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Abstract. Cordycepin, a 3-deoxyadenosine, is the predomi-
nant functional component of the fungus Cordyceps militaris, 
a traditional Chinese medicine. Previous studies investigating 
the inhibition of cancer cells by cordycepin identified that it 
not only promotes cell apoptosis, but also controls cell prolif-
eration. Furthermore, studies have elucidated the molecular 
mechanisms of inhibiting cell proliferation by cordycepin 
binding the A3 adenosine receptor, activating G  protein, 
inhibiting cAMP formation, decreasing glycogen synthase 
kinase‑3β/β‑catenin activation and suppressing cyclin D1 and 
c‑myc expression. The most significant signaling pathway in 
which cell apoptosis is induced by cordycepin is the caspase 
pathway. Cordycepin induces cell apoptosis via binding the 
DR3 receptor and consequently activating caspase‑8/‑3. Taken 
together, these studies demonstrate that cordycepin may be 
used as a natural medicine, as it can not only control tumor 
cell proliferation, but also induce cancer cell apoptosis.
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1. Introduction

Cancer is caused by an imbalance between cell cycle progres-
sion and apoptosis. Therefore, the majority of anticancer drugs 
exert their antiproliferative and cytotoxic activity via cell cycle 
arrest and induction of apoptosis, a controlled form of cell 
death that is dysregulated in cancer (1). Cytotoxic nucleoside 
analogues were the first chemotherapeutic agents used for the 
treatment of cancer (2). To date, the most widely researched 
cytotoxic nucleoside analogues are predominantly isolated 
from Cordyceps sinensis and C. militaris.

C. sinensis has been more extensively used and inves-
tigated compared with C. militaris, however, both species 
contain similar bioactive ingredients and exhibit medicinal 
activity, and are widely used traditional Chinese medicines. 
A number of bioactive ingredients have been isolated from 
C. militaris, including adenosine, cordycepin, D‑mannitol, and 
exopolysaccharides. C. militaris has been widely used in tradi-
tional Chinese medicine (3), and is claimed to have extensive 
pharmacological properties, including anti‑inflammatory prop-
erties, cell cycle disruption, enhancement of immune function, 
nucleic acid‑containing (DNA/RNA) and apoptosis‑inducing 
activities; anti‑fatigue, anti‑bacterial and anti‑diabetic proper-
ties; improving lung, liver and kidney functions; and aiding 
in the treatment of cancer as well as male and female sexual 
dysfunctions (3). C. militaris is therefore receiving much atten-
tion due to these potential health benefits, and it is often used 
as a substitute for C. sinensis in certain traditional Chinese 
medicine prescriptions as the two species contain similar 
bioactive ingredients (4). In view of the growing popularity of 
C. militaris, cultivation of the C. militaris stroma, a spore of 
C. militaris, is also conducted. A wide diversity of compounds 
have been isolated from different strains of Cordyceps as well 
as artificially cultivated C. militaris (4).

Cordycepin, also known as 3‑deoxyadenosine, is a specific 
polyadenylation inhibitor and is the main functional component 
in C. militaris (5). Cordycepin is an active small molecule and 
is implicated in modulating multiple physiological functions, 
including immune‑activation (anti‑virus, anti‑infection) (6), 
anti‑inflammatory, anti‑aging (adjustment of the physical 
condition, an anticancer effect and enhancement of sexual 
performance) (7) and anti‑tumor effects (8).
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Throughout the last 60 years, the antitumor mechanism 
of Cordycepin has become extensively studied. In 1961, 
Jagger et al (9) investigated the inhibition of Ehrlich mouse 
ascites tumor growth by cordycepin and Klenow (10) also 
investigated the effect of cordycepin on the incorporation of 
P32‑orthophosphate into the nucleic acid of ascites tumor 
cells in vitro. These studies prompted further research into the 
association between cordycepin and cancer. In the subsequent 
decades, numerous studies with regard to cordycepin and 
cancer were reported. For example, cordycepin was shown to 
induce antitumor effects or apoptosis in human head and neck 
squamous cell carcinoma (11), bladder cancer (12), thyroid 
carcinoma (13), breast cancer  (14), multiple myeloma (15), 
leukemia (5,16,17), lymphoma (18) and mouse leydig tumor 
cells (19). Additionally, the inhibitory effect of cordycepin 
was observed in hematogenic metastasis of mouse mela-
noma (20,21) and lung carcinoma cells (22). Cell cycle arrest 
was observed to be promoted by cordycepin via the regula-
tion of c‑Jun N‑terminal kinase (JNK) in human bladder and 
colon cancer cells  (23,24). In hematological malignancies, 
cordycepin exhibited cytotoxic and apoptogenic effects via 
the inactivation of polyadenylate polymerase and the resulting 
inhibition of mRNA polyadenylation (18). In terminal deoxy-
nucleotidyl transferase‑positive leukemic cells, these effects 
are more prominent (18).

2. Cell proliferation inhibition induced by cordycepin

It is important to understand how cordycepin inhibits cell prolif-
eration in tumor cells in order to develop it as a new agent for the 
prevention and treatment of cancer. The A3 adenosine receptor 
(A3AR) is a member of the AR family; it is overexpressed in 
cancer and inflammatory cells, however, low expression is 
exhibited in normal cells (25). Following cordycepin binding to 
A3AR, G protein is activated and subsequently inhibits the forma-
tion of cAMP and indirectly decreases phosphorylation of the 

serine/threonine kinase glycogen synthase kinase (GSK)‑3β. 
The resulting increased phosphorylation of β‑catenin causes 
it to be removed from the cytoplasm by ubiquitination, thereby 
preventing its nuclear import. A net suppression of cyclin D1 
and c‑myc is the result of this, which leads to the inhibition 
of cell growth (Fig. 1) (26). Thus, as cordycepin binds A3AR, 
which inactivates the GSK-3β/β‑catenin signaling pathway 
and subsequently suppresses cell division, cordycepin may 
present a potential therapeutic agent for the inhibition of 
tumor cell proliferation.

3. Cell apoptosis induced by cordycepin

Protein kinase A (PKA)/terminal deoxynucleotidyl trans‑
ferase (TdT) signaling pathway. In 1996, Koc  et  al  (27) 
speculated that cordycepin monophosphate in TdT‑positive 
cells may be able to activate PKA in place of cAMP, and that 
PKA may phosphorylate TdT, augmenting its activity as an 
endonuclease. In cell‑free experiments, the activity of recom-
binant TdT as an endonuclease digesting supercoiled plasmid 
DNA into linear fragments was significantly increased 
following phosphorylation of TdT by PKA. Therefore, 
the potential role of TdT as an apoptotic endonuclease in 
TdT‑positive leukemia cells following cordycepin exposure 
requires investigation in the future.

Caspase signaling pathway. Cordycepin is also involved 
in apoptosis through the caspase pathway. In 2011, 
Jen et al (19) confirmed that cordycepin was able to induce 
MA‑10 mouse Leydig tumor cell apoptosis via the caspase‑9 
pathway (Fig. 2), where cordycepin administration was found 
to increase the expression of caspase‑9, ‑3 and ‑7 proteins. 
The same year, Jeong et al (5) proposed a mechanism by 
which cordycepin induces the apoptosis of human leukemia 
cells through a signaling cascade involving a reactive oxygen 
species‑mediated caspase pathway, which was indicated by the 

Figure 1. Signaling pathway of cell proliferation inhibition under cordycepin stress.
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generation of reactive oxygen species, mitochondrial dysfunc-
tion, activation of capsases and cleavage of poly (ADP ribose) 
polymerase 1 (PARP) in the study. Imesch et al (28) demon-
strated activated caspase‑dependent, intrinsic apoptosis, which 
was indicated by the proteolytic cleavage of caspase‑9, caspase‑3 
and PARP. Choi et al (29) showed that cordycepin‑induced cell 
death in MDA‑MB‑231 cells was associated with the transloca-
tion of Bax from the cytosol to the mitochondria, a feature of the 
mitochondria‑mediated apoptotic pathway; this was confirmed 
by DNA fragmentation, terminal deoxynucleotidyl transferase 
dUTP nick end labeling, and immunocytochemical analysis. 
Additionally, cordycepin induced a dose‑dependent increase in 
mitochondrial translocation of Bax, causing the cytosolic release 
of cytochrome c and activation of caspase‑9 and ‑3. Notably, 
autophagy‑associated cell death was observed for MCF‑7 cells, 
demonstrated by the detection of an autophagosome‑specific 
protein and large membranous vacuole ultrastructure 
morphology in the cytoplasm.

Cell proliferation is inhibited by cordycepin via binding to 
A3AR; however programmed cell death will occur following the 
interaction of cordycepin and the death receptor, DR3, which 
is a death‑domain‑containing tumor necrosis factor family 
receptor (30). A previous study demonstrated that the expression 
levels of certain proteins related to apoptosis, including p53 and 
Bax, were increased following treatment with cordycepin for 
18 h, and also confirmed that DR3, caspase‑8, caspase‑1, cleaved 
caspase‑3 and cleaved PARP expression was increased (31). After 
cordycepin binding to the DR3 receptor, DR3 recruits initiator 
caspase‑8 via the adaptor protein tumor necrosis factor receptor 
type 1‑associated DEATH domain protein/Fas‑associated 
protein with death domain (FADD). Caspase‑8 subsequently 
oligomerizes, and is activated via autocatalysis. This indicates 
that activated caspase‑8 stimulates apoptosis via two parallel 
cascades: Direct activation of caspase‑3 or the release of cyto-
chrome c.

Direct activation of caspase‑3. Caspase‑8 may directly cleave 
and activate caspase‑3 (Fig. 2). In particular, caspase‑3 (also 
known as CPP32/Yama/apopain) (32‑34) comprises a 32 kDa 
zymogen that is cleaved into 17 kDa and 12 kDa subunits when 
it interacts with caspase‑8/9. When the procaspase is cleaved at 
a particular residue, the active heterotetramer may then form 
via hydrophobic interactions, resulting in four anti‑parallel 
β‑sheets from p17 and two from p12 to combine to form a 
heterodimer. The zymogen feature of caspase‑3 is necessary as, 
if unregulated, caspase activity would kill cells indiscriminately. 
Caspase 3 is an executioner caspase, and therefore its zymogen 
has almost no activity until it is cleaved by an initiator caspase 
after apoptotic signaling events have occurred (35). Western 
blot analysis demonstrated the induction of active caspase‑3 and 
PARP cleavage by cordycepin treatment, indicating that cordy-
cepin is able to activate the caspase‑3 pathway (36).

Release of cytochrome c. When caspase‑3 is activated, concur-
rently, caspase‑8 also cleaves the pro‑apoptotic Bcl‑2 family 
protein, Bid. Following this, truncated Bid (tBid) translocates 
to the mitochondria and induces cytochrome c release, which 
results in an increase of the Bax/Bcl‑xL ratio  (37). Cyto-
chrome  c sequentially binds apoptotic protease activating 
factor‑1 (Apaf1), forms an activation complex with caspase‑9 
and activates caspase‑3 (3). Furthermore, cytochrome c has 
been demonstrated to activate apoptosis‑inducing factor, which 
migrates to the nucleus and induces cell apoptosis; however, the 
associated signaling pathway is yet to be confirmed experimen-
tally (3).

p38/JNK signaling pathway. Based on the increased expres-
sion of PKC, extracellular signal-regulated kinase 1/2 
(ERK1/2) and c‑JNK, as determined by Western blot analysis, 
Pao et al (7) reported that cordycepin stimulated intracellular 
phospholipase C/PKC and mitogen‑activated protein kinase 

Figure 2. Signaling pathway of cell apoptosis under cordycepin stress.
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(MAPK) signal transduction pathways to induce cell death in 
MA‑10 mouse Leydig tumor cells. This result indicated that 
cordycepin induces tumor cell death through PKC/MAPK 
signaling pathways. Lee  et  al  (38) performed Western 
blot analysis, which demonstrated that JNK‑inactivating 
phosphatase was upregulated in response to treatment with 
cordycepin in human hepatocellular carcinoma Hep3B 
cells. Thus, according to the results of Pao et al  (7) and 
Lee et al (38), we hypothesize that cordycepin induces cell 
apoptosis via the activation of PLC/PKC and subsequent 
inactivation of JNK, which is an important component of 
the MAPK and downstream PLC/PKC signaling pathways. 
Western blot analysis performed by Chen et al (39,40) also 
found that 24 h treatment with 10 or 100 µmol/l cordycepin 
exhibited a synergistically apoptotic effect through the 
activation of JNK/caspase‑7/PARP pathway in human OC3 
oral cancer cells. These analyses indicate that cordycepin 
may also induce cancer cell apoptosis/death by PKC, MAPK, 
JNK, caspase‑7, and PARP pathways.

4. Conclusions and perspectives

Collectively, the findings that are discussed in the present 
review provide a novel insight into the effect of cordycepin 
on cell apoptosis, which supports new concepts for the treat-
ment of cancer. Cell proliferation and apoptosis involve the 
functional cooperation of many signaling molecules. As 
summarized in Fig. 1, cordycepin inhibits cell proliferation 
via binding A3AR, activating G protein, inhibiting cAMP 
formation, decreasing GSK‑3β/β‑catenin activation and 
suppressing cyclin D1 and c‑myc expression.

Cordycepin induces cell apoptosis through three signaling 
pathways: PKA/TdT signaling pathway, caspase signaling 
pathway and p38/JNK signaling pathway. The caspase 
signaling pathway is the most prominent signal pathway by 
which cell apoptosis is induced by cordycepin. Following 
cordycepin binding to the DR3 receptor, DR3 activates 
caspase‑8 via FADD. Subsequently, caspase‑8 may directly 
activate caspase‑3 or induce mitochondria to release cyto-
chrome c, which also activates caspase‑3 with the help of 
Apaf1 and caspase‑9.

These results indicate that a cocktail therapy with cordy-
cepin may greatly reduce the risk of cancer cell metastasis of 
all types. The significance of cordycepin as a natural medi-
cine is that may be used to treat or prevent cancer progression 
in the future (41). Further studies are required to determine 
which of the signaling pathways is most important for the 
treatment of cancer with cordycepin. In addition, many of the 
previous studies were focused on the activity of cordycepin 
at a cellular level. Future in vivo studies investigating the 
inhibition of tumor progression by cordycepin may provide 
further insight into the mechanisms behind its activity.
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