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Abstract. To the best of our knowledge, the microRNA 
(miR/miRNA) expression profile of plasma exosomes in 
ovarian cancer has not been previously studied. The aim of the 
present study was to investigate the practicality of using plasma 
exosomal miRNAs as novel serological biomarkers of ovarian 
cancer. In the study, exosome-like vesicles were purified 
from the plasma of patients with ovarian cancer and healthy 
women using differential centrifugation. The purified vesicles, 
ranging from 50‑100 nm in size, were identified as exosomes 
by transmission electron microscopy and western blotting. 
High-throughput sequencing demonstrated that 65 known 
miRNAs, 34 of which were upregulated and 31 downregulated, 
were differentially expressed between patients with ovarian 
cancer and healthy women (P<0.05; fold change ≥2). The 
miRNA expression levels of hsa-miR-106a-5p, hsa-let-7d-5p 
and hsa-miR-93-5p were significantly increased, whereas 
hsa-miR-122-5p, hsa-miR-185-5p and hsa-miR-99b-5p expres-
sion levels were significantly decreased in the exosomes of 
patients with ovarian cancer compared with those in the healthy 
controls. Additionally, the miRNA expression levels of plasma 
hsa‑miR‑93‑5p were significantly increased in patients with 
ovarian cancer compared with those in the healthy controls, 
while the plasma expression levels of hsa-miR-122-5p and 
hsa‑miR‑99b‑5p were significantly decreased in patients with 
ovarian cancer compared with those in the healthy controls. 
Overall, the present study identified plasma and exosomal 
miRNAs with dysregulated expression in patients with 
ovarian cancer compared with that in healthy controls, and 
the differentially expressed miRNAs may have potential as 

diagnostic and prognostic targets for the treatment of patients 
with ovarian cancer.

Introduction

Ovarian cancer is the seventh most common cancer and the fifth 
leading cause of cancer-associated mortality among women 
worldwide (1), with metastasis being the principal cause of 
mortality in patients with this disease (2). Although progress 
has been made in the treatment of ovarian cancer by improved 
debulking surgery followed by platinum/taxane-based 
chemotherapy, the overall 5-year survival rate is at present 
15-30% (3). Therefore, a novel biomarker to improve the early 
detection of ovarian cancer is required.

MicroRNAs (miRs/miRNAs) are a class of small 
non-coding RNA molecules that regulate post-transcriptional 
gene regulation (4,5). miRNAs suppress the protein expres-
sion of specific mRNAs through either repressing translation 
or initiating degradation of a targeted mRNA (6). Increasing 
evidence has demonstrated that miRNAs serve key roles in the 
development and pathogenesis of a range of cancer types due 
to abnormal expression of miRNAs (7). miRNAs have been 
used as biomarkers for clinical diagnosis and prognosis in 
human cancer (8). In particular, circulating miRNAs have been 
demonstrated to be candidates for biomarkers of cancer (9). 
Due to the ease and repeatability of sample collection, serum 
and plasma miRNAs are frequently used as non-invasive 
biomarkers for cancer detection (9). 

Exosomes are small (30- to 150-nm) membrane vesicles 
originating from the endosomal membrane compartment (10). 
Exosomes secreted by donor cells mediate cellular commu-
nication to recipient cells (11). Exosomes are present in the 
body fluids, including the plasma, urine, saliva, breast milk 
and synovial fluid (8,12). A previous study demonstrated that 
exosomal miRNAs are stable in the blood, as exosomes are 
able to protect them from degradation by enzymes, including 
RNase (9). Cancer cells additionally release exosomes into the 
tumour microenvironment and peripheral blood of patients 
with cancer (13). Exosomes contain numerous cell‑specific 
proteins [such as CD63 antigen (CD63) and heat shock protein 
70 kDa (HSP70)], mRNAs and miRNAs (14). Exosomal 
miRNA has a potential role as a diagnostic biomarker in 
human cancer (9). However, the functional role of plasma 
exosomal miRNA in patients with ovarian cancer remains 
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largely unknown. In the present study, the miRNA profile 
of plasma exosomes in healthy individuals and patients with 
ovarian cancer was examined. 

Materials and methods

Patients and plasma collection. The present study was 
approved by The Human Investigation and Ethical Committees 
of the Gansu Provincial Maternity and Child Care Hospital 
(Gansu, China) and conducted according to their guidelines 
and regulations. All participants provided written informed 
consent. Plasma samples were collected from 30 patients with 
ovarian cancer at The Gansu Provincial Maternity and Child 
Care Hospital between January 2014 and December 2017. 
The age of the patients ranged between 42 and 72 years 
[mean age ± standard deviation (SD), 53.34±2.34 years]. All 
patients were diagnosed with ovarian cancer according to the 
Tumor-Node-Metastasis (TNM) staging system (15), and none 
of the patients had received any surgery, radiotherapy, chemo-
therapy or other treatments. Patients with systemic diseases or 
other ocular diseases were excluded from the present study. 
The plasma samples of 30 healthy women (the control group) 
were additionally obtained during the same period. The age 
range of the control group was 45-62 years, with a mean 
age ± SD of 52.67±3.21 years. 

Fasting blood (10 ml) was collected in ethylenediamine-
tetraacetic acid tubes, thoroughly mixed and centrifuged at 
2,000 x g (5430R; Eppendorf, Germany) for 10 min at 4˚C. 
The plasma was carefully removed using a pipette, collected in 
750‑µl aliquots and frozen at ‑80˚C until required.

Cell culture. Human ovarian carcinoma cells (OVCa-3), purchased 
from Cells Resource Center Shanghai Institutes Biological 
Sciences, Chinese Academy Sciences (Shanghai, China), were 
cultured in RPMI-1640 medium containing 10% fetal bovine 
serum, with 5% penicillin-streptomycin (Gibco; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) in 5% CO2 at 37˚C.

Exosome preparation and size determination. Exosomes were 
prepared using differential ultra-centrifugation as follows: 
Plasma (5 ml) was centrifuged at 1,600 x g for 20 min at 4˚C 
and at 10,000 x g for 30 min at 4˚C. The supernatant was 
filtered through 0.22‑µm disposable filter units (Merck KGaA, 
Darmstadt, Germany) and centrifuged at 100,000 x g for 2 h 
at 4˚C. Subsequent to washing with 10 ml PBS (Invitrogen; 
Thermo Fisher Scientific, Inc.), the exosomes were suspended 
in 0.1 ml PBS and stored at ‑80˚C until required. The diam-
eter of the exosomes was determined using a Zetasizer Nano 
(Malvern Instruments China, Shanghai, China) according 
to the manufacturer's protocol. The purified exosomes 
were observed using an x250,000 magnification EM-2010 
transmission electron microscope (JEOL, Ltd., Tokyo, Japan).

Protein preparation and western blotting. The total protein 
was extracted from exosomes using RIPA lysis buffer 
(Sigma‑Aldrich; Merck KGaA) containing a protease inhibitor 
cocktail (Sigma‑Aldrich; Merck KGaA). Samples were also 
quantified using the BCA protein assay kit (Thermo Fisher 
Scientific, Inc.) and 20 µg proteins were separated on a 10% 
SDS-PAGE gel and transferred to nitrocellulose membranes. 

After the membranes were blocked with 5% skimmed milk 
in PBS-Tween (0.5% Tween-20) (Invitrogen; Thermo Fisher 
Scientific, Inc.) for 2 h at room temperature, they were incu-
bated overnight at 4˚C with either mouse anti‑CD63 (1/1,000; 
cat. no. ab193349; Abcam, Cambridge, UK) or mouse 
anti-HSP70 (1/1,000; cat. no. SAB4200714; Sigma-Aldrich; 
Merck KGaA). Subsequent to incubating with the anti‑mouse 
(cat. no. PA1-74421; Invitrogen; Thermo Fisher Scientific, 
Inc.) secondary antibody at 1/10,000 dilution for 1 h at room 
temperature, the membranes were visualized by exposing 
X‑ray films using Pierce enhanced chemiluminescent visual-
ization reagent (Thermo Fisher Scientific, Inc.).

Isolation of exosomal RNAs and small RNA sequencing. 
The total RNA was extracted from plasma exosomes using 
an RNeasy Mini Spin kit (Qiagen GmbH, Hilden, Germany) 
according to the manufacturer's protocol. The RNA concen-
tration and integrity were determined using an Agilent 2100 
bioanalyzer system (Agilent Technologies GmbH, Waldbronn, 
Germany). Small RNA sequencing was performed using 
the BGISEQ-500 sequencer (BGI Park, Shenzhen, China). 
Low-quality reads were removed, and adaptor sequences and 
small RNAs, which mapped perfectly to the human genome 
(ftp://ncbi.nlm.nih.gov/genomes/Homo_sapiens) were used 
for further analysis. According to the seed sequences, target 
mRNAs were predicted and obtained from TargetScan (release 
7.1; http://www.targetscan.org/vert_71/). The miRNA expres-
sion levels were estimated by the number of reads per million 
and the relative miRNA expression levels were analyzed using 
the DEGseq method (16). 

Target gene prediction and pathway analysis. Target genes 
of differentially expressed miRNAs were predicted by three 
databases, including TargetScan (17), miRanda (18) and 
RNAhybrid (19). The target genes were analyzed in terms of 
Gene Ontology (GO) functional annotation (20) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis (21) using KOBAS v3.0 (http://kobas.cbi.
pku.edu.cn/anno_iden.php).

Plasma RNA extraction. Total RNA was extracted from plasma 
using an miRNeasy Serum/Plasma kit (cat. no. 217184, Qiagen 
GmbH). A total of 200 µl plasma was mixed with QIAzol 
Lysis Reagent (cat. no. 79306; Qiagen GmbH) according to the 
manufacturer's protocols and the homogenate was incubated at 
room temperature for 5 min. Subsequently, 25 fmol synthetic 
Caenorhabditis elegans miR-39 (cel-miR-39; Ambion; Thermo 
Fisher Scientific, Inc.) was spiked into the mixture. Subsequently, 
the RNA was extracted according to the manufacturer's protocol. 
The total RNA was eluted into 14 µl nuclease-free water and the 
RNA concentration was measured using a NanoDrop ND-2000 
spectrophotometer (NanoDrop Technologies; Thermo Fisher 
Scientific, Inc., Wilmington, DE, USA).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA (100 ng) was used for reverse transcrip-
tion to cDNA using the miScript II RT kit (Qiagen GmbH). 
The reverse transcription reaction contained 2 µl total RNA 
(~100 ng), 2.2 µl plasma spike-in control, 5 µl 5X miScript 
HiFlex Buffer, 2 µl 10X miScript Nucleics mix, 2 µl miScript 
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Reverse Transcriptase mix and 7.8 µl RNase-free water. 
The reverse transcription temperature protocol used was as 
follows: 37˚C for 60 min, 95˚C for 5 min and then held at 4˚C 
until required. qPCR was performed using miScript SYBR 
Green PCR kit (Qiagen GmbH). The reactions were incubated 
in a 96‑well plate at 95˚C for 15 min, followed by 40 cycles 
of 94˚C for 15 sec and 60˚C for 60 sec. The miScript primers 
are listed in Table SI. The Cq values were median-normalized 
to synthetic spike-in cel-miR-39 as described previously (9). 
Relative fold-changes were calculated as using the 2-ΔΔCq 
method (22).

Statistical analysis. All statistical analyses were performed 
using GraphPad Prism 5 (GraphPad Software, Inc., La 
Jolla, CA, USA), and a one-tailed unpaired t-test was used 
for comparing differences between two groups. P<0.05 was 
considered to indicate a statistically significant difference. 

Results 

Clinical characteristics. Plasma samples from 30 patients 
with epithelial ovarian cancer were obtained. According to the 
TNM staging, 2 cases were classed as stage I, 4 cases were 
classed as stage II, and 24 cases were classed as stage III-IV 
(Table SII). Patients with ovarian cancer were diagnosed by 
postoperative histopathology, and none of the patients had 
received any surgery, radiotherapy, chemotherapy or any 
other form of treatment. Any patients with systemic diseases 
or ocular diseases were excluded from the present study. The 
plasma samples of 30 healthy women (the control group) were 
additionally obtained during the same time period (Table SII). 
There was no significant difference between the age distribu-
tions of the two groups (P>0.05; Table SII).

Identification of plasma exosomes from patients with ovarian 
cancer. The diameter of extracellular vesicles (EVs) isolated 
from the plasma of healthy individuals and patients with 
ovarian cancer primarily ranged between 50 and 100 nm in 
diameter (Fig. 1A and B). Transmission electron microscopy 
demonstrated that the EVs were spherical vesicles with a 
similar diameter to the exosomes (Fig. 1C and D). Furthermore, 
two known exosome markers, CD63 and HSP70 (23), were 
observed in the purified EVs of the patients with ovarian cancer 
and the healthy individuals (Fig. 1E). However, CD63 was not 
detected in the lysates from the OVCar-3 cells (Fig. 1E), which 
indicates that the exosomes had been adequately purified.

Differentially expressed miRNAs in plasma exosomes. Using 
a two-fold change and P<0.05 as a threshold cut-off, 65 
miRNAs were identified to be differentially expressed in the 
exosomes in the healthy individuals compared with those in 
the patients with ovarian cancer. Among the differentially 
expressed miRNAs, 34 were upregulated (Table SIII), and 31 
were downregulated (Table SIV) in the exosomes of patients 
with ovarian cancer compared with the exosomes of healthy 
individuals. The top 10 differentially expressed miRNAs 
were hsa-miR-106a-5p, hsa-miR-185-5p, hsa-miR-99b-5p, 
hsa-miR-122-5p, hsa-miR-92b-3p, hsa-miR-584-3p, 
hsa-miR-744-5p, hsa-miR-92a-3p, hsa-miR-93-5p and 
hsa-miR-150-5p. A volcano plot of the differentially expressed 

miRNAs, where red and green indicate significantly upregu-
lated and downregulated miRNAs, respectively is presented 
in Fig. 2. 

Figure 1. Identification of exosome‑like vesicles purified from the plasma of 
healthy women and patients with ovarian cancer. Diameter distribution of puri-
fied exosome‑like vesicles from (A) healthy individuals and (B) patients with 
ovarian cancer. Transmission electron microscopy of purified exosome‑like 
vesicles from (C) healthy individuals and (D) patients with ovarian cancer. 
Scale bar, 100 nm. (E) Western blotting of CD63 and HSP70 protein expres-
sion in exosome‑like vesicles purified from the plasma of patients with ovarian 
cancer and healthy women. Proteins from OVCaR-3 cells were used as a 
control. CD63, granulophysin; HSP70, heat‑shock‑protein 70 KDa.

Figure 2. Volcano plot of differentially expressed miRNAs in patients with 
ovarian cancer compared with healthy women. Plotted along the x-axis is the 
mean of log2 fold-change and the y-axis is the negative logarithm of the -log 
P‑values. Red points represent significantly upregulated miRNAs and green 
points represent significantly downregulated miRNAs with a >2.0‑fold change.
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Validation of differentially expressed miRNAs by RT‑qPCR 
analysis. The exosomes were isolated from the plasma of 
30 patients with ovarian cancer and from the 30 healthy 
individuals. Relative expression levels of hsa-miR-106a-5p, 
hsa-let-7d-5p, hsa-miR-93-5p, hsa-miR-320a, hsa-miR-185-5p, 
hsa-miR-99b-5p, hsa-miR-122-5p and hsa-miR-92a-3p were 
analyzed. Compared with those in healthy individuals, 
the expression levels of hsa-let-7d-5p, hsa-miR-93-5p, 
hsa-miR-106a-5p were significantly upregulated, whereas 
the expression levels of hsa-miR-122-5p, hsa-miR-99b-5p 
and hsa‑miR‑185‑5p were significantly downregulated in the 
plasma exosomes of ovarian cancer (Fig. 3). The expression 
levels of hsa‑miR‑320a and hsa‑miR‑92a‑3p were not signifi-
cantly changed (Fig. 3).

Expression levels of exosomal miRNAs in plasma. The expres-
sion levels of six selected miRNAs in the exosome (including 
hsa-miR-106a-5p, hsa-miR-122-5p, hsa-miR-185-5p, 
hsa-let-7d-5p, hsa-miR-93-5p, and hsa-miR-99b-5p) were 
consistent with the sequencing data (Tables SIII and SIV). 
Subsequently, the plasma expression levels of these 6 miRNAs 
were examined in healthy individuals and patients with ovarian 
cancer. Compared with the expression levels in healthy indi-
viduals, the expression levels of exosomal hsa-miR-106a-5p 
were significantly increased (P<0.001), and hsa‑miR‑122‑5p 
and hsa‑miR‑185‑5p levels were significantly decreased, in the 
plasma of patients with ovarian cancer (P=0.007 and P=0.018, 
respectively; Fig. 4). There was no significant difference in 
exosomal hsa-let-7d-5p, hsa-miR-93-5p and hsa-miR-99b-5p 
expression in the plasma between healthy individuals and 
patients with ovarian cancer (P=0.562, P=0.569 and P=0.997, 
respectively; Fig. 4). 

Enriched biological processes and molecular functions of 
miRNA targeted genes. GO analysis of the target genes of the 
differentially expressed miRNAs suggested that they were 
highly enriched in signaling and metabolism of biological 
process, transition metal ion binding, adenyl ribonucleotide 
binding, and signal transducer activity of molecular function. 
KEGG pathway analysis suggested that the target genes of 
those miRNAs were primarily involved in metabolic pathways, 
pathways in cancer, and MAPK signaling pathways (Fig. 5).

Discussion

Ovarian cancer is the leading cause of mortality among gyne-
cological malignancies in developed countries (24). Due to the 
asymptomatic development of ovarian cancer, it the diagnosis 
frequently occurs at an advanced and incurable stage (25). At 
present, there is a dearth of reliable diagnostic markers and 
methods for the early detection and screening of the disease. 
Previous studies have demonstrated that circulating miRNAs 
may be valuable biomarkers for a variety of cancer types using 
blood plasma or serum (26,27). Additionally, various studies 
demonstrated the diagnostic potential of circulating miRNAs 
by analyzing the body fluids of patients with ovarian cancer, 
including the serum and plasma (28,29). Previous studies 
demonstrated that miRNAs were bound to miRNA-binding 
proteins or packaged into exosomes to avoid degradation (11,30). 
Specific miRNAs are packaged into exosomes secreted by the 
tumour cells that promote tumour spreading and growth in the 
surrounding microenvironment (31). However, to the best of our 
knowledge, there are no studies examining plasma exosomal 
miRNAs in patients with ovarian cancer.

Exosomes are membrane vesicles ~40-100 nm in size, and 
are released from a variety of cells (32); they are present in a 
number of body fluids, including blood, amniotic fluid, urine, 
saliva, breast milk and cerebrospinal fluid (33). Exosomes 
contain numerous types of molecules, including proteins, 
lipids, metabolites, mRNAs and miRNAs (34). In the present 
study, EVs were purified from the plasma of patients with 
ovarian cancer and healthy women. The mean diameters of the 
vesicles from the two groups ranged between 100 and 150 nm, 
which is similar to those previously observed in patients with 
ovarian cancer (35). These EVs were demonstrated to enrich 
CD63 and HSP70, which are markers that have been used for 
exosome identification (36), suggesting that the EVs were most 
likely exosome‑like EVs. Taylor and Gercel‑Taylor (37) first 
demonstrated that 8 exosomal miRNAs (miR-21, miR-141, 
miR-200a, miR-200b, miR-200c, miR-203, miR-205 and 
miR-214) from the serum of patients with ovarian cancer were 
upregulated compared with those from the benign controls. 
The aforementioned miRNA signatures were similar between 
ovarian tumour cells and exosomes from patients with ovarian 
cancer (37). Recent studies demonstrated that serum exosomal 

Figure 3. Validation of the differential expression of 8 miRNAs identified in the microarray using RT‑qPCR. The expression levels of plasma exosomal miRNA 
were analysed in patients with ovarian cancer (n=30) and healthy women (n=30) using RT-qPCR. A total of 8 miRNAs were randomly selected, including 4 
upregulated miRNAs (hsa-miR-320a, hsa-let-7d-5p, hsa-miR-93-5p and hsa-miR-106a-5p) and 4 downregulated miRNAs (hsa-miR-92a-3p, hsa-miR-122-5p, 
hsa-miR-99b-5p and hsa-miR-185-5p). *P<0.05 and **P<0.01. RT-qPCR, reverse transcription-quantitative polymerase chain reaction; miR/miRNA, microRNA.
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miRNAs, including miR-99a-5p and miR-145-5p, may serve 
as important biomarkers for the diagnosis and treatment 
of ovarian cancer (38,39). The miRNA profile in plasma 

exosomes derived from patients with ovarian cancer and healthy 
women was examined using high-throughput sequencing in 
the present study. A total of 65 plasma exosomal miRNAs 

Figure 4. Expression of 6 exosomal miRNAs in the plasma of patients with ovarian cancer and healthy women. Expression levels of 6 miRNAs (hsa-let-7d-5p, 
hsa-miR-93-5p, hsa-miR-106a-5p, hsa-miR-122-5p, hsa-miR-99b-5p and hsa-miR-185-5) were analysed in the plasma of patients with ovarian cancer (n=30) 
and healthy women (n=30). The values of the relative gene expression for target miRNA were normalized to Caenorhabditis elegans miR-39 expression. 
*P<0.05, **P<0.01 and ***P<0.001. miR/miRNA, microRNA.

Figure 5. Top Kyoto Encyclopedia of Genes and Genomes pathways regulated by predicted target genes of differentially expressed miRNAs. GABA, 
γ‑aminobutyric acid; VEGF, vascular endothelial growth factor; MAPK, mitogen‑activated protein kinase.
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were deregulated in patients with ovarian cancer compared 
with those in the healthy women. A total of 8 differentially 
expressed miRNAs were selected at random. The expression 
levels in the plasma samples of the 8 miRNAs were evaluated 
in the patients with ovarian cancer and healthy controls using 
RT-qPCR. The expression levels of plasma hsa-miR-106a-5p, 
hsa-let-7d-5p and hsa-miR-93-5p were increased, and the 
expression levels of hsa-miR-122-5p, hsa-miR-185-5p and 
hsa-miR-99b-5p were decreased in the patients with ovarian 
cancer compared with those in the healthy controls. A recent 
study by Pan et al (40) demonstrated that 8 miRNAs (miR-16, 
miR-21, miR-93, miR-100, miR-126, miR-200b, miR-223 and 
miR-320) were deregulated in the plasma exosomes of patients 
with ovarian cancer compared with those in healthy women. 
Similar to these results, the expression levels of hsa-miR-320 
were increased in the patients with ovarian cancer, whereas 
the expression levels of hsa-miR-92a-3p were decreased. 
High expression levels of hsa-miR-320 are associated with the 
invasion and metastasis of ovarian cancer (41). The present 
data suggest that plasma exosomal miRNA may be used as 
a novel biomarker for ovarian cancer. The exosomal miRNA 
signatures were similar to those from the originating tumour 
cells, suggesting that the tumour profiles were accurately 
reflected by the circulating miRNA profiles (37). Emerging 
evidence has indicated that circulating miRNAs may serve as 
potential biomarkers for the early detection of ovarian cancer, 
the associated prognosis and the sensitivity of the disease to 
chemotherapy (28,42). In the present study, the plasma expres-
sion levels of exosomal miRNAs in patients with ovarian 
cancer and healthy female individuals were examined. The 
expression levels of plasma hsa‑miR‑93‑5p were significantly 
increased in patients with ovarian cancer compared with those 
in the healthy controls. Furthermore, the expression levels 
of hsa-miR-122-5p and hsa-miR-99b-5p were decreased in 
patients with ovarian cancer compared with those in healthy 
women. The management strategies used at present for ovarian 
cancer rely on clinicopathological factors, including tumour 
histology and cancer stage. A recent study demonstrated that 
alterations in the expression levels of circulating miRNAs 
were associated with the prognosis of patients with ovarian 
cancer (28). 

To examine the regulatory roles of differentially expressed 
miRNAs, the target genes of those miRNAs were predicted. 
Among the target genes of differentially expressed miRNAs, 
certain miRNAs are involved in pathways associated with 
cancer, MAPK signaling, regulation of the actin cytoskeleton 
or proteoglycans in cancer. For example, hsa-miR-122 inhibits 
the migration, invasion and epithelial-mesenchymal transition 
of ovarian cancer cells by regulating prolyl 4-hydroxylase 
subunit α-1 (43). 

In conclusion, there was a significant difference in the 
expression levels of plasma exosomal miRNAs in patients 
with ovarian cancer compared with those in healthy women. 
The role of circulating exosomal miRNAs and the possibility 
of their diagnostic use in early detection requires further 
investigation.
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