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Abstract. The gut microbiota plays a key role in maintaining 
health and regulating the host's immune response. The use 
of probiotics and concomitant vitamins can increase mucus 
secretion by improving the intestinal microbial population 
and prevent the breakdown of tight junction proteins by 
reducing lipopolysaccharide concentration. Changes in the 
intestinal microbiome mass affect multiple metabolic and 
physiological functions. Studies on how this microbiome mass 
and the regulation in the gastrointestinal tract are affected 
by probiotic supplements and vitamin combinations have 
attracted attention. The current study evaluated vitamins K 
and E and probiotic combinations effects on Escherichia coli 
and Staphylococcus aureus. Minimal inhibition concentra‑
tions of vitamins and probiotics were determined. In addition, 
inhibition zone diameters, antioxidant activities and immu‑
nohistochemical evaluation of the cell for DNA damage were 
performed to evaluate the effects of vitamins and probiotics. 

At the specified dose intervals, L. acidophilus and vitamin 
combinations inhibit the growth of Escherichia  coli and 
Staphylococcus aureus. It could thus contribute positively to 
biological functions by exerting immune system‑strengthening 
activities.

Introduction

The intestinal microbiota constitutes the most important part 
of the human microbiota. It is considered that ~1,000 different 
bacteria are in each healthy individual's colon mucosa and 
feces. The microbiota serves a role in a variety of diseases, 
including metabolic disorders, inflammatory and autoimmune 
diseases, allergies and even conditions where microbiome 
involvement seems implausible (1‑5).

Escherichia coli and Staphylococcus aureus, intestine 
flora, cause adverse effects on intestinal permeability by 
increasing their numbers in the intestinal microbiota in 
dysbiosis. The alpha toxin of Staphylococcus aureus alters 
intestinal integrity and impairs the barrier function of intes‑
tinal cells in vitro (6). Staphylococcus aureus serves a role 
in inflammatory bowel disease, as evidenced by the fact that 
gut‑derived Staphylococcus aureus superantigens can induce 
inflammatory responses. A number of studies have shown 
that the colon can be a reservoir of antibiotic resistance genes. 
For example, vancomycin‑resistant Staphylococcus aureus 
colonizes the intestinal tract. In previous studies, it has been 
observed that the intestinal transport of Staphylococcus aureus 
is increased among hospitalized patients and infants (7‑13). 
Escherichia coli is gram‑negative and some E. coli strains 
provide vitamin K and vitamin B12, which are beneficial for 
the host (14). However, colitis and other intestinal diseases 
develop as a result of the increase in the Enterobacteriaceae 
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family and especially Escherichia coli as a result of high‑fat 
contents, diet, inactivity, and unnecessary and incorrect anti‑
biotic use (15). Especially in patients with immunosuppressed 
colon cancer, changes in the flora cause bad results in a whole 
spectrum from metabolic diseases to neurological diseases.

An increase in the pathogenic bacteria population, espe‑
cially E. coli and S. aureus in the intestine tract leads to an 
increase in the incidence of tumor appearance. Mitochondria 
contain DNA called mtDNA. As with nuclear DNA, the pres‑
ence of endogenous reactive oxygen species (ROS) causes 
mtDNA damage. ROS is one of the well‑known parameters in 
cancer formation. A number of studies show that chronic ROS 
formation induces RNA and DNA break and leads to cancer 
formation. 8‑OHdG and H2AX are markers to evaluate the 
RNA and DNA breakout (16‑18).

The capacity of Lactobacilli to adhere to epithelial cells of 
the host intestinal tract is crucial in inhibiting enteropathogenic 
infections. Species of Lactobacillus, such as L. acidophilus, 
L. helveticus, L. rhamnosus, L. case, L. paracasei, L. 
reuteri, and L. fermentum, compete with enteric pathogens 
for binding sites, such as Enteropathogenic E. coli (EPEC), 
Enterohaemorrhagic E. coli (EHEC), Enterotoxigenic E. coli 
(ETEC), Enteroinvasive E. coli (EIEC), Enteroaggregative 
E. coli (EAEC), diffusely adherent E. coli (DAEC), and, a new 
pathotype, adherent‑invasive E. coli (AIEC) (19‑24). In addition 
to probiotics, vitamin E, which is stated to have a significant 
effect on the colon, acts as an important antioxidant (against 
lipid peroxidation) (25). The use of probiotics can improve the 
intestinal microbial population, increase mucus secretion, and 
reduce the number of lipopolysaccharides (LPSs) to prevent the 
breakdown of tight junction proteins. When LPS binds endo‑
thelial cells to toll‑like receptors (TLR) 2 and 4, dendritic cells 
and macrophage cells are activated and inflammatory markers 
increase. Furthermore, a reduction in intestinal dysbiosis and 
intestinal leakage after probiotic treatment can minimize the 
development of inflammatory biomarkers and blunt unneces‑
sary activation of the immune system. By contrast, probiotics 
enhance the differentiation of T cells towards Th2 and the 
development of Th2 cytokines such as IL‑4 and IL‑10 (24‑26). 
Vitamin K, especially synthetic vitamin K3 (menadione), is 
twice as strong as natural vitamins K1 and K2. K3 is produced 
by bacteria in the intestinal microflora and serves an important 
role in blood coagulation (26). HT‑29 and Caco‑2 cells derived 
from human colorectal carcinoma are the most commonly 
used in numerous in vitro cell culture absorption models.

To date, few studies have investigated the ability of 
lactobacilli to inhibit the adhesion of Escherichia coli and 
Staphylococcus  aureus to intestinal epithelial cells using 
methods evaluating the incorporation of vital dyes or the 
inhibition of cell colony formation (27‑30). The present study 
determined the effect of the Lactobacillus acidophilus ATCC 
1356 strain and vitamins K3 and E on Escherichia coli and 
methicillin‑resistant Staphylococcus aureus (MRSA) infec‑
tion in the human colon adenocarcinoma cell line grade one 
HT‑29 and Caco‑2.

Materials and methods

Chemicals and reagents. Vitamin K3, vitamin E, 9% isotonic 
sodium chloride solution, tryptic soy broth, ethanol, blood 

agar, agar, crystal violet solution, Dulbecco modified Eagles 
medium (DMEM), fetal calf serum (FBS), phosphate buffer 
solution (PBS), antibiotic antimitotic solution (100X), L gluta‑
mine, and trypsin‑EDTA were obtained from MilliporeSigma.

Bacterial strains. Lactobacillus acidophilus ATCC 4356 
strains (American Type Culture Collection) were purchased 
commercially and isolated in the Department of Medical 
Microbiology, Faculty of Medicine, Ataturk University. The 
Escherichia coli ATCC 25922, MRSA ATCC 29213 strain, 
and Lactobacillus acidophilus ATCC 4356 strains were used in 
the present study. Lactobacillus acidophilus ATCC 4356 was 
incubated in Mann, Rogosa, and Sharpe broth (MRS Broth; 
MilliporeSigma) at 37˚C and 5% CO2 for 48 h. L. acidophilus 
was grown in Lactobacillus MRS Broth (Himedia) for 24 h 
at 37˚C in a bacteriological incubator under microaerophilic 
conditions. The number of cells in suspension was determined 
with a spectrophotometer (B582; Micronal) at a concentration 
of 107 cells/ml. The optical density and wavelength used were 
0.296 and 600 nm for L. acidophilus. Cell densities of the 
inoculum were confirmed by CFU/ml counting after plating 
in Rogosa agar for L. acidophilus. For the preparation of the 
L. acidophilus culture filtrate, 1 ml of the standard suspension 
was transferred to a Falcon tube containing 6 ml MRS broth 
and incubated for 24 h at 37˚C in a bacteriological incubator 
under microaerophilic conditions. Then the broth was centri‑
fuged (2,000 x g for 10 min) at room temperature and filtered 
through a membrane with a 0.22‑µm pore size (Advantec MFS, 
Inc.). Escherichia coli ATCC 25922 strain was used. Bacteria 
were inoculated into an EMB medium and incubated for 24 h 
at 37˚C. Then, 108 CFU/ml suspension was prepared from the 
growing colonies according to the McFarland 0.5 chart. The 
MRSA ATCC 29213 strain was incubated in modified Giolitti 
and Cantoni broth for 14 h at 37˚C and Baird‑Parker plates 
(supplemented with Giolitti and Cantoni broth 1.5%) for 48 h 
at 37˚C.

Kirby‑Bauer disk diffusion method. Microorganism colonies 
taken from 24 h cultures were adjusted in sterile saline to 
McFarland 0.5 turbidity and inoculated into Mueller Hinton 
medium (meat infusion 2 g/l; casein hydrolysate 17.5 g/l; starch 
1.5 g/l; agar‑agar 13,0 g/l) with a swab stick. Then, 6 mm diam‑
eter Sterile Paper Discs (Oxoid Antibacterial Susceptibility 
Blank Test Disc; Oxoid Ltd.) were impregnated with 20 µg/ml 
and placed in Muller Hinton Medium. Zone diameters were 
measured after 24 h of incubation. Vancomycin was used as 
the control antibiotic.

Minimal inhibitory concentration. Vitamins E and K were 
dissolved with Tween 20 to a final concentration of 5 mg/ml. 
Escherichia  coli ATCC 25922, MRSA ATCC 29213 and 
Lactobacillus acidophilus ATCC 4356 used in the minimum 
inhibitory concentration determination method were passed 
into eosin methylene blue and blood agar and a 24 h fresh 
culture was prepared by CLSI criteria (31). From the colonies 
taken from the prepared cultures, a bacterial suspension 
was prepared in sterile 0.9% saline with the turbidity of 
Lactobacillus acidophilus ATCC 4356, 0.5 McFarland 
109  CFU/ml, and Escherichia coli ATCC 25922, MRSA 
ATCC 29213, 0.5 McFarland 5x105. Then, 100 µl of tryptic 
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soy broth medium was added to all wells 1 to 12 of the sterile 
96‑well microplate. At first, 100 µl of bacterial suspension was 
added to the 1st well and 100 µl of a 1:1 dilution was added 
to the 10th well. Secondly, 100 µl of vitamin K, E, and K + E 
(5‑0.007 mg/ml) were added to the 1st well, and 100 µl dilution 
was made up to the 10th well in a 1:1 ratio (32). For bacteria 
control only bacterial suspension was added to the well, and 
only vitamins K and E were added to the 12th well. Then, the 
microplate was covered with parafilm and incubated for 24 h 
at 37˚C. Vancomycin was used as the control antibiotic (33).

Cell culture infection model
Colon cancer cell lines. The human colon cancer cell lines 
HT‑29 (ATCC no: HTB‑38) and Caco‑2 (ATCC no: HTB‑37) 
were used. Frozen cells were rapidly thawed and centrifuged 
at 200 x g at room temperature for 5 min. Cells were collected 
in a 25 cm2 flask by adding fresh DMEM high glucose, 10% 
FBS and 1% antibiotics (penicillin, streptomycin, and ampho‑
tericin B). When 80% of the flasks were covered with cells, 
they were centrifuged at 200 x g at room temperature for 
5 min (by removing trypsin‑ethylenediaminetetraacetic acid 
(EDTA; 0.25% trypsin‑0.02% EDTA)). The supernatant was 
discarded, and the cell suspension was seeded at 104 cells/well 
in 96‑well cell culture plates.

Preparation of cell culture samples. Vitamins E and K, an 
MRSA strain, and a Lactobacillus acidophilus strain were used 
in the present study. Groups were: Control group, the group 
containing DMSO (dimethyl sulfoxide) was used as a positive 
control group; vitamin E (5 mg/ml), vitamin K3 (5 mg/ml), 
Lactobacillus acidophilus (109 CFU/ml), Escherichia coli 
ATCC 25922, (108  CFU/ml) and MRSA (5x105  CFU/ml). 
The experiment began when the cells in the plates reached a 
density of 85‑90%. A total of 10 replicates were used for each 
dose (n=10).

MTT analysis (cytotoxicity analysis). When the experiment 
had finished, 10 µl of MTT solution was added to each well and 
incubated for 4 h at 37˚C with 5% CO2. To dissolve the formed 
formazan crystals, 100 µl of dimethyl sulfoxide (DMSO) solu‑
tion was added to the wells. Cell viability (%) was read using a 
Multiskan GO microplate spectrophotometer (Thermo Fisher 
Scientific, Inc.) at 570 nm. The viability rates were compared 
with those of the control group.

Oxidative stress markers. To measure the oxidative stress 
level, the total antioxidant capacity (TAC) and the total 
oxidant status (TOS) were determined with a commercial 
kit (Rel Assay Diagnostics) according to the manufacturer's 
instructions. TAC levels were examined at 660 nm and TOS 
at 530 nm in a Multiskan GO microplate spectrophotometer 
(Thermo Fisher Scientific, Inc.).

Immunohistochemistry. Cultured cells were incubated for 
30  min in paraformaldehyde (4% and room temperature) 
solution. The cells were then incubated in 3% H2O2 for 5 min. 
A 0.1% Triton‑X solution was dripped onto the cells, washed 
with PBS, and left for 15 min. After incubation, serum‑free 
blocking buffer (cat. no. X090930‑2; Agilent Technologies, 
Inc.) was dripped onto the cells and kept in the dark for 

5  min at room temperature. Then, the primary antibody 
(8‑OHdG cat. no. sc‑66036; Santa Cruz Biotechnology, Inc.; 
1:100) was added dropwise and incubated in accordance 
with the manufacturer's protocols. An immunofluorescence 
secondary antibody was used as a secondary marker (FITC; 
cat. no. ab6785; Abcam) and incubated in the dark for 45 min 
at room temperature. The cells were stained with Texas Red 
(cat. no. ab6787; Abcam; 1:1,000) in the dark for 45 min. Then, 
DAPI with mounting medium (cat. no. D1306; Thermo Fisher 
Scientific, Inc.; 1:200) was dropped onto the sections and they 
were kept in the dark for 5 min. Then, the sections were closed 
with a coverslip. The stained sections were examined under a 
fluorescence microscope (Zeiss Axio; Zeiss AG).

Statistical analyses
Cell culture. The results are given as the mean ± standard error 
of the mean, a visual representation of statistical quantities 
estimated from the data with assumptions about the under‑
lying distribution of the data obtained in box plot charts. The 
statistical comparison of the groups with each other was calcu‑
lated by one‑way ANOVA and Tukey's HSD method. One‑way 
ANOVA calculations to be used in statistical analysis were 
performed with SPSS 20 software (IBM Corp.).

Immunohistochemistry. To determine the intensity of positive 
staining from the images captured from the stained samples, 
five random areas were selected from each image and evalu‑
ated using the Zen Imaging Software program (Zeiss AG). 
Data was statistically defined as the mean ± standard devia‑
tion for the percentage area. The Mann‑Whitney U test was 
performed to compare positive immunoreactive cells and 
immunopositive stained areas with healthy controls. The data 
are presented as the mean ± standard deviation.

P<0.05 was considered to indicate a statistically significant 
difference.

Results

Vitamins and probiotics are frequently consumed for their 
alleged health benefits. However, it is not known whether they 
can interact and influence the health effects of each other. The 
present study documented the interactions between vitamins 
E and K with Lactobacillus acidophilus against MRSA or 
Escherichia coli.

Effects on bacterial growth. The present study first assessed 
if the different combinations of vitamins exerted toxic effects 
on bacterial growth. After the concentrations of bacteria 
and probiotics were prepared, the doses of vitamins were 
adjusted and inoculations were made. The minimal inhibi‑
tory concentration (MIC) value of vitamin E on MRSA was 
1.25 mg/ml, and Lactobacillus acidophilus + vitamin E did 
not show any MIC value. By comparison, the MIC value 
of MRSA  +  Lactobacillus acidophilus  +  vitamin E was 
1.25  mg/ml. While no effect was observed in vitamin K 
MRSA, MIC values of Lactobacillus acidophilus + vitamin 
K were found to be 1.25 mg/ml, and MRSA + Lactobacillus 
acidophilus + vitamin K MIC values were determined to 
be 2.5 mg/ml. The MIC values of Lactobacillus acidoph‑
ilus + vitamins E + K against MRSA or Escherichia coli are 
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shown in Table I. Altogether, the combination of vitamin E and 
K had the most potent effects and strongly inhibited bacterial 
growth when Lactobacillus acidophilus against MRSA or 
Escherichia coli was grown in isolation. The MIC values were 
larger when the bacteria were co‑cultured.

Kirby Bauer disk diffusion results. In the present study, an 
antibiogram was performed by inoculating Escherichia coli 
and MRSA suspension into Mueller Hinton medium. The 
inhibition zones of discs impregnated with vitamins and probi‑
otics were measured at 6, 12, 18, and 24 h. The most effective 
after 24 h was the vitamin E + vitamin K + Lactobacillus 
acidophilus combination against Escherichia coli by opening 
a 23 mm zone against 17 mm MRSA. The inhibition results 
against Escherichia coli and MRSA are shown in Table II. The 
results show a time‑dependent change in zone diameter, which 
was the most pronounced with vitamin E.

Cell culture results
MTT assay. The present study then examined how probiotic 
and vitamin supplementation in HT‑29 and Caco‑2 colon 
cancer cells exposed to the bacteria would affect the viability 
of the cells. The MTT results obtained in the Escherichia coli 
and MRSA on Caco and HT‑29 cell lines are presented in Fig. 1. 
No significant difference was found between the Lactobacillus 
acidophilus control group and the control group. When 
Escherichia coli control and control groups were compared, 
the viability rate was found to be 86.36%. When Lactobacillus 
acidophilus + vitamin K 1.25 mg/ml, vitamin E + Escherichia 
coli 0.03, and vitamin E + vitamin K + Escherichia coli 0.02 
groups were compared with the control group, the lowest 
viability rates were found with 64.4% (**P<0.001), and 69.2% 

(*P<0.05), respectively. Regarding MRSA, no significant 
difference was found between the control groups and the 
positive control group. When the MRSA control and control 
groups were compared, the viability rate was found to be 
83.7%. When the Lactobacillus acidophilus  +  vitamin K 
1.25 mg/ml + vitamin E 0.02 groups were compared with the 
control group, the lowest viability rates were found at 67.4%, 
respectively, and these values were statistically significant. 
(**P<0.001).

L. acidophilus did not decrease Caco cell viability similar 
to the E. coli control group (P>0.05). By contrast, the bacteria 
and vitamin combination, especially in the vitamin E group, 
decreased the viability (P>0.05) but the results were not 
statistically significant. E. coli + L. acidophilus + vitamin 
E decreased cancer cell viability by nearly 20% compared 
with the control group. The highest toxicity was noticed in 
E. coli + L. acidophilus + vitamin E + vitamin K near 25% 
(P<0.001). The MTT results are shown in Fig. 1. L. acidophilus 
did not decrease Caco cell viability, a result similar to MRSA 
treatment. Bacteria and vitamin combination, especially in the 
vitamin E group, decreased viability (P<0.05). MRSA + L. 
acidophilus + vitamin E decreased cancer cell viability by 
nearly 25% compared with the control group (P<0.05). The 
highest toxicity was seen in MRSA + L. acidophilus + vitamin 
E + vitamin K, by nearly 29% (P<0.001).

TAC and TOS measurement. The present study then evalu‑
ated whether antioxidant capability or oxidative stress was 
changed by exposure to probiotics, vitamins, or their combina‑
tion. There was no significant difference between TAC and 
TOS levels in the DMSO group in HT‑29 cells treated with 
E. coli compared with the control group. TAC levels of the 
control group and Lactobacillus acidophilus control group, 

Table I. Minimal inhibitory concentration values of vitamins in bacteria.

	 Strain mg/ml
	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
	 	 	 Lactobacillus	 E. coli + Lactobacillus	 MRSA + Lactobacillus
Vitamin	 E. coli	 MRSA	 acidophilus	 acidophilus	 acidophilus

Vitamin E	 0.03	 1.25	 >5	 0.03	 1.25
Vitamin K	 >5	 >5	 1.25	 2.5	 2.5
Vitamin E + K	 0.02	 0.007	 0.009	 2.5	 0.15

MRSA, methicillin‑resistant Staphylococcus aureus.

Table II. Escherichia coli and MRSA zone diameters at 6, 12, 18, and 24 h (mm).

	 Time
	---------------------------------------------------------------------------------------------------------------------------------
Agent	 6 h	 12 h	 18 h	 24 h

Vitamin E	 No zonea,b	 2a, 5b	 6a, 12b	 11a, 17b

Vitamin K	 No zonea,b	 No zonea,b	 No zonea,b	 No zonea,b

Vitamin E + vitamin K + Lactobacillus acidophilus	 No zonea,b	 7a,11**	 15a, 17**	 17a, 23b

aEscherichia coli and bMRSA. The strongest inhibition zone occurred at 24 h. MRSA, methicillin‑resistant Staphylococcus aureus.
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Lactobacillus acidophilus + vitamin K 1.25, Escherichia 
coli  +  vitamin E 0.03, and Escherichia coli  +  vitamin 
K + vitamin E 0.02 were significantly higher (**P<0.001). TOS 
values of these groups were significantly lower compared with 
the control group (**P<0.001, *P<0.05).

There was no significant difference between TAC and 
TOS levels in the DMSO group in HT‑29 cells given MRSA 
compared with the control group. The TAC levels of the control 
group and the L. acidophilus control, L. acidophilus + vitamin 
K 1.25, and L. acidophilus + vitamin K + vitamin E + 1.25 
groups were significantly higher (**P<0.001). The TOS values of 
these groups were significantly lower than those of the control 
group (**P<0.001, *P<0.05). In addition, E. coli + L. acidoph‑
ilus  +  vitamin E affected antioxidant capacity compared 
with the control group (P<0.05). The antioxidant capacity 
decreased by adding vitamin E to both L. acidophilus (P<0.05) 
and MRSA compared with the bacteria control group. while E 
and vitamin K combination with bacteria lead to a decreased 
antioxidant significantly in E. coli + vitamin E + K (P<0.05) 
and E. coli + L. acidophilus + vitamin E + vitamin K group 

2 Trolox Equiv mmol/l‑1 (P<0.001). E. coli + vitamin E + K 
(P<0.05) and E. coli + L. acidophilus + vitamin E + vitamin 
K group increased the oxidative status significantly (P<0.05) 
compared with the control group. The oxidative status results 
are shown in Fig. 2. The DMSO control did not affect the 
antioxidant and oxidant status. In addition, the antioxidant 
capacity decreased by adding vitamin E to both L. acidophilus 
(P<0.05) and MRSA in comparison to the control group. The 
combination of vitamin E and K with bacteria led to decreased 
antioxidant capacity and increased oxidant status in the 
Caco‑2 culture. The antioxidant capacity primarily decreased 
in MRSA + L. acidophilus + vitamin E + vitamin K group 
2 Trolox equiv mmol/l‑1 (P<0.001). Oxidant status increased 
slightly by adding vitamins to bacterial species (P>0.05).

Immunohistochemistry results. Whether the change in oxida‑
tive status could be linked to the development of DNA damage 
was evaluated. For the control group, in immunofluorescent 
staining, negative 8‑OHdG, and H2A.X expressions were estab‑
lished. For the E. coli control group, the immunofluorescent 

Figure 1. MTT (Cytotoxicity) assay test. MTT assay results for (A) Escherichia coli‑HT29, (B) MRSA‑HT29, (C) E. coli‑Caco‑2, and (D) MRSA‑Caco‑2 in cell 
culture after 24  h. *P<0.05 and **P<0.001 vs. with the control group. MRSA, methicillin‑resistant Staphylococcus aureus; K vit, vitamin K; E vit, vitamin E.
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Figure 2. Antioxidant and oxidant activity measurement. TAC and TOS assay results of (A) Escherichia coli‑HT29 TOS, (B) MRSA‑HT29 TOS, (C) E. 
coli‑HT29 TAC, (D) MRSA‑HT29 TAC, (E) E. coli‑Caco‑2 TAC, (F) MRSA‑Caco‑2 TOS, (G) E. coli‑Caco‑2 TOS and (H) MRSA‑Caco‑2 TAC in cell 
culture after 24 h. *P<0.05 and **P<0.001 vs. with the control group. TAC, total antioxidant capacity; TOS, total oxidant status; MRSA, methicillin‑resistant 
Staphylococcus aureus; K vit, vitamin K; E vit, vitamin E.
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staining showed strong 8‑OHdG and H2A.X expressions 
(Fig. 3). In the DMSO control group, the immunofluorescent 
staining revealed negative 8‑OHdG and H2A.X expres‑
sions. The Lactobacillus control group developed negative 
8‑OHdG and H2A.X expressions while the L + vitamin K 
1.25 mg/ml group was evaluated as negative 8‑OHdG and 
H2A.X expressions. The L + vitamin E + vitamin K 0.01 
group also showed negative 8‑OHdG and H2A.X expressions. 
For the E. coli + vitamin E 0.03 group, moderate expressions 

of 8‑OHdG and H2A.X were detected in immunofluorescent 
staining, while for the E. coli + L + vitamin E 0.03 group, 
mild expressions of 8‑OHdG and H2A.X were registered. E. 
coli + L + vitamin K 2.5 mg/ml group: moderate expressions 
of 8‑OHdG and H2A.X detected. For the E. coli + vitamin 
E + vitamin K 0.02 group, only mild expressions of 8‑OHdG 
and H2A.X were noted and for the E. coli + L + vitamin 
E + vitamin K group, low expressions of 8‑OHdG and H2A.X 
were registered in the immunofluorescent staining (Table III).

Figure 3. Immunohistochemistry staining. 8‑OHdG expression (FITC) and H2A.X expression (Texas Red) in (A) HT‑29 and (B) Caco‑2 cell lines, immuno‑
fluorescence, scale bar, 50 µm. K, vitamin K; E, vitamin E; EC, Escherichia coli; L/Lac, Lactobacillus acidophilus.
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For the control group, when the HT‑29 cell line samples 
were stained with the double immunofluorescence method, 
8‑OHdG, and H2A.X expression were evaluated as negative. 
For the MRSA control group when HT‑29 cell line samples 
were stained with the double‑immunofluorescence method, 
intense 8‑OHdG, and H2A.X expressions were observed. 
In the DMSO control group, negative 8‑OHdG and H2A.X 
expression levels were determined., for the Lactobacillus 
control group negative 8‑OHdG and H2A.X expressions were 
observed, for the L + vitamin K 1.25 group 8‑OHdG, and 
H2A.X were negative, while for L + vitamin E + vitamin K 
0.01 group negative 8‑OHdG and H2A.X expression levels 
were determined. In the MRSA + vitamin E 1.25 mg/ml group, 
when HT‑29 cell line samples were stained with the double 
immunofluorescence method, moderate levels of 8‑OHdG 
and H2A.X was detected. The same results were obtained for 
the MRSA + vitamin K 2.5 mg/ml group, namely moderate 
8‑OHdG and H2A.X expressions. Mild 8‑OHdG and H2A.X 

expression levels were determined for the MRSA+L+ vitamin 
E 1.25 mg/ml and MRSA+ vitamin E + vitamin K 0.007 
groups, while for the MRSA + L + vitamin E + vitamin K 0.15 
group low levels of 8‑OHdG and H2A.X was detected (Fig. 4). 
The immunofluorescence results are shown in Table IV.

Discussion

There are intense scientific discussions on the effects of probi‑
otics and other supplements such as vitamins. The present 
study examined how probiotic and vitamin supplementation in 
HT‑29 and Caco‑2 colon cancer cells exposed to Escherichia 
coli and MRSA infection would affect the toxicity and viability 
of the cells. It compared two different colon cancer cells. 
While HT‑29 consists of first‑degree cancer cells, Caco‑2 cells 
consist of second‑degree cancer cells. By comparing the two 
levels, the effect of probiotics and vitamin supplementation on 
the viability of cells in an infection due to the progression of 

Table III. Immunofluorescent result scores of the study groups.

	 HT‑29 8‑OHdG	 HT‑29 H2A.X	 Caco‑2 8‑OHdG	 Caco‑2 H2A.X

Control	 38.85±6.78a	 21.16±7.18a	 34.16±6.78a	 23.76±5.79a

E. coli Control 	 161.22±12.86b	 96.15±11.83b	 182.18±10.09b	 124.28±10.74b

DMSO Control	 38.15±5.76a	 23.84±5.12a	 37.18±5.42a	 25.18±6.18a

Lactobacillus Control 	 40.12±6.18a	 25.18±5.6a	 39.76±6.94a	 24.74±3.26a

Lactobacillus + vitamin K 1.25 	 41.18±6.23a	 25.71±6.84a	 38.12±5.84a	 22.16±9.12a

Lactobacillus + vitamin E + vitamin K 0.01 	 40.16±6.84a	 24.6±5.76a	 36.15±4.12a	 22.18±5.74a

E. coli + vitamin E 0.03 	 93.18±10.82c	 78.16±6.12c	 142.18±10.26c	 92.18±6.29c

E. coli + Lactobacillus + vitamin E 0.03 	 66.85±10.63d	 50.24±11.38d	 94.18±14.13d	 60.12±9.26d

E. coli + Lactobacillus + vitamin K 2.5 	 96.18±9.54c	 73.75±7.76c	 139.26±9.15c	 89.26±7.15c

E. coli + vitamin E + vitamin K 0.02 	 68.12±13.79d	 47.16±9.91d	 99.16±16.85d	 61.74±12.7d

E. coli + Lactobacillus + vitamin E + vitamin K 	 57.96±11.12d	 39.97±11.9d	 85.26±16.28d	 52.42±10.28d

a, b, c and d are differences between means, different letters in the same column are significant (P<0.05).

Table IV. Scoring of immunofluorescent findings in cell cultures.

Group	 HT‑29 8‑OHdG	 HT‑29 H2A.X	 Caco‑2 8‑OHdG	 Caco‑2 H2A.X

Control	 37.18±6.18a	 26.14±5.15a	 39.26±3.12a	 25.14±6.82a

MRSA control	 136.14±10.08b	 108.75±10.84b	 188.76±13.25b	 131.18±9.26b

DMSO control	 39.26±5.81a	 25.24±4.94a	 40.12±5.42a	 28.74±7.59a

Lactobacillus control	 40.12±4.16a	 27.18±8.62a	 41.15±5.8a	 29.78±4.49a

Lactobacillus + vitamin K 1.25 	 40.16±6.79a	 28.15±5.54a	 39.49±4.19a	 27.65±3a

Lactobacillus + vitamin E + vitamin K 0.01 	 40.74±5.92a	 27.99±4.84a	 40.33±6.74a	 29.48±5.74a

MRSA + vitamin E 1.25	 91.18±9,74c	 74.12±6.18c	 141.16±7.2c	 102.12±8.18c

MRSA + vitamin K 2.5	 88.75±8.4c	 80.16±10.21c	 137.75±6.74c	 96.12±9c

MRSA + Lactobacillus + vitamin E 1.25	 72.16±13.26d	 54.12±11.25d	 99.15±13.42d	 68.28±13.26d

MRSA + vitamin E + vitamin K 0.007	 71.84±10.3d	 52.28±8.12d	 96.84±14.35d	 68.15±12.64d

MRSA+ Lactobacillus + vitamin E + vitamin K 0.15	 64.14±10.98d	 46.85±10.29d	 89.4±12.29d	 57.37±12.94d

a, b, c and d are differences between means, different letters in the same column are significant (P<0.05). MRSA, methicillin‑resistant 
Staphylococcus aureus.
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cancer prognosis was examined. Although Escherichia coli 
normally settle in the intestine as avirulent, they acquire viru‑
lent characteristics that give them the ability to adapt to new 
niches and cause intestinal and extra‑intestinal diseases. This 
situation is closely related to the immune system of the host. 
With these virulent features, they can manage a process ranging 
from colitis to diarrhea, cancer formation, and mortality (34). 
In the management of this process, non‑antibiotic treatments 

have gained popularity in recent years with the emergence 
and spread of new antibiotic‑resistant isolates. Among these 
treatment approaches, the use of probiotics is a promising 
alternative for the control of urinary tract infections and infec‑
tions caused by Escherichia coli.

Probiotics can adhere to uroepithelial cells and inhibit the 
growth of pathogenic bacteria. In addition, oral administra‑
tion of Lactobacilli may colonize these microorganisms in 

Figure 4. 8‑OHdG expression (FITC) and H2A.X expression (Texas Red) in (A) HT‑29 and (B) Caco‑2 cell lines, immunofluorescence, scale bar, 50 µm. K, 
vitamin K; E, vitamin E; EC, Escherichia coli; L/Lac, Lactobacillus acidophilus.
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the urinary tract after intestinal colonization (35). Following a 
Staphylococcus aureus infection, alpha‑toxin reaches the baso‑
lateral intestinal epithelium. The alpha‑toxin then causes 
barrier malfunction and, as a result, the intestinal lumen 
becomes permeable to bacteria. As a result, bacteria and 
bacterial products may pass into the lymph, lymph nodes 
and, finally, the blood, aggravating the resulting septic 
condition (6). In the present study, the antibacterial activity 
of Lactobacillus acidophilus and vitamins E and K against 
Escherichia coli was evaluated in vitro. The MIC value of 
vitamin E + vitamin K + Lactobacillus acidophilus + MRSA 
was determined to be 0.15 mg/ml. Ghane et al (36) in their 
study to determine the probiotic potential of Lactobacillus 
strains isolated from kefir and to evaluate their antimicrobial 
and antibiofilm activities against uropathogenic Escherichia 
coli, screened 12 lactobacillus strains for their antimicrobial 
potentials against uropathogenic Escherichia coli and seven of 
them were isolated from Escherichia coli and Lactobacillus 
strains showed high antagonistic activity. Different strains 
of probiotics are known to produce compounds with 
antimicrobial properties, including low molecular weight 
compounds, antimicrobial peptides (bacteriocins) and organic 
acids (37‑41). The coaggregation between Lactobacilli and 
pathogenic bacteria provides a barrier that prevents them from 
adhering to urinary and intestinal epithelial cells. In parallel 
with the present study, Ghane et al (36) isolated probiotics in 
the study that showed antibacterial activity by interacting with 
Escherichia coli.

The probiotic potential of three Pediococcus spp. were 
investigated and 16S rRNA gene sequencing identified 
Pediococcus acidilactici VKU2, P. acidilactici IAH‑5, and 
P. pentosaceus DHR005. All strains tolerated pH 3 and 
0.3% oxalate and simulated gastric and intestinal juice for 
3 h  (42). P. acidilactici IAH‑5 showed the highest choles‑
terol removal (67.52%), hydroxyl radical scavenging activity 
(58.32%), hydrophobicity (40.3%), and autoaggregation (48%). 
It was determined that it inhibited the growth of the tested 
pathogens (Escherichia coli ATCC 25922, Pseudomonas 
aeruginosa PTCC 1707, Salmonella typhimurium PTCC 
1609, and Staphylococcus aureus ATCC 25923) and the most 
susceptible strain was Staphylococcus aureus  (42). In the 
present study, the Lactobacillus acidophilus strain showed a 
positive effect against infection in HT‑29 and Caco‑2 cell lines.

Probiotics are live microorganisms that, when administered 
in adequate amounts, support health functions in the human or 
animal host (36). In addition, although various criteria have been 
proposed for selecting probiotics, the most important feature is 
their ability to bind to intestinal cells. Due to this adhesion ability, 
probiotic strains can perform their functions by increasing their 
persistence in the intestine (36). Due to the difficulty of studying 
the in vivo adhesion of bacteria to the gastrointestinal tract, 
in vitro evaluation using the adenocarcinoma cell lines HT‑29 
and Caco‑2 expresses the morphological and functional features 
of normal enterocytes, is widely accepted (43). Although most 
studies on colon cell lines show a correlation between hydro‑
phobicity and adhesion, Schillinger et al  (44) reported that 
Lactobacillus acidophilus BFE 719 showed good adhesion to 
HT‑29 cells while having a weak hydrophobicity of only 2%. In 
Lim and Ahn (2012) (45) seven strains isolated from mustard leaf 
kimchi were screened for their tolerance to simulated gastric and 

bile juices, their adhesive properties to Caco‑2 cells, and their 
ability to inhibit Salmonella typhimurium ATCC 29631 adhe‑
sion. Lactobacillus acidophilus GK20, Lactobacillus paracasei 
GK74 and Lactobacillus plantarum GK81, which are resistant 
to bile and gastric juices, have been found to have high bile salt 
hydrolase activity against both sodium glycolate and sodium 
taurocholate (45). One of the most important features of probiotic 
bacteria is their ability to survive in severe gastrointestinal condi‑
tions, including low pH (i.e., stomach conditions) and high bile 
salt concentration (i.e., in the small intestine) until reaching their 
target (46,47). The protection of the intestinal environment by 
Lactobacilli strains is achieved by two mechanisms: the produc‑
tion of antimicrobial compounds by Lactobacilli and binding to 
mucus and coaggregation, which can form a barrier to prevent 
pathogenic biofilm (48). The gut microbiome is associated with 
the development of colorectal cancer (CRC). Intestinal microbiota 
and bacterial mass population can trigger the development of 
CRC by providing the formation of oncometabolite. In a healthy 
colon, the main part of microbial metabolism is the saccharolytic 
fermentation pathways (49). It has been suggested that oncogenic 
bacteria such as Enterotoxigenic Bacteroides fragilis induce 
the development of CRC through direct interactions with colon 
epithelial cells and changes in microbiota composition in the 
colorectal region. Escherichia coli, E. faecalis, Fusobacterium 
nucleatum, and Streptococcus gallolyticus have been identified 
as flora with higher populations in CRC patients. However, it has 
been determined that there is a decrease in the population of 
Bifidobacterium, Clostridium, Faecalibacterium, Lactobacillus, 
and Roseburia (50). Probiotics such as Lactobacillus inhibit the 
growth of CRC by inhibiting inflammation and angiogenesis 
and enhancing intestinal barrier function through the secretion 
of short‑chain fatty acids (51). Direct interactions with bacteria 
and cancer cell combinations and vitamin combinations have not 
been investigated. From the data of the present study, the toxicity 
of E. coli is higher than that of lactobacillus bacteria (52). This 
is due to the toxins produced by E. coli. Cellular death occurs 
due to the oxidative stress produced by the toxins within the cell. 
Vitamin E is known to have anti‑cancer effects (53). Vitamin 
E is known to allow potentially beneficial Lactococcus and 
Bacteroides to multiply in the gut (53). In a colitis‑associated 
cancer model, vitamin E suppresses proinflammatory cytokines 
and modulates the gut microbiota (54). The combination of two 
bacteria and two vitamins in the present study did not cause 
damage to the bacterial mass by reducing the neoplastic cell 
population (55).

In recent years, microbiome methods have been used in 
fecal collection using next‑generation sequencing technology 
and DNA analysis of all bacteria. The present study performed 
no experiments on humans Future studies could experimen‑
tally administer the probiotics, vitamin K and vitamin E. used 
here for healthy subjects. and attempting to analyze their gut 
microbiota. Furthermore, epidemiological studies linking the 
consumption of these products in the human population would 
be another strategy.

Probiotics, an alternative treatment option for controlling 
infections caused by Escherichia coli and MRSA, prevent the 
growth of pathogenic bacteria and this can be helped by addi‑
tional vitamin support. In this context, increasing additional 
support studies for probiotic treatment are vital for the course 
of treatment.
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