42 
and 17%, respectively. The allelic and genotypic frequencies 
for ScFd1 rs10139154, for both patients with alS and the 
healthy controls are presented in Table ii. The allele and geno‑
type numbers for ScFd1 rs10139154 in the healthy controls 
and alS cases are graphically presented in Figs. 1 and 2, 
respectively.

Based on the univariate (unadjusted) and multivariate 
(adjusted for age and sex) analyses, no significant association 
was found between the ScFd1 rs10139154 polymorphism and 
alS in any genetic model examined (Table iii). Subgroup 
analysis (unadjusted and adjusted for age and sex) according 
to the site of alS onset (limb, bulbar) also did not reveal any 
significant association (Table IV).

Furthermore, the analyses based on the aao of alS 
(unadjusted and adjusted for sex), failed to produce any 
statistically significant differences. The analyses for the AAO 
of alS with regards to the site of onset (limb, bulbar), also 
revealed non‑statistically significant results. The respective 
results (ors, cis, P‑values, mean and standard error of the age 
for each genotype) are presented in Table V, for the alS group 
overall. The results from the subgroup analysis regarding 
the aao, based on the site of the alS onset are presented 
in Table Vi for the bulbar onset and in Table Vii for the limb 
onset.

Discussion

The present case‑control study genotyped an alS cohort 
with Sec ancestry aiming to examine the role of the ScFd1 
rs10139154 polymorphism in alS. Based on the results 
obtained, the ScFd1 rs10139154 polymorphism was not 
associated with alS. More precisely, the ScFd1 rs10139154 
polymorphism neither conferred any susceptibility to alS 
nor influenced the AAO of ALS or its initial manifestation. 
Therefore, based on this analysis, it appears rather unlikely 
that the ScFd1 rs10139154 polymorphism is among the risk 
factors for the development of alS.

as aforementioned, the ScFd1 is a vesicle‑trafficking 
protein, functioning alongside with syntaxins (24,25). The 
possible mechanisms via which ScFd1 may be related to alS 
pathophysiology are cellular membrane fusion, oxidative‑stress, 
intra‑Golgi‑retrograde transport and apoptosis (23‑26). The 
ScFd1 rs10139154 polymorphism is an intronic variant 
located at chromosome 14: 30678292 (https://www.ensembl.

Table i. results from the chi‑squared exact test for HWe for 
the ScFd1 rs10139154 in healthy controls and in alS cases.

 P‑value
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
SnP Healthy controls alS

rs10139154 0.23 0.37

HWe, Hardy‑Weinberg equilibrium; SnP, single nucleotide poly‑
morphism; alS, amyotrophic lateral sclerosis; ScFd1, Sec1 family 
domain containing 1.

https://www.spandidos-publications.com/10.3892/mmr.2022.12662
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org/index.html). in a 2016 GWaS on patients with alS, the 
ScFd1 rs10139154 polymorphism was initially reported as 
a possibly significant genetic marker (27). More precisely, in 
the discovery phase, a statistically significant effect size (OR, 
1.09) was reported; whereas the effect size remained at the 

replication phase (OR, 1.06) statistical significance was not 
achieved. 

additionally, chen et al (28) reported that the ScFd1 
rs10139154 polymorphism was associated with the aao 
of patients with alS of chinese ancestry. More precisely, 

Figure 1. allele number for ScFd1 rs10139154 in healthy controls and in 
alS cases. Hc, healthy controls; alS, amyotrophic lateral sclerosis; ScFd1, 
Sec1 family domain containing 1.

Figure 2. Genotype number for ScFd1 rs10139154 in healthy controls and 
in alS cases. Hc, healthy controls; alS, amyotrophic lateral sclerosis; 
ScFd1, Sec1 family domain containing 1.

Table ii. allelic and genotype frequencies for ScFd1 rs10139154 in the healthy controls, alS cases and the whole sample size.

 Genotypes/ Healthy controls alS Whole sample
rs10139154 SnP alleles (n=155), n (%) (n=155), n (%) (n=310), n (%)

Genotype c/c 62 (41) 67 (44) 129 (42)
 c/T 64 (42) 64 (42) 128 (42)
 T/T 26 (17) 21 (14) 47 (15)
 Missing 3 3 6
allele  c 188 (62) 198 (65) 386 (63)
 T 116 (38) 106 (35) 222 (37)

SnP, single nucleotide polymorphism; alS, amyotrophic lateral sclerosis; ScFd1, Sec1 family domain containing 1.

Table iii. Single locus analysis (crude and adjusted for age and sex) for association between ScFd1 rs10139154 and alS, in 
co‑dominant, dominant, recessive, overdominant and log‑additive mode.

 univariate Multivariate
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Mode Genotype or (95% ci) P‑value or (95% ci) P‑value

co‑dominant c/c 1.00 0.7 1.00 0.44
 c/T 0.93 (0.57‑1.51)  0.77 (0.38‑1.54)
 T/T 0.75 (0.38‑1.46)  0.57 (0.23‑1.39)
dominant c/c 1.00 0.56 1.00 0.28
 c/T‑T/T 0.87 (0.55‑1.38)  0.70 (0.37‑1.33)
recessive c/c‑c/T 1.00 0.43 1.00 0.3
 T/T 0.78 (0.42‑1.45)  0.64 (0.28‑1.48)
overdominant c/c‑T/T 1.00 0.99 1.00 0.78
 c/T 1.00 (0.63‑1.58)  0.91 (0.48‑1.73)
log‑additive ‑ 0.88 (0.64‑1.21) 0.42 0.76 (0.49‑1.16) 0.2

SCFD1, Sec1 family domain containing 1; ALS, amyotrophic lateral sclerosis; CI, confidence interval; OR, odds ratio.
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they found that carriers of the c/c genotype had a lower 
aao of alS (49.53±10.75 years) compared with the c/T 
carriers (53.75±11.84 years; P=0.002). Furthermore, in 
the recessive model analysis, c/c carriers had a lower 
alS aao (49.53±10.75 years) compared with (c/T + T/T; 
53.37±11.60 years, P=0.001) (28). apart from alS, the ScFd1 
rs10139154 ‘T’ allele has been shown to be associated with a 
decreased risk of alzheimer's disease (or, 0.63; P=0.036), in 
the recessive mode (24). However, the aforementioned results 
could not be replicated in the present study.

of note, the minor allele frequency (MaF) at the study 
of chen et al (28) was the ‘c’ allele, while this was found to 
be the ‘T’ allele in the present study, suggesting that ancestry 
may be important for the discrepancy between the studies. 
Based on 1,000 Genomes Project Phase 3 allele frequen‑
cies, there is a great variability at the MaF allele frequency 
between populations (https://www.ensembl.org/Homo_
sapiens/Variation/Population?db=core;r=14:30677792‑306787

92;v=rs10139154;vdb=variation;vf=181642009). in fact, while 
the ‘c’ allele appears to be the MaF at east asian and african 
population, the ‘T’ allele is considered the MaF at europeans, 
South asians and americans.

apart from genetic variability between ethnicities, there 
are other possible explanations for the fact that no asso‑
ciation was found between ScFd1 rs10139154 and alS. 
For instance, the effect of a polymorphism at expression 
quantitative trait loci (eQTl); in fact there is evidence to 
suggest that variants identified in GWASs may possibly alter 
the risk of disease through gene regulation via eQTl (37). 
concerning the rs10139154 polymorphism, it has emerged 
as the most significant SCFD1 polymorphism associated 
with alS in a GWaS (27). in addition, for each ScFd1 
rs10139154 ‘T’ allele, an increased ScFd1 expression has 
been found in different tissue types obtained from geno‑
type‑tissue expression and in post‑mortem control data, as 
demonstrated in the study by iacoangeli et al (38). However, 

Table V. Single locus analysis (crude and adjusted for sex) for association between ScFd1 rs10139154 and aao of alS, in 
co‑dominant, dominant, recessive, overdominant and log‑additive mode.

 univariate Multivariate
Mode Genotype Mean (Se) difference (95% ci) P‑value P‑value

co‑dominant c/c 63.22 (1.5) 0.00 0.7 0.68
 c/T 64.75 (1.32) 1.53 (‑2.38 to 5.43)
 T/T 63.05 (2.44) ‑0.18 (‑5.77 to 5.42)
dominant c/c 63.22 (1.5) 0.00 0.55 0.58
 c/T‑T/T 64.33 (1.16) 1.11 (‑2.54 to 4.75)
recessive c/c‑c/T 63.97 (1.00) 0.00 0.73 0.67
 T/T 63.05 (2.44) ‑0.92 (‑6.17 to 4.33)
overdominant c/c‑T/T 63.18 (1.27) 0.00 0.4 0.39
 c/T 64.75 (1.32) 1.57 (‑2.09 to 5.23)
log‑additive ‑‑‑ ‑‑‑ 0.33 (‑2.26 to 2.93) 0.8 0.85

SCFD1, Sec1 family domain containing 1; ALS, amyotrophic lateral sclerosis; AAA, age at onset; CI, confidence interval; SE, standard error. 

Table Vi. Single locus analysis (crude and adjusted for sex) for association between ScFd1 rs10139154 and the aao of alS 
with bulbar onset, in co‑dominant, dominant, recessive, overdominant and log‑additive mode.

 univariate Multivariate
Mode Genotype Mean (Se) difference (95% ci) P‑value P‑value

co‑dominant c/c 67.83 (2.28) 0.00 0.46 0.51
 c/T 63.12 (2.81) ‑4.72 (‑12.18 to 2.75)
 T/T 66.33 (4.67) ‑1.50 (‑14.29 to 11.29)
dominant c/c 67.83 (2.28) 0.00 0.25 0.28
 c/T‑T/T 63.6 (2.46) ‑4.23 (‑11.38 to 2.91)
recessive c/c‑c/T 65.07 (1.92) 0.00 0.84 0.89
 T/T 66.33 (4.67) 1.26 (‑10.86 to 13.38)
overdominant c/c‑T/T 67.53 (1.98) 0.00 0.22 0.25
 c/T 63.12 (2.81) ‑4.42 (‑11.32 to 2.49)
log‑additive ‑‑‑ ‑‑‑ ‑2.27 (‑7.88 to 3.33) 0.43 0.44

SCFD1, Sec1 family domain containing 1; ALS, amyotrophic lateral sclerosis; AAA, age at onset; CI, confidence interval; SE, standard error. 
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no alteration in ScFd1 expression with the addition of the 
ScFd1 rs10139154 ‘T’ alleles was found at the post‑mortem 
alS cohort of that study (38). These results suggested that 
between the post‑mortem alS cohort and controls, different 
correlations existed between the ScFd1 genotype and 
SCFD1 eQTLs expression, which may influence the risk of 
the disease (38).

currently, the available treatments for alS are very limited, 
while patients with alS usually succumb to the disease within 
3‑4 years from the time of diagnosis (39). Therefore, ongoing 
trials target precision medicine approaches, and genetic targets 
that will possibly influence the natural course of ALS (40). 
in this sense, research regarding alS (with genetic studies 
included) may reveal the molecular mechanisms behind 
neurodegeneration, and may lead to the development of novel 
therapeutic agents (41).

certain limitations of the present study need to be 
mentioned. Firstly, the participants with alS were not 
screened for the commonest falS genes, namely the 
c9orf72, Sod1, TdP‑43 and FuS/TlS genes (10,18). The 
authors also acknowledge that another constraint is that in 
the current statistical models, several potential cofounders 
(genetic and non‑genetic) were not included (15,16). Finally, 
the present study had a case‑control design and thus included 
all the inherent limitations of such a type of study (42). on 
the contrary, it should be noted that a major strength of the 
present case‑control study is the homogeneity of the entire 
cohort, as the data of both patients with alS and the control 
group were collected from a specific geographical area of 
central Greece.

in conclusion, the present study found that the ScFd1 
rs10139154 polymorphism was not associated with alS. 
However, whether this genetic locus is among the risk factors 
of alS cannot be established with absolute certitude at the 
moment. Bearing in mind the latter considerations, further 
large‑scale cooperative studies examining the carriage of the 
ScFd1 rs10139154 polymorphism in multiethnic cohorts are 
of great necessity, in order for the attribute risk of this variant 
to alS to be fully elucidated.
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