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Abstract. In a recent reclassification, adenocarcinoma in situ 
has been redefined as a glandular precursor lesion (GPL), 
alongside adenomatous hyperplasia. This updated clas‑
sification necessitates corresponding adaptations in clinical 
diagnostic and therapeutic protocols. Consequently, the 
present study aimed to construct and validate a nomogram 
utilizing computed tomography (CT) texture features to 
effectively discriminate between minimally invasive adeno‑
carcinoma (MIA) and GPL within sub‑centimeter pulmonary 
ground glass nodules (GGNs). To achieve this objective, the 
present study employed rigorous statistical methodologies, 
including the Mann‑Whitney U test and binary logistic regres‑
sion analysis, to identify distinguishing features and establish 
predictive models. Subsequently, the diagnostic performance 
of these models underwent evaluation through receiver oper‑
ating characteristic (ROC) curves. The area under the curve 
(AUC) in ROC curves was compared using DeLong's test. 
Additionally, the nomogram was constructed using R software 
and its diagnostic performance was validated through calibra‑
tion curves. Within both the training and validation datasets, 
the AUCs were observed to be 0.992 [95% confidence interval 
(CI): 0.980‑1.000] and 0.975 (95% CI: 0.935‑1.000), respec‑
tively. DeLong's test revealed significant disparities in the 

AUCs between the nomogram and single‑parameter models 
(P<0.001). Furthermore, calibration curves demonstrated 
concordance between the training and validation datasets. In 
conclusion, the application of a CT texture‑based nomogram 
model has demonstrated aptitude in differentiating between 
MIA and GPL within sub‑centimeter GGNs. This model 
streamlines the identification of optimal surgical interven‑
tions and enhances the sphere of clinical decision‑making and 
management.

Introduction

The incidence and mortality rates of lung cancer surpass 
those of all other malignant tumors, accounting for ~20% of 
cancer‑related deaths worldwide (1). Early diagnosis and treat‑
ment are pivotal in improving the prognosis and survival rates 
of lung cancer patients. In the 2021 WHO classification (2), 
adenocarcinoma in  situ (AIS) has been reclassified as a 
glandular precursor lesion (GPL) along with adenomatous 
hyperplasia (AAH), while the subcategories of lung cancer 
now include minimally invasive adenocarcinoma (MIA) and 
invasive adenocarcinoma (IAC). This classification update 
necessitates corresponding adjustments to clinical diagnosis 
and treatment protocols. Currently, management follow‑up 
strategies predominantly apply to AAH and AIS, whereas 
MIA warrants prompt surgical intervention (3,4). Furthermore, 
although some studies have indicated comparable long‑term 
efficacy and 5‑year survival rates between AAH, AIS and 
MIA surgeries, others have found that MIA exhibits higher 
Ki67 levels and EGFR mutation rates compared with AIS (5). 
Therefore, achieving precise discrimination of MIA from 
GPL during management follow‑up and pre‑surgical stages 
provides important insights for determining optimal clinical 
intervention timing, implementing surgical protocols and 
assessing prognosis.

Previous studies have demonstrated that high‑resolution 
low‑dose computed tomography (CT) is currently the most 
effective screening tool, reducing lung cancer mortality 
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by 20% (6). Over 90% of these cases represent early‑stage lung 
cancer, with pulmonary ground glass nodules (GGNs) being 
the primary manifestation on CT scans. While pathological 
biopsy serves as the gold standard for diagnosing lung cancer 
types, frozen section analysis has emerged as a valuable method 
for rapid intraoperative assessment of nodules, distinguishing 
between benign and malignant lesions and determining 
histological subtypes. This information plays a crucial role 
in guiding surgical strategies for lung nodules (7,8). However, 
due to the small size and low density of lung nodules, sampling 
often yields suboptimal results, resulting in a concordance rate 
of only ~68% between intraoperative frozen section analysis 
and postoperative paraffin pathology (8). Some researchers 
have explored the use of traditional CT imaging features (such 
as nodule size, density and solid component proportion) to 
differentiate between MIA and GPL (9,10). However, these 
features exhibit significant overlap across different nodule 
subtypes, leading to low diagnostic efficacy (11). Moreover, 
the extraction of these features heavily relies on the subjective 
interpretation skills and clinical experience of the radiolo‑
gist (8). In addition, traditional techniques often struggle to 
identify nodules with smaller volumes and mixed densities. 
The increasing prevalence of GGNs with diameters <10 mm, 
detected through low‑dose CT screening for early lung cancer, 
presents new challenges in clinical diagnosis. Some studies 
have proposed a critical value of 10 mm diameter for distin‑
guishing between glandular precursor lesions and invasive 
lesions (9,10,12). Nevertheless, clinical practice has revealed 
numerous GGNs ≤10mm confirmed as MIA or IAC  (10), 
leading to continuing debates about the management strategies 
for GGNs of this size (13). Consequently, there is an urgent 
need for innovative and accurate techniques to enable the 
precise preoperative diagnosis of MIA and GPL.

Radiomics is a powerful technique that enables the 
extraction and analysis of numerous radiomics features from 
medical imaging data with high efficiency. This approach 
holds significant promise in distinguishing between different 
pathological subcategories of lung nodules, assessing the 
extent of infiltration and evaluating prognostic outcomes (14). 
Texture analysis, on the other hand, involves the extraction and 
quantitative analysis of non‑macroscopic and deep‑level CT 
image features that reflect the tumor's heterogeneity to some 
extent. It has demonstrated utility in various aspects, including 
tumor differential diagnosis, prognostic evaluation, treatment 
response prediction and monitoring (15‑17). CT texture analysis 
is widely utilized for identifying benign and malignant solitary 
lung nodules and evaluating invasiveness, exhibiting excep‑
tional performance (18,19). To date, there have been no reports 
on the application of texture analysis for the identification of 
MIA and GPL in sub‑centimeter GGNs. Therefore, the present 
study aimed to develop and validate a nomogram based on CT 
quantitative parameters and texture features for improving the 
ability to discriminate MIA from AAH/AIS, thereby providing 
important guidance for formulating clinical treatment plans and 
optimizing the timing of surgical interventions.

Materials and methods

Patient and nodule selection. The present retrospective study 
received approval from the ethics committee and written 

informed consent was waived. Patients with sub‑centimeter 
GGNs who underwent high‑resolution CT (HRCT) were 
enrolled at the First People's Hospital of Foshan between 
January 2019 and February 2022. The flowchart illustrating 
patient inclusion and exclusion is shown in Fig. 1, which was 
in accordance with previous studies (17,19,20). The inclusion 
criteria were as follows: i) GGNs with a maximum diameter 
≤10 mm, evaluated using lung window settings [level: ‑600 
Hounsfield units (HU); width: 1,500 HU]; ii) confirmation of 
AAH, AIS or MIA through surgical excision and pathology 
examination referring to the 2021 WHO classification (2); 
iii) availability of chest HRCT examination conducted within 
one month prior to surgical treatment; iv) absence of prior 
history of puncture, chemotherapy, or radiotherapy; v) absence 
of lung cancer or other malignant tumors. The exclusion 
criteria consisted of: i) inability to accurately delineate the 
region of interest due to the presence of artifacts or other 
lesions; ii)  inaccurate identification or segmentation of CT 
images, including incomplete delineation or failure to avoid 
blood vessels, bronchi, pleura and other structures. The final 
selected cases were divided into two groups: 49 cases with 
AAH/AIS and 62 cases with MIA. The recruited patients 
were randomly assigned to a training set (78 nodules) and a 
validation set (33 nodules) at a ratio of 7:3.

CT image acquisition. The CT examinations for all patients 
included in the study were conducted using Philips CT 
scanners: the Philips Ingenuity 64‑slice CT scanner (Philips 
Medical Systems, Inc.) and the Philips Brilliance iCT 
256‑slice CT scanner (Philips Ultrasound, Inc.). The patients 
were positioned in the supine (lying face‑up) posture and the 
scanning range extended from the apex to the base of the 
lungs. Scans were performed at the end of a deep inspira‑
tion, followed by breath‑holding to ensure stability. A tube 
voltage of 120 kV was used and the tube current employed 
automatic milliamp‑second technology. The pitch value was 
set to 1.0, the collimation was 0.625x1.25 mm and the field 
of view (FOV) was set to 350x350 mm, with a pixel size of 
512x512. The acquired images were reconstructed using both 
the standard algorithm and the high‑resolution algorithm. 
The reconstructed slices had a thickness of 1  mm and a 
spacing of 1 mm.

CT image segmentation and feature extraction. The CT 
images in DICOM format were imported into the uAI‑
ChestCare software (version 0130; Shanghai United Imaging 
Healthcare Co., Ltd.), which was used for image segmentation 
and extraction of texture features (20,21). This software facili‑
tated the automatic delineation of the complete 3D region of 
interest (ROI) for the identified lesions by outlining the tumor 
boundary on consecutive axial lung window images (with a 
window width of 1,500 HU and a window level of ‑600 HU). 
Subsequently, various quantitative and texture features were 
computed, encompassing maximum diameter (MD), solid 
volume (SV), solid volume rate (SVR), solid quality (SQ), 
solid quality rate (SQR), maximum computed tomography 
attenuation (CTmax), minimum computed tomography attenua‑
tion (CTmin), mean computed tomography attenuation (CTmean), 
median computed tomography attenuation (CTmedian), variance, 
kurtosis, skewness and entropy. To evaluate the accuracy of 



ONCOLOGY LETTERS  27:  26,  2024 3

the software's automated nodule delineation, two radiologists 
with over 10 years of experience in thoracic imaging diagnosis 
independently assessed the results. They excluded cases where 
the nodule contour was incomplete or where blood vessels, 
bronchi, pleura and similar structures were not properly 
avoided. In instances where disagreements arose regarding the 
exclusion of certain cases, they negotiated to precisely delin‑
eate nodule boundaries while avoiding the inclusion of bronchi, 
large vessels, vacuole and normal tissue beyond the pleura in 
accordance with previous studies (22,23). A senior physician 
with 15 years of experience in thoracic imaging diagnosis 
verified the preceding two radiologists' segmentation results 
and provided the final confirmation of the results (19). The CT 
quantitative and texture features extraction of AIS (Fig. 2A) 
and MIA (Fig. 2B) were taken as examples.

Nomogram model building. The clinical, CT quantitative and 
texture features of both the training and validation groups 
were subjected to analysis using the Mann‑Whitney U test to 
identify the effective distinguishing features. Subsequently, 
binary logistic regression analysis was employed to develop 
both a single‑parameter model and a combined multi‑param‑
eter nomogram model. The diagnostic performance of these 
prediction models was assessed through the construction of 
receiver operating characteristic (ROC) curves (24) and the 
comparison of area under the curve (AUC) of ROC curves 
was performed using DeLong's test  (25). Furthermore, the 
construction of the nomogram was accomplished using the 

rms package in the R software (version 4.0, R Foundation; 
http://www.Rproject.org). To evaluate the diagnostic perfor‑
mance of the nomogram prediction model, a calibration curve 
was employed.

Statistical analysis. The statistical analysis was conducted 
using SPSS version 20 software (IBM Corp.). Continuous 
variables were summarized as mean ± standard deviation 
(SD) or median with the full range. Categorical variables 
were presented as frequencies and percentages. Differences 
in age and sex between the two groups were assessed using 
the independent sample t‑test and the χ2 test, respectively. 
To identify significant variables as predictive indicators 
of MIA the Mann‑Whitney U  test was applied based on 
the CT quantitative and texture features. Variables with a 
significance level of P<0.05 were selected as significant 
predictors for constructing both single‑parameter and 
combined multi‑parameter prediction models through binary 
logistic regression analysis. The diagnostic performance 
of each model was then evaluated by comparing the AUC, 
specificity and sensitivity of the ROC curve. AUC values 
greater than 0.5 were considered predictive. The significance 
of differences between ROC curves was determined using 
DeLong's test. Furthermore, the nomogram was constructed 
using the rms package in the R software. To verify the diag‑
nostic performance of the nomogram prediction model, a 
calibration curve was employed. P<0.05 was considered to 
indicate a statistically significant difference.

Figure 1. Flowchart of patient selection. AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; 
GPL, glandular precursor lesion; HRCT, high‑resolution computed tomography.
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Results

Patient characteristics. A total of 109 patients with 111 GGNs 
were ultimately included in the present study. The cohort 
consisted of 35  males and 74  females, with ages ranging 
19‑78 years. Among these patients, 49 GGNs in 47 patients 
were classified as GPL (AAH/AIS), with a mean age of 
(54.26±12.24) years. Additionally, 62 GGNs in 62 patients 
were categorized as MIA, with a mean age of (52.84±11.47) 
years. There were no significant differences observed in terms 
of sex (P=0.564) or age (P=0.522) between the two groups. 
Utilizing stratified random sampling, the training set consisted 
of 78 cases (34 AAH/AIS and 44 MIA), while the validation 
set included 33 cases (15 AAH/AIS and 18 MIA).

CT quantitative parameters and texture feature extraction. The 
results of patient characteristics, CT quantitative parameters 
and texture features were conducted using the Mann‑Whitney 
U test and the results are presented in Table Ⅰ. Notably, signifi‑
cant statistical differences (P<0.05) were observed between 
the two groups in seven parameters, including SV, SVR, SQ, 
SQR, CTmax, CTmean and entropy.

Model construction and diagnostic validation based on CT 
quantitative parameters and texture features. The diagnostic 
models were constructed and the corresponding ROC curves 
are displayed in Fig. 3. Notably, the combined multi‑parameter 
model exhibited superior predictive ability compared with 
each individual single‑parameter model. The performance 
of the nomogram prediction model is illustrated in Table II 
for the training set and Table III for the validation set. In the 

training set, the nomogram achieved an AUC of 0.992 (95% 
CI: 0.980‑1.000), a sensitivity of 0.907, a specificity of 1.000 
and an accuracy of 0.948. For the validation set, the AUC 
was 0.975 (95% CI: 0.935‑1.000), with a sensitivity of 0.842, 
a specificity of 0.941 and an accuracy of 0.912. The results of 
DeLong's test demonstrated significant statistical differences 
in AUCs between the nomogram and single‑parameter models 
(P<0.001).

Nomogram and calibration curve. A nomogram (Fig. 4A) was 
constructed utilizing five parameters (SV, SVR, CTmax, CTmean 
and entropy). The model formula was derived as follows: Total 
Points=0.576 x SV  ‑1.131 x SVR  ‑  0.162x CTmax  ‑  0.136 x 
CTmean + 21.533 x entropy. Each parameter in the nomogram 
corresponds to a specific score on the top ‘Points’ axis. The cumu‑
lative sum of these scores corresponds to the values displayed 
on the bottom ‘Total Points’ axis, representing the diagnostic 
probability of MIA: Two cases of AIS and MIA (Fig. 4B and C) 
provided illustrative examples from the collected database. The 
calibration curve (Fig. 5) demonstrates a favorable agreement 
between the predicted model and the observed data, as the 
scatter plot closely aligns with the ideal curve.

Discussion

The present study retrospectively collected surgically 
resected and pathologically confirmed cases of GPL and 
MIA that presented as sub‑centimeter GGNs on CT images, 
then extracted and analyzed their CT quantitative and texture 
features. Subsequently, a nomogram model incorporating 
the five most informative identification indicators (SV, SVR, 

Figure 2. CT images were used for accurate nodule delineation and quantitative texture feature extraction, complemented by corresponding hematoxylin‑eosin 
stained pathological images at x40 magnification. (A) In the first case, a 69‑year‑old female had a 10x8 mm GGN in the upper lobe of the right lung with limited 
solid features. (B) In the second case, a 63‑year‑old female had a 9x7 mm GGN in the lower lobe of the right lung, mainly solid. CT, computed tomography; 
GGN, ground glass nodules; SV, solid volume; SVR, solid volume rate; SQ, solid quality; SQR, solid quality rate; CTmax, maximum computed tomography 
attenuation; CTmean, mean computed tomography attenuation; HU, Hounsfield units.
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CTmax, CTmean and entropy) was developed to accurately 
differentiate MIA from GPL. The ROC curve revealed high 
predictive accuracy in distinguishing between MIA and GPL, 
with an AUC values of 0.992 and 0.975 for the training set 
and validation set, respectively. Early‑stage lung cancers 
predominantly present as solitary GGNs, posing challenges in 
distinguishing benign nodules from malignant ones due to the 
diverse manifestations and overlapping features observed on 
CT images. In line with previous studies by Wu et al (9,10), 
who extensively analyzed the CT imaging features of 

sub‑centimeter pure GGNs, the present study identified 
relevant morphological features such as lesion size, vessel 
changes and tumor‑lung interface, which reflect the invasive‑
ness of GGNs. Moreover, previous investigations (26‑28) have 
established a close association between the size of the solid 
component and the average CT attenuation of GGNs with 
their invasiveness and pathology. The findings of the present 
study corroborated these conclusions, demonstrating signifi‑
cant differences in SV, SVR, SQ, SQR, CTmax and CTmean 
between GPL and MIA. Notably, the values of these variables 

Table Ⅰ. Clinical characteristics, CT quantitative parameters and texture features between GPL and MIA groups.

Clinical characteristic	 AAH/AIS (n=49)	 MIA (n=62)	 P‑value

Age, years, mean (SD)	 54.26 (12.24)	 52.84 (11.47)	 0.646a

Sex			   0.521b

  Female, n (%)	 33 (70.2)	 41 (66.1)	
  Male, n (%)	 14 (29.8)	 21 (33.9)	
MD, mm, median (range)c	 7.60 (5.02‑10.00)c	 8.20 (4.24‑9.87)	 0.080
SV, mm3, median (range)c	 59.00 (11.00‑128.00)	 87.00 (0.00‑156.00)	 <0.001d

SVR, %, median (range)c	 38.00 (8.00‑66.00)	 45.00 (0.00‑68.00)	 0.021d

SQ, mg, median (range)c	 49.00 (7.00‑110.00)	 72.00 (0.00‑128.00)	 0.001d

SQR, %, median (range)c	 29.00 (6.00‑66.00)	 47.00 (0.00‑66.00)	 0.001d

CTmax, HU, median (range)c 	 ‑151.50 (‑270.00‑102.00)	 ‑111.00 (‑282.00‑62.00)	 0.034d

CTmin, HU, median (range)c	 ‑784.50 (‑915.00‑‑558.00)	 ‑788.0 (‑1007.00‑‑582.00)	 0.935
CTmean, HU, median (range)c	 ‑584.50 (‑709.00‑‑348.00)	 ‑530.00 (‑737.00‑‑399.00)	 0.002d

CTmedian, HU, median (range)c	 ‑588.50 (‑710.00‑‑368.00)	 ‑546.00 (‑730.00‑‑419.00)	 0.091
Variance, median (range)c	 137.00 (92.00‑187.00)	 139.00 (84.00‑194.00)	 0.429
Kurtosis, median (range)c	 3.50 (2.00‑4.80)	 3.30 (1.90‑4.90)	 0.797
Skewness, median (range)c	 0.39 (‑0.19‑0.86)	 0.48 (‑0.40‑0.78)	 0.327
Entropy, median (range)c	 5.50 (3.60‑7.30)	 6.30 (3.20, 8.00)	 <0.001d

at‑test; bχ2 test; ccontinuous variables were represented as median (minimum, maximum); dP<0.05 ndicates a statistically significanct difference. 
HU, Hounsfifield unit; SD, stander deviation; MD, maximum diameter; SV, solid volume; SVR, solid volume rate; SQ, solid quality; SQR, 
solid quality rate; CTmax, maximum computed tomography attenuation; CTmin, minimum computed tomography attenuation; CTmean, mean 
computed tomography attenuation; CTmedian, median computed tomography attenuation.

Table Ⅱ. The AUC values for each prediction model were calculated and evaluated on both the training and validation set.

	 Training set	 Validation set
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Clinical characteristic	 AUC (95% CI)	 P‑value	 AUC (95% CI)	 P‑value

SV, mm3)	 0.735 (0.622‑0.848)	 <0.001a	 0.547 (0.347‑0.748)	 0.640
SVR, %)	 0.654 (0.529‑0.779)	 0.021a	 0.540 (0.331‑0.750)	 0.690
SQ, mg	 0.732 (0.620‑0.843)	 0.001a	 0.509 (0.303‑0.715)	 0.931
SQR, %	 0.729 (0.611‑0.847)	 0.001a	 0.523 (0.321‑0.725)	 0.822
CTmax, HU	 0.641 (0.513‑0.769)	 0.034a	 0.575 (0.376‑0.775)	 0.456
CTmean, HU	 0.706 (0.577‑0.834)	 0.002a	 0.509 (0.305‑0.721)	 0.931
entropy	 0.752 (0.640‑0.866)	 <0.001a	 0.521 (0.318‑0.724)	 0.835
nomogram	 0.992 (0.980‑1.000)	 <0.001a	 0.975 (0.935‑1.000)	 <0.001a

aP<0.05 indicates a statistically significanct difference. AUC, area under the curve; CI, confidence interval; HU, Hounsfifield unit; SV, solid 
volume; SVR, solid volume rate; SQ, solid quality; SQR, solid quality rate; CTmax, maximum computed tomography attenuation; CTmean, mean 
computed tomography attenuation.
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were consistently higher in the MIA group compared with 
the GPL group. These results confirm the importance of 
the solid component in predicting the behavior of GGNs. 
To summarize, the present study retrospectively analyzed 
surgically resected GGNs, extracting and analyzing their CT 
quantitative and texture features and achieved high predic‑
tive performance in discriminating between MIA and GPL 
through the development of a nomogram model incorporating 
five informative identification indicators. The challenges 
associated with differentiating benign and malignant nodules 
in early‑stage lung cancers were underscored, emphasizing 
the significance of considering the presence and character‑
istics of the solid component in predicting invasiveness and 
pathological behavior of GGNs.

Texture analysis plays a crucial role in efficiently and 
accurately extracting biological information that reflects 

tumor heterogeneity, which may not be discernible by visual 
examination of images alone. It enables quantitative assess‑
ment of subtle changes in image pixel values and their 
arrangement. As a result, it holds great value in qualitative 
diagnosis, invasiveness assessment, prognostic prediction 
of tumors and informed clinical management. Qiu et al (17) 
demonstrated the independent prognostic significance of 
mean CT attenuation and entropy in evaluating the invasive‑
ness of 428 cases of clinical stage IA lung adenocarcinoma. 
Zhu et al (19) employed the ANOVA test and the least abso‑
lute shrinkage and selection operator algorithm to identify 
18 CT texture features, including entropy. They successfully 
developed a diagnostic model capable of distinguishing MIA 
from GPL presenting as pure GGNs, achieving high identi‑
fication performance with an AUC of 0.884 in the training 
set and 0.872 in the validation set. In the present study, there 

Figure 3. ROC curves evaluated model performance in both the training and validation sets. The nomogram outperformed all other models, with an AUC 
of 0.992 in the training set and 0.975 in the validation set. ROC, receiver operating characteristic; AUC, area under the curve; SV, solid volume; SVR, solid 
volume rate; SQ, solid quality; SQR, solid quality rate; CTmax, maximum computed tomography attenuation; CTmean, mean computed tomography attenuation.

Table Ⅲ. Performance of nomogram model on the training and validation set.

Set	 AUC	 95% CI	 Sensitivity	 Specificity	 Accuracy

Training	 0.992	 0.980‑1.000	 0.907	 1.000	 0.948
Validation	 0.975	 0.935‑1.000	 0.842	 0.941	 0.912

AUC, area under the curve; CI, confidence interval.
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Figure 4. The nomogram helps differentiate MIA from AIS/AAH. (A) The ‘Total Points’ on the nomogram predicts the chance of MIA. (B) An AIS case had 
a ‘Total Points’ value of 193.588, meaning a MIA probability less than 0.1. (C) An MIA case has a ‘Total Points’ value of 202.369, corresponding to a MIA 
probability greater than 0.9. MIA, minimally invasive adenocarcinoma; AIS, adenocarcinoma in situ; AAH, adenomatous hyperplasia; SV, solid volume; 
SVR, solid volume rate; SQ, solid quality; SQR, solid quality rate; CTmax, maximum computed tomography attenuation; CTmean, mean computed tomography 
attenuation.
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was a statistically significant difference in entropy between 
GPL and MIA, which is consistent with previous findings. 
Moreover, the combined multi‑parameter model exhibited 
superior predictive performance, with AUC values of 0.992 
in the training set and 0.975 in the validation set, surpassing 
the research conducted by Zhu  et  al  (19). This disparity 
may be attributed to differences in the composition of 
enrolled cases. The present study encompassed not only pure 
vitreous nodules but also mixed‑density nodules. Previous 
studies (26,28) have indicated the diagnostic relevance of the 
solid component within GGNs. Another study (29) employed 
machine learning and deep learning methods to evaluate 
benign and malignant pulmonary nodules, revealing AUC 
values of 0.763 for the support vector machine (SVM) model 
and 0.723 for the convolutional neural networks (CNN) 
model in distinguishing GPL from MIA. Notably, the predic‑
tive performance of both SVM and CNN models was lower 
than that of the nomogram model established in the present 
study. These findings suggest that CT texture analysis may 
offer greater assistance and efficiency in achieving this objec‑
tive. The patients in the present study were sourced from a 
single center, resulting in a relatively small sample size, but 
the parameters and quality of these CT images were highly 
standardized and homogenized. Conversely, in a previous 
multicenter study (29), although the sample size was larger, 
challenges related to CT image homogenization may have 
persisted. This discrepancy could explain the superior diag‑
nostic effectiveness of the constructed model. Consequently, 
future studies should focus on expanding the sample size and 
analyzing data from different centers to obtain a more accu‑
rate and efficient predictive model.

Nomogram models are graphical representations employed 
to illustrate analytical outcomes derived from multifacto‑
rial logistic regression models or Cox proportional hazards 
models. These models use a set of parallel, non‑intersecting 
lines within a coordinate plane to portray the quantita‑
tive analysis diagram, depicting the functional relationship 
between multiple variables. By employing intuitive symbols, 
nomograms facilitate the calculation of disease occurrence 
probability, recurrence risk and prognosis. Consequently, 

they find extensive application in clinical research pertaining 
to pulmonary GGNs (30). In the present study, a nomogram 
model for the identification of precursor lesions and MIA was 
established, based on five CT quantitative and texture features, 
namely SV, SVR, CTmax, CTmean and entropy. This model serves 
as an effective and intuitive reference standard, enabling 
radiologists to achieve accurate and prompt diagnoses.

In conclusion, the use of CT quantitative and texture 
features offered significant utility in the differentiation of MIA 
from GPL. The nomogram model developed demonstrated 
superior discriminatory capabilities. This model's diagnostic 
efficacy, combined with its graphical representation, facili‑
tates the precise classification of GGN types by radiologists, 
thereby aiding clinicians in making informed decisions 
regarding treatment and follow‑up strategies for GGNs. 
Nonetheless, the present study has certain limitations that 
require acknowledgment. It was a retrospective, single‑center 
study with a small sample size, which may introduce selection 
bias and potentially affect the precision and applicability of 
the model. In the future, efforts should be made to enhance the 
model's robustness and applicability by increasing the sample 
size, conducting multi‑center studies and incorporating 
external test sets.
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