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Abstract.Immune checkpoint inhibitors (ICIs) are commonly
utilized in tumor treatment. However, they still have limita-
tions, including insufficient effectiveness and unavoidable
adverse events. It has been demonstrated that gut microbiota
can influence the effectiveness of ICIs, although the precise
mechanism remains unclear. Gut microbiota plays a crucial
role in the formation and development of the immune
system. Gut microbiota and their associated metabolites
play a regulatory role in immune balance. Tumor occur-
rence and development are linked to their ability to evade
recognition and destruction by the immune system. The
purpose of ICIs treatment is to reinitiate the immune system's
elimination of tumor cells. Thus, the immune system acts as
a communication bridge between gut microbiota and ICIs.
Varied composition and characteristics of gut microbiota
result in diverse outcomes in ICIs treatment. Certain gut
microbiota-related metabolites also influence the therapeutic
efficacy of ICIs to some extent. The administration of antibi-
otics before or during ICIs treatment can diminish treatment
effectiveness. The utilization of probiotics and fecal trans-
plantation can partially alter the outcome of ICIs treatment.
The present review synthesized previous studies to examine
the association between gut microbiota and ICIs, elucidated
the role of gut microbiota and its associated factors in ICIs
treatment, and offered direction for future research.
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1. Introduction

Immunotherapy has emerged as a rapidly advancing treatment
for tumors in recent years. Immunotherapy is based on the
tumor immune escape mechanism, which manipulates the
immune system to reactivate the antitumor immune response
and overcome the pathways that lead to tumor escape (1).
Current immunotherapy methods encompass immune check-
point inhibitors (ICIs), adoptive cell therapy, oncolytic viruses
and cancer vaccines. Among them, ICIs, including antibodies
against programmed cell death protein 1 (PD-1), its ligand
PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4), lympho-
cyte activation gene 3 (LAG3), T cell immunoglobulin and
mucin domain 3 (TIM3), and indoleamine 2, 3-dioxygenase
1 (IDO), have been widely and rapidly developed in clinical
practice, achieving satisfactory results (2). However, there are
still several shortcomings in the treatment with ICIs. Only a
small number of tumor patients respond to ICIs, and there is
still the possibility of drug resistance. Moreover, it is unable
to address the disease progression and life-threatening nature
for most cancer patients. Additionally, ICIs rely on the activa-
tion of autoimmune function to eliminate tumors, and these
mechanisms may affect the self-tolerance of healthy tissues,
leading to immune side effects known as immune-related
adverse events (irAEs) (3). Gut microbiota plays a significant
role in the physiological and pathological processes of the
human organism. As a current research hotspot, it has made
substantial progress in various fields. The potential connection
between gut microbiota and ICIs has been extensively investi-
gated in recent years, encompassing the relationship between
gut microbiota and its associated metabolites, the clinical
efficacy of ICIs, the correlation between gut microbiota and
adverse events related to ICIs, the impact of antibiotic applica-
tion on ICIs, and the application and effectiveness of probiotics
and fecal transplantation in clinical practice (4). While the
specific mechanism by which gut microbiota influences the
treatment of ICIs remains unclear, the current research indi-
cates that gut microbiota may serve as a crucial target for
regulating the efficacy of ICIs, making its practical application
in clinical settings highly promising (5). The present review
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examined the relationship between gut microbiota and ICIs,
provided a summary of the current research progress, and
explored the potential interaction mechanisms and future
prospects between these factors.

2. Gut microbiota and the immune system

Gut microbiota. The gut microbiota is a vast microecosystem
that includes bacteria, archaea, fungi and viruses. Each person
carries up to 10" microbial species,~99% of which are bacteria.
The primary species are Firmicutes and Bacteroidetes,
followed by Actinobacteria and Verrucomicrobiota (6,7).
The gut microbiota is closely linked to the activities of life
and plays a crucial role in numerous metabolic processes. For
instance, the microbiota in the colon encodes a plethora of
carbohydrate-active enzymes, allowing them to break down
non-digestible dietary residues and release short-chain fatty
acids. These microbes assist in the synthesis of micronutrients
such as vitamin K, vitamin B12, biotin, folic acid and panto-
thenic acid, in addition to aiding in the absorption of calcium,
magnesium and iron. The gut microbiota can also regulate
intestinal endocrine function, nerve signals, bone mineral
density, provide biogenic energy, synthesize neurotransmitters,
and metabolize bile. Furthermore, the gut microbiota plays a
crucial role in the maturation and sustained expression of the
host immune response (8,9).

Gut microbiota and the development of the immune system.
The influence of gut microbiota on the immune system begins
during early life. The immune system develops in a relatively
sterile fetal environment during early life, with its primary
exposure to antigens derived from the newly established
microbial community on the mucosal surface of the newborn.
Exposure to microbes during early life can result in lifelong
changes in the immune system (10). The infant receives natural
passive immunity from the mother through the placental route
during pregnancy. The maternal gut microbiota profile can
influence the composition of immune cells in infants. The
enrichment of Dialister, Escherichia and Ruminococcus in
the maternal gut microbiota is associated with a lower propor-
tion of granulocytes and a higher proportion of central naive
CD4* T cells (CD4*/CD45RA*/CD31") and naive regulatory
T cells (Treg) (CD4*/CD45R A*/FoxP3low) in cord blood (11).
Maternal dietary habits and breastfeeding after birth can also
impact the regulation of immune factors in infants (12,13).
The gut microbiome undergoes significant changes before the
age of 2.5 years under the influence of various factors, but it
gradually stabilizes afterward and remains relatively constant
throughout the lifetime of an individual (14). Different
age groups exhibit distinct gut microbiota profiles, with
Bifidobacterium being more prevalent in infants and children,
while Megamosna and Peptoniphilus are relatively enriched
in the elderly (15). For instance, Akkermansia is more abun-
dant in the gut microbiota of frail elderly individuals. It is
positively correlated with the elevation of interleukin 6 and
can elevate serum inflammatory factor levels, as well as
increase intestinal permeability (16). In conclusion, the influ-
ence of gut microbiota on the immune system plays a crucial
role in life development and may affect both physiological
and pathological processes.

Gut microbiota influence the immune balance. Increasing
evidence suggests that gut microbiota can regulate the
proliferation and expression of immune cells, particularly the
balance between T helper cell 17 (Th17) and Treg cells (17).
Th17 cells contribute to autoimmunity and inflammation,
while Treg cells inhibit immune responses and maintain
immune homeostasis. Both cell types initially differentiate
from naive CD4 T cells under the influence of tumor growth
factor (TGF)-$ (18). A previous study demonstrated that the
balance between Th17 and Treg cells in the lamina propria
of the mouse small intestine is influenced by the presence of
Cytophaga-Flavobacter-Bacteroidetes bacteria. Specifically,
Th17 cell differentiation is associated with the presence of these
bacteria, while germ-free mice exhibit an increase in Treg cells
in the lamina propria (19). Furthermore, a previous study has
demonstrated that the presence of mixed Clostridium in mice
leads to an upregulation of Treg cell abundance and function
in the colon. This effect is attributed to the creation of a trans-
forming growth factor-f3 enriched environment (20). Thus, it
is plausible that Th17/Treg cells are regulated and proliferated
by various species of gut microbiota. Research has demon-
strated that Bacteroides fragilis (B. fragilis) can stimulate the
proliferation of Treg cells through Toll-like receptor 2 (TLR2),
consequently suppressing the activity of Th17 cells. As for the
mechanism of action, a symbiotic factor known as polysaccha-
ride A (PSA) produced by B. fragilis has been identified as akey
player. PSA, a representative immunomodulatory molecule of
symbiotic nature, can activate CREB-dependent transcription
of anti-inflammatory genes through the coordinated activation
of TLR2 and Dectin-1. This activation leads to the production
of the immunomodulatory cytokine IL-10 by CD4* Treg cells.
Consequently, immune tolerance is achieved, and it may serve
as a mechanism for intestinal commensal bacteria to evade the
immune system (21,22). In conclusion, gut microbiota plays a
significant role in regulating the balance between proinflam-
matory responses and immune regulation, despite the precise
underlying mechanisms remaining unclear.

Gut microbiota-associated metabolites affect the immune
system. Increasing evidence supports the role of gut micro-
biota-derived metabolites in immune system regulation. The
majority of metabolites associated with gut microbiota have
been found to be involved in immune regulation, attenuating
immune responses, and potentially contributing to immune
tolerance. Extensive research on short-chain fatty acids
(SCFAs), a well-studied group of metabolites, has demon-
strated that SCFAs derived from mouse gut microbiota can
activate STAT3 and mTOR in Thl cells, upregulate the tran-
scription factor B lymphocyte-induced maturation protein 1
(Blimp-1), and stimulate the production of IL-10 to preserve
intestinal homeostasis (23). Butyrate, a metabolite produced
by Firmicutes and Fusobacteria, can activate the expression
of TGFBI1 in human intestinal epithelial cells through the tran-
scription factor SP1. This activation leads to the accumulation
of Treg cells in the intestine, contributing to its immunomodu-
latory role (24). Following the consumption of propionic acid
by patients with multiple sclerosis, there is a significant and
sustained increase in Treg cells. Additionally, the mitochon-
drial function and morphology of Treg cells normalize, whereas
the levels of Th1 and Th17 cells markedly decrease, indicating
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the immunomodulatory effects (25). Metabolites associated
with the microbiota, including taurine, histamine, spermine
and bile acids, contribute to the maintenance of intestinal
homeostasis through the regulation of NLRP6/NLRP3 inflam-
masomes (26,27). Probiotics such as Lactobacillus rhamnosus
GG and factors derived from LGG broth culture supernatant
can activate Akt, alleviate TNF-induced colonic epithelial
injury, suppress cytokine-induced epithelial cell apoptosis,
and foster intestinal epithelial homeostasis. Furthermore,
LGG cell-free supernatant (LGG-SN) has been observed
to enhance the sensitivity of human tumor cells to 5-fluoro-
uracil and irinotecan (28,29). The outer membrane protein
Amuc_1100 derived from Akkermansia muciniphil stimulates
the production of IL-10 by activating TLR2 and TLR4 (30).
The human gut Actinobacterium Eggerthella lenta disrupts
the inhibition of the Thl7 transcription factor Roryt by
cardiac glycoside reductase 2 enzyme, leading to Th17 activa-
tion in the intestine and the initiation of autoimmunity (31).
Overall, certain metabolites associated with gut microbiota
contribute to the maintenance of intestinal immune balance,
safeguarding the survival of gut microbiota and protecting the
intestinal tract from immune-related harm. Consequently, the
intricate mechanism through which gut microbiota regulate
the immune system via their metabolites necessitates further
investigation.

3. ICIs therapy for cancer

Tumor immunotherapy is initiated by the mechanisms through
which tumor cells evade the human immune system. Typically,
the immune system can identify and eliminate tumor cells in
healthy tissues based on tumor-associated antigens. Tumors,
however, employ various immune processes to evade the
immune system, including targeted modulation of Tregs func-
tion or secretion, antigen presentation processes, modification
of immunosuppressive mediator production, development of
immune tolerance, and evasion of immune system-mediated
killing (32). Immune checkpoints play a crucial role in regu-
lating the host's antitumor immunity. Currently, extensively
studied immune checkpoints include PD-1, PD-L1, CTLA-4,
LAG3, TIM3 and IDO. ICIs based on these targets have
significantly enhanced the efficacy of tumor treatment and
made substantial progress in recent years (33). PD-1, a receptor
in the (immunoglobulin) Ig superfamily, negatively regulates
T-cell antigen receptor signaling through its interaction with
the specific ligand PD-L1. PD-L1, also referred to as B7-H1
or CD274, is expressed in numerous tumors, including lung
cancer, ovarian cancer, colon cancer and melanoma. This
expression reduces the sensitivity of tumor cells to cytotoxic T
cell lysis mediated by specific T cell antigen receptors, leading
to increased tumorigenicity and aggressiveness (34-36).
CTLA-4, a member of the CD28-B7 immunoglobulin super-
family, is expressed on activated T cell surfaces, inhibiting
their activity by competing with the costimulatory receptor
CD28 for binding to B7-1 and B7-2, thereby downregulating
immune responses (37). In vivo, anti-PD-1 and anti-CTLA-4
antibodies have varying immune effects, whether adminis-
tered alone or in combination. CTLA-4 blockade primarily
induced partial proliferation of transitional memory T cells
in the blood/tumor tissue analysis of patients undergoing

immune checkpoint blockade, whereas PD-1 blockade
resulted in changes in cytolysis and NK-cell function-related
genes. Blockade of both resulted in non-overlapping changes
in gene expression patterns, including proliferation-related and
chemokine genes (38). LAG3 comprises four external immu-
noglobulin superfamily domains in the cellular domain, a long
linker peptide in the transmembrane domain, and a serine
phosphorylation site in the intracellular domain. It is expressed
on the surfaces of CD4*, CD8", natural killer (NK), NKT and
Treg cells, and inhibits T cell function. LAG3 is expressed
in various tumors and is associated with patient prognosis.
Blockade of LAG3 is also a new antitumor idea (39). TIM3
is an inhibitory checkpoint protein expressed on Thl, Thl17,
Tregs, CD8* T, NK and dendritic cells. It is associated with
antitumor immunity, and blocking it is a promising approach
to cancer therapy (40). IDO is an immunomodulatory
enzyme that metabolizes the essential amino acid tryptophan
to its downstream kynurenine, thereby inhibiting T cell
immunity. Inhibiting IDO is also a way to enhance tumor
immunity (32). Furthermore, there has been an increasing
use of ICIs and targeted therapies in combination, such as
anti-PD-1/PD-L1 and anti-CTLA-4 combination therapy, as
well as anti-PD-1/PD-L1 and anti-vascular endothelial growth
factor combination therapy (41). ICIs have achieved favorable
results in clinical applications. However, some patients initially
respond to ICIs therapy but later exhibit drug resistance, which
is related to the abundant mutation function of tumor cells,
enabling them to evade T cell-mediated immune surveillance
once again (42). Moreover, the primary focus of immuno-
therapy is to enhance the immune activation mechanism.
This ‘immune enhancement’ strategy often causes frequent
irAEs, although with the advancement of immunotherapy
and therapy design, related adverse events are being gradu-
ally reduced (43). Common adverse effects of CTLA-4 and/or
PD-1 inhibition occur in the skin, gastrointestinal tract, liver
and endocrine system, such as pruritus, rash, nausea, diarrhea
and thyroid disorders (44). When irAEs occur in ICIs-treated
patients, they may need to discontinue ICIs and treat irAEs,
compromising treatment efficiency (45). The clinical studies
conducted in previous years are included in Table I (46-61). In
these clinical studies, a variety of common tumor types were
included. Their efficacy in ICIs as monotherapy as in combi-
nation therapy is very limited. Response rates were modest,
and a substantial proportion of patients developed grade 3-4
irAEs. Despite the progress made with ICIs, their inefficiency
and the inevitability of irAEs remain significant challenges.
Therefore, more treatment and prevention methods need to be
developed to address the deficiencies of ICIs.

4. Gut microbiota and ICIs

Application and mechanism of gut microbiota in the treatment
of ICIs. Recent studies have demonstrated that gut microbiota
plays a crucial regulatory role in ICIs therapy, offering a
novel approach to enhance the clinical effectiveness of ICIs.
Assessing the gut microbiota of patients can provide guidance
and regulation for the subsequent clinical implementation
of ICIs (62-65). Previous studies exploring the association
between gut microbes and ICIs are presented in Table II.
Generally, patients with higher levels of Firmicutes and
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Table II. Continued.

(Refs.)

Study summary

Gut microbiota

Categories of study

Year

Author

GAM 147 had longer PFSand OS, whereas those with higher
abundance of Veillonellaceae had worse PFS and OS

(80)

The enrichment of Bifidobacterium, Coprococcus and

Bifidobacterium, Coprococcus,

Acidaminococcus

Clinical study

2021

Shen et al

Acidaminococcus was associated with the efficiency of ICIs

treatment in patients with hepatocellular carcinoma

(81)

Fusobacterium was more abundant in colorectal cancer patients

who did not respond to anti-PD-1 treatment

Fusobacterium

Clinical study

2021

Wang et al

ICI, immune checkpoint inhibitors; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1; PFS, progression-free survival; NSCLC, non-small cell lung cancer;

OS, overall survival.
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Verrucomicrobiota in their gut microbiota exhibited a more
favorable response to ICIs, whereas those with an abundance
of Proteobacteria showed a diminished response. The relation-
ship between Bacteroidetes and treatment response was found
to be varied. Regarding the occurrence of adverse reactions,
Firmicutes exhibited higher levels, whereas Bacteroidetes
displayed lower levels. Furthermore, the administration of
antibiotics is typically negatively correlated with the clinical
response to ICIs (66). A previous study encompassing clinical
and animal research demonstrated a correlation between
clinical responses to ICIs targeting the PD-1/PD-L1 axis and
the relative abundance of Akkermansia muciniphila (67). An
investigation into the impact of ICIs treatment on patients with
non-small cell lung cancer (NSCLC) revealed a higher preva-
lence of Akkermansiaceae in individuals demonstrating stable
disease and partial response to immunotherapy, as opposed
to those with progressive disease (68). The study conducted
by Grenda et al (69) demonstrated that Bacteroidaaceae,
Barnesiellaceae and Tannerellaceae were capable of
extending progression-free survival (PFS) in patients with
NSCLC. Newsome et al (70) obtained similar results in
their study involving patients with stage III/IV NSCLC who
received ICIs treatment, revealing significant enrichment of
Ruminococcus, Akkermansia and Faecalibacterium among
responders. In the context of melanoma-based ICIs therapy,
response was also linked to Bifidobacterium pseudatenu-
latum, Roseburia spp. and Akkermansia muciniphila (71).
The aforementioned multiple similar studies demonstrated the
more favorable effects of Akkermansia muciniphila on ICIs.
Akkermansia muciniphila, a strictly anaerobic gut bacterium,
thrives on intestinal mucin as its exclusive carbon and nitrogen
source, colonizing the intestine in a manner intricately linked
to the host's well-being. It regulates the immune response of
the organism, sustains metabolic equilibrium, ameliorates
obesity, type 2 and type 1 diabetes, hepatic steatosis, intestinal
inflammation, and augments responses of ICIs across various
cancer types (72). Concerning the mechanism underlying the
treatment of ICIs by Akkermansia muciniphila, an animal
experiment revealed that Akkermansia can modulate the ther-
apeutic capacity of PD-1 antibodies in mice with colorectal
cancer by influencing the metabolism of glycerophospholipid
and the expression of immune-related cytokines (IFN-y and
IL-2) within the tumor microenvironment, thus preserving
the normal effectiveness of PD-1 antibodies (73). However, a
recent study examining the association between gastrointes-
tinal microbiome composition and ICIs in advanced metastatic
castration-resistant prostate cancer found a decrease in levels
of Akkermansia muciniphilia in response samples, which
contradicts previous findings in other types of tumors. The
aforementioned study observed a correlation between the
abundance of Streptococcus salivarius in fecal samples
and treatment response. It is possible that tumor type is also
associated with the mechanisms through which gut micro-
biota affect ICIs' therapy (74). Additionally, the study design
and potential confounding factors may have contributed to
these findings. A study conducted with melanoma patients
undergoing anti-PD-1 treatment revealed significant dispari-
ties in the diversity and composition of the gut microbiota
between individuals who responded to the treatment and
those who did not. Responders exhibited significantly higher
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alpha diversity of gut microbiota and greater relative abun-
dance of Ruminococcaceae compared with non-responders.
Moreover, fecal transplantation from responders enhanced
antitumor immunity in mice (75). Another analogous study,
focusing on patients undergoing ICIs treatment for melanoma,
demonstrated the abundance of certain bacterial species,
such as Bifidobacterium longum, Collinsella aerofaciens
and Enterococcus faecium, in individuals who responded to
the treatment (76). A study conducted on ICIs in advanced
NSCLC demonstrated that the a diversity of gut microbiota
was correlated with overall survival (OS), while the presence
of Ruminococcaceae UCG 13 and Agathobacter revealed a
positive association with favorable objective response rate and
PFS (77). In Chinese patients with NSCLC who underwent
anti-PD-1 treatment, the gut microbiota exhibited enrich-
ment of Alistipes putredinis, Bifidobacterium longum and
Prevotella copri in the responder group, while Ruminococcus
was enriched in the non-responder group. Additionally,
patients with a higher diversity of gut microbiota demonstrate
an enhanced tumor-killing effect when undergoing anti-PD-1
treatment (78). In a study examining the correlation between
clinical response to anti-PD-1 therapy and gut microbiota in
patients with advanced hepatobiliary cancer, individuals with
a higher abundance of Lachnospiraceae bacterium-GAM79
and Alistipes sp. Marseille-P5997 demonstrated longer
PFS and OS compared with those with lower abundance.
Furthermore, a high abundance of Ruminococcus calidus
and Erysipelotichaceae bacterium-GAMI147 was linked to
extended PFS and improved treatment response. Conversely,
patients with higher abundance of Veillonellaceae exhibited
poorer PFS and OS (79). Another study investigating the gut
microbiota in patients with hepatocellular carcinoma and their
response to ICIs revealed an enrichment of Bifidobacterium,
Coprococcus and Acidaminococcus in patients with disease
control (80). However, the initial abundance of these three
taxa did not predict an OS benefit in the aforementioned study.
In a study investigating the combination of regorafenib and
toripalimab for colorectal cancer, a higher relative abundance
of Fusobacterium was linked to lack of response and shorter
PFS (81). Additionally, a previous study provided evidence that
Helicobacter pylori infection can upregulate the expression of
PD-LI in human gastric epithelial cells. Further investigation
into its clinical significance is warranted (82). According to
Park et al (83), the mechanism through which gut microbiota
influence ICIs involves the downregulation of PD-L2 and
its binding partner, repulsive guidance molecule b, thereby
enhancing the efficacy of anti-PD-1 treatment. Ongoing studies
in this field are continuously being conducted. Generally, future
research should focus on investigating the individual species
and overall distribution of gut microbiota. The conclusions of
the previous studies are not consistent, which may be attrib-
uted to differences in study design, tumor type, sample size
and potential confounding factors. Among the aforementioned
studies, some are animal studies, some are clinical studies,
and the tumor types are not exactly the same. In addition, the
sample size was between tens to hundreds, with large differ-
ences. Finally, confounding factors such as sex, height, weight,
diet and ethnicity can further affect the results of experiments.
Nevertheless, certain specific species and characteristics of gut
microbiota, such as a higher abundance of Akkermansia and

greater o diversity, have demonstrated a positive effect on ICIs
in multiple studies. These findings warrant further exploration
as important avenues for future research.

Gut microbiota-associated metabolites and ICIs. The role
of gut microbiota in the treatment of ICIs may be attrib-
uted to their associated metabolites. A study conducted
on patients with gastrointestinal cancers receiving
anti-PD-1/PD-L1 therapy revealed that those who exhibited
a higher Prevotella/Bacteroides ratio or higher abundance of
Prevotella, Ruminococcaceae and Lachnospiraceae demon-
strated improved responses to anti-PD-1/PD-L1 therapy.
These findings may be linked to the metabolites produced
by the gut microbiota. Specifically, gut microbiota capable of
producing SCFAs, such as Eubacterium, Lactobacillus and
Streptococcus, were found to be positively associated with
anti-PD-1/PD-L1 responses in gastrointestinal cancers (84).
Another study focusing on patients with solid cancer tumors
treated with anti-PD-1 therapy demonstrated that higher
concentrations of certain SCFAs, including fecal acetic acid,
propionic acid, butyric acid, valine and plasma isovaleric
acid, were associated with longer PFS (85). The aforemen-
tioned study also suggested that SCFAs may serve as the link
between gut microbiota and the efficacy of anti-PD-1 therapy.
Furthermore, it was found that the gut microbiota metabolite
butyrate can directly enhance the response of antitumor
cytotoxic CD8* T cells in vitro and in vivo by promoting
IL-12 signaling, thereby improving the efficacy of antitumor
therapy (86). However, another study indicated that elevated
levels of butyrate and propionate in the blood led to an increase
in the proportion of Treg cells, which resulted in a dimin-
ished anti-CTLA-4 blockade effect and limited the activity
of anti-CTLA-4 therapy (87). Additionally, a study focusing
on ICIs for unresectable hepatocellular carcinoma demon-
strated that ursodeoxycholic acid and ursocholic acid were
significantly enriched in the feces of patients who exhibited
an objective response, and these metabolites were correlated
with the abundance of Lachnoclostridium (88). Jiang et al (89)
study revealed that Fusobacterium nucleatum and increased
succinic acid hindered the efficacy of anti-PD-1 therapy in
patients with colorectal cancer. However, it is important to
note that these studies have yielded conflicting conclusions,
emphasizing the need for further exploration into the role of
gut microbiota metabolites in ICIs treatment. Currently, there
is no further study on how gut microbiota metabolites affect
the efficiency of ICIs application by regulating the immune
system. The underlying mechanisms are likely to be highly
complex, involving interactions between different gut micro-
biota and various metabolites. Additionally, investigating the
intricate mechanisms of downstream gene regulation, immune
cell modulation, and regulation of inflammatory factors
presents a significant challenge.

Antibiotics and ICIs. The use of antibiotics can affect the
composition of gut microbiota, subsequently influencing the
modulating role of gut microbiota in the effectiveness of
ICIs. Generally, antibiotic treatment is associated with poor
OS (90). The utilization of antibiotics emerged as an inde-
pendent negative predictor of PFS and OS in patients with
advanced cancer undergoing ICI treatment. Patients who
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underwent repetitive or prolonged antibiotic use exhibited a
poorer treatment response (91). In a retrospective analysis of
nivolumab-treated patients with NSCLC, the median PFS was
1.2 months for patients receiving antibiotics compared with
4.4 months for those who did not, although no difference in
OS was observed (92). Another study demonstrated that anti-
biotic use diminished PFS and OS in patients with advanced
renal cell carcinoma and NSCLC, and it exacerbated disease
progression in patients with renal cell carcinoma who received
antibiotics within 30 days of commencing ICIs, in comparison
with those who did not receive antibiotics (93). The mechanism
underlying the impact of antibiotics on ICI effectiveness may
lie in the disruption of gut microbiota's ecological stability,
which compromises the immune homeostasis maintained by
gut microbiota, subsequently leading to dysregulation of intes-
tinal immune responses. At present, no further studies have
examined how antibiotics specifically affect gut microbiota
and the immune system to alter the efficiency of ICIs. This
area requires further exploration. Nevertheless, based on the
collective results of current studies, the use of antibiotics in
patients receiving ICIs should be more strictly regulated to
ensure the efficacy of ICIs.

Gut microbiota regulates tumor proliferation. Gut microbiota
can directly impact tumors, regulating their occurrence and
development. For instance, Propionibacterium acidipro-
pionici and Freudenreichii produce cytotoxic compounds,
namely SCFAs propionate and acetate, which induce apoptosis
in colorectal cancer cell lines. Similarly, Lactobacilli stimu-
late immune response, and Lactobacillus casei ATCC334
produces a killing effect on tumor cells through its metabolite
ferrichrome (94). The probiotic LGG-SN selectively reduces
cancer cell viability by inducing mitotic arrest in the G2/M
phase of the cell cycle in tumor cells (29). On the contrary,
Fusobacterium nucleatum activates beta-catenin through
Fusobacterium adhesin A, and Peptostreptococcus anaero-
bius promotes tumor cell proliferation by activating the
PI3K-Akt pathway in tumor cells and NF-kB activation
in tumor-associated macrophages (94). SCFAs, which are
common metabolites of gut microbiota, have demonstrated
antitumor activity in various types of tumors. They control
the proliferation and metastasis of colorectal, gastric, lung,
cervical, breast and bladder cancer, and other common tumors
through the regulation of epigenetic modifications, inhibi-
tion of tumor cell proliferation, and regulation of antitumor
immunity (95). The impact of gut microbiota on tumor
development is closely related to the tumor microenviron-
ment. Gut microbiota and their metabolites modify the tumor
microenvironment by preserving the integrity of the intestinal
mucosal barrier, regulating inflammatory factors, and control-
ling immune cell activation, among other aspects. These
mechanisms collectively limit the progression of tumors (96).

Gut microbiota and irAEs and application of probiotics. The
relationship between irAEs and gut microbiota has been the
subject of investigation in several studies. Andrews et al (97)
demonstrated a significant association between a higher
abundance of Bacteroides and irAEs in melanoma patients
receiving ICIs. Another clinical trial evaluating ipilimumab
for the treatment of metastatic melanoma found an inverse

association between the increase of specific bacteria in the
Bacteroidetes phylum and colitis after immunotherapy (98).
Similarly, a study focusing on immune-related diarrhea in lung
cancer patients treated with anti-PD-1 antibodies revealed that
patients without diarrhea had higher levels of Bacteroidetes
and lower levels of Firmicutes (99). At present, there are few
studies on the relationship between gut microbiota and irAEs,
no specific dominant bacteria have been found, and no studies
have further elucidated the underlying mechanism. Further
exploration of the relationship between irAEs and gut micro-
biota is warranted. The underlying mechanism may be linked
to the unique properties of certain gut microbiota, neces-
sitating further investigation. Future studies should aim to
accurately identify and analyze the relationship between domi-
nant strains and specific irAEs. Nevertheless, supplementing
probiotics to modulate the microecological environment of
gut microbiota may alleviate the occurrence of irAEs, particu-
larly intestinal-related symptoms. Probiotic supplementation
represents a clinical approach that capitalizes on the role of
gut microbiota in ICI treatment. Sivan ef a/ (100) animal study
demonstrated that oral administration of Bifidobacterium
alone achieved comparable melanoma control to anti-PD-L1
treatment. Proton pump inhibitors, which facilitate the migra-
tion of oral microbiota to the gut, generally have a negative
effect on the efficacy of ICIs in cancer patients. In a trial
involving advanced or recurrent patients with NSCLC treated
with PD-1/PD-L1, treatment with Clostridium butyricum
MIYAIRI 588 (CBM588) improved the efficacy of ICIs in
patients receiving proton pump inhibitors, potentially through
modulation of specific microbiota richness (101). Another
study revealed that CBM588 supplementation increased
the response rate and prolonged PFS in the treatment of
metastatic renal cell carcinoma with nivolumab plus ipilim-
umab (102). Similarly, a retrospective analysis demonstrated
that CBM 588 treatment significantly prolonged PFS and
OS in patients with NSCLC treated with PD-1/PD-L1 (103).
Probiotic supplementation also reduced immune-related
intestinal inflammation. An animal study indicated that
Bifidobacterium attenuated intestinal immunopathology in
mice without significantly affecting anti-melanoma immu-
nity induced by anti-CTLA-4 treatment (104). However, the
role of probiotics in ICI treatment is not always beneficial. A
clinical study involving patients with melanoma treated with
ICIs suggested that higher dietary fiber intake was associ-
ated with significantly improved PFS, particularly in patients
who consumed adequate dietary fiber without probiotic use.
Consistent with findings in mice, low-fiber diets or probiotics
(Bifidobacterium longum- or LGG) impaired anti-PD-1-based
treatment responses (105). Gao et al (106) revealed that supple-
mentation with Lacticaseibacillus rhamnosus Probio-M9
enhanced the therapeutic efficiency in colorectal cancer of
anti-PD-1 treatment through subsequent metabolism. This
supplementation of probiotics may regulate the immune
balance by producing beneficial metabolites such as SCFAs
in the gut, thereby promoting the infiltration and activation of
cytotoxic T lymphocytes and inhibiting the function of Tregs in
the tumor microenvironment during ICI treatment. However,
the effectiveness of probiotics in ICIs can be influenced by
different types of probiotics used in various studies, different
tumor types, and diverse patient populations. Inappropriate
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supplementation can yield contradictory outcomes. Therefore,
future research should focus on individualizing probiotic
supplementation.

Fecal transplantation. Fecal transplantation is employed
as a clinical approach to assess the role of gut microbiota in
ICIs treatment. Fecal transplantation entails transferring
stool from individuals who respond to non-responders' gut.
An animal study demonstrated the superiority of combining
fecal transplantation with anti-PD-1 therapy over either
therapy alone (107). Experiments involving fecal transplanta-
tion of human-germ-free mice revealed that mice receiving
response-derived fecal transplantation exhibited enhanced anti-
tumor responses to anti-PD-L1 treatment compared with those
receiving non-response-derived fecal transplantation (108). In
clinical trials, Baruch et al (109) reported that out of 10 patients
with refractory metastatic melanoma to anti-PD-1 therapy who
underwent fecal transplantation from responders, 3 patients
exhibited a clinical response. Another clinical study demon-
strated that fecal transplantation from patients with melanoma
who responded to anti-PD-1 therapy provided clinical benefit to
6 out of 15 patients with anti-PD-1 resistance (110). Moreover,
fecal microbiota transplantation has been utilized to treat
certain cases of ICIs-associated colitis, resulting in clinical
benefit (111,112). Koo and Morrow (113) revealed individual
variation in fecal dominant donor microbes among recipients
following fecal transplantation, which is unrelated to the
response to anti-PD-1 therapy. The success of fecal transplanta-
tion demonstrates the clinical feasibility of the gut microbiota's
significant role in ICIs treatment. Patients who underwent fecal
transplantation acquired a gut microecosystem that enhanced
the efficacy of ICIs. However, the impact of fecal transplanta-
tion is highly limited and does not improve the non-response
of the majority of patients to ICIs. This could be attributed
to variations in the ecological environment of gut microbiota
among individuals, thus suggesting the necessity for additional
experiments to explore more precise methods in the application
of fecal transplantation (114). Future research should address
the need for more accurate donor selection, more effective gut
microbiota transplantation methods, as well as the ethical chal-
lenges and potential risks associated with fecal transplantation.

5. Conclusion

ICIs have been extensively utilized in clinical practice for
cancer therapy, and there is a growing body of evidence
supporting the impact of gut microbiota on enhancing
the effectiveness of ICIs treatment. The immune system,
serving as the communication bridge between these enti-
ties, plays a pivotal role in their mechanism of action. ICIs
primarily eliminate tumor cells by modulating the activation
of the immune system, which is similarly influenced by gut
microbiota. In general, gut microbiota, particularly symbiotic
bacteria, primarily uphold immune tolerance to preserve their
own ecological niche, whereas the principle of ICIs treatment
operates in contrast. Conversely, the activation of the immune
system by pathogenic bacteria may inflict harm on the body
itself. Consequently, achieving a balance between gut micro-
biota and ICIs treatment may prove to be a highly intricate
task. Nevertheless, this equilibrium could potentially serve as
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Figure 1. The role of gut microbiota in ICIs. Some members and character-
istics of gut microbiota can enhance the efficiency of ICIs, while others can
weaken it. According to different reports, some metabolites related to gut
microbiota can enhance the efficiency of ICIs, while others can attenuate
the efficiency of ICIs. The application of antibiotics in general attenuates
the efficiency of ICIs. In general, the application of probiotics can enhance
the efficiency of ICIs, but some studies have reported that the application
of probiotics can weaken the efficiency of ICIs. Fecal transplantation can
enhance the efficiency of ICIs. ICIs, immune checkpoint inhibitors.

the pivotal factor in enhancing the efficiency of ICIs, thereby
significantly impacting the prognosis of cancer patients.
Currently, despite the ongoing nature of these investigations
and the absence of definitive conclusions, the clinical utiliza-
tion of probiotics and the exploration of fecal transplantation
have provided additional perspectives supporting the viability
of this approach (Fig. 1). Moving forward, future research can
delve into the molecular intricacies of how gut microbiota
and their downstream metabolites influence the efficacy of
ICIs. Endeavoring to elucidate the precise mechanism under-
lying the maintenance of balance between gut microbiota
and IClIs, as well as identify pivotal species. Ultimately, in
clinical practice, precise and individualized implementation
of specific probiotic supplementation and fecal transplantation
is warranted to enhance the effectiveness of ICIs and optimize
patient prognosis.
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