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Abstract. Numerous signaling pathways have been shown to be 
dysregulated in liver cancer. In addition, some protein-protein 
interactions are prerequisite for the uncontrolled activation 
or inhibition of these signaling pathways. For instance, in 
the PI3K/AKT signaling pathway, protein AKT binds with 
a number of proteins such as mTOR, FOXO1 and MDM2 to 
play an oncogenic role in liver cancer. The aim of the present 
review was to focus on a series of important protein-protein 
interactions that can serve as potential therapeutic targets 
in liver cancer among certain important pro-carcinogenic 
signaling pathways. The strategies of how to investigate and 
analyze the protein-protein interactions are also included in 
this review. A survey of these protein interactions may provide 
alternative therapeutic targets in liver cancer.
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1. Introduction

Liver cancer is the sixth most common cancer and the second 
most common cause of cancer-associated mortality world-
wide (1). Approximately 75% of all primary liver cancer types 
are hepatocellular carcinoma (HCC) that formed from liver 
cells. Liver cancer can be formed from other structures in 
the liver such as bile duct, blood vessels and immune cells. 
Secondary liver cancer is a result of metastasis of cancer from 
other body sites into the liver. The major cause of primary liver 
cancer is viral infection with either hepatitis C virus (HCV) 
or hepatitis B virus (HBV), which leads to massive inflamma-
tion, fibrosis and eventual cirrhosis in the liver. Many genetic 
and epigenetic alterations have been identified in hepatocytes 
during HCV and HBV infection (2). Other causes, such as 
alcohol, aflatoxin, high-grade dysplastic nodules, obesity, 
diabetes and smoking may increase the risk of liver cancer. 
Surgical resection is an option for liver cancer treatment (3), 
whereas liver transplantation can be used in cases of liver 
cancer where surgical resection can be tolerated and the tumor 
fits specific criteria, i.e., Milan criteria (4).

Signaling pathways are complex processes of signal trans-
duction involving the mutual activation of a protein cascade 
transmitting signals from the cell surface to the cytoplasm 
and the nucleus (5). In recent decades, emerging studies have 
greatly improved our understanding of liver tumorigenesis 
through investigation of a series of signaling pathways 
including PI3K/AKT. Cell signaling receptors, intracellular 
secondary messengers/molecules and transcription factors 
are essential components for signaling pathways, and the 
protein-protein interactions (PPIs) among these components 
act as connectors that mediate signal transduction from one 
step to the following within a single signaling pathway, and 
act as transmitters that play an important role in the crosstalk 
of several signaling pathways (6). PPIs refer to the intentional 
physical contacts established between two or more proteins as 
a result of biochemical events and/or electrostatic forces (7). 
Proteins rarely act alone at both cellular and systemic levels. 
A number of essential molecular processes are performed by 
molecular machines that are constructed from a large number 
of protein components organized by their PPIs. PPIs have been 
largely investigated in signal transduction and aberrant PPIs 
in these signaling pathways are considered the basic events of 
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liver cancer. Targeting these important PPIs may be useful for 
the treatment of liver cancer.

In the present review, we focus on PPIs in the PI3K/AKT 
and other important signaling pathways in liver cancer. The 
potential antitumor therapies targeting these pivotal PPIs and 
the strategies of how to investigate and analyze PPIs are also 
assessed.

2. PI3K/AKT signaling pathway

The PI3K/AKT pathway is an intracellular pathway that 
is involved in cell cycle, growth, survival, proliferation 
and migration. Enhanced PI3K/AKT activities have been 
reported in many human cancer types, including cancers 
of colon, breast, brain, liver, stomach and lung  (8). The 
PI3K/AKT signaling pathway can be activated by four main 
types of sensors: the receptor tyrosine kinases (RTKs), cyto-
kines, G protein‑coupled receptors and the integrins (9-11). 
These four types of sensors bind with their cofactors and 
activate downstream kinases in the PI3K families. PI3K, 
by transferring a phosphoryl group, converts phosphati-
dylinositol 4,5-diphosphate (PIP2) to phosphatidylinositol 
3,4,5-triphosphate (PIP3) (12). PIP3 can interact with AKT 
which contains pleckstrin homology (PH) domain on the 
inner surface of the plasma membrane, resulting in confor-
mational changes of these proteins (13). Following binding 
to PIP3 at the membrane, AKT can then be phosphorylated 
by phosphoinositide‑dependent kinase 1 (PDK1) at threo-
nine 308 or be phosphorylated by the mammalian target of 
rapamycin complex (mTORC) at serine 473 (14,15). Fully 
phosphorylated AKT can directly interact with >100 proteins 
including the mTORC, Bcl-2-associated death promoter 
(BAD), caspase-9, various forkhead box protein O (FOXO) 
proteins, glycogen synthase kinase 3 β (GSK3β), mouse 
double minute 2 homolog (MDM2) and tuberous sclerosis 1 
(TSC1) (16).

3. PPIs between PI3K/AKT and other signaling pathways

AKT, the core protein in the PI3K/AKT signaling pathway, 
can physically interact with proteins in other signaling 
pathway. Thus, activity of the PI3K/AKT signaling pathway in 
liver cancer can directly affect the activities of other signaling 
pathways, such as Hippo/YAP, NF-κB, Wnt/β-catenin, Notch, 
p53, JAK/STAT and MAPK/ERK signaling pathways.

AKT is shown to physically bind to the proteins, IKKA and 
IKKB in the NF-κB signaling pathway. AKT phosphorylates 
IKKA on threonine (Thr) 23, thereby activating the NF-κB 
signaling pathway and subsequently inducing key immune and 
inflammatory responses (17,18). In addition, IKKB is a direct 
target of AKT, and activation of the AKT/IKKB signal is 
closely correlated with the anti-apoptotic and pro-cell survival 
function of NF-κB signaling in breast cancer cells (19). 
Similarly, the activation of AKT can directly induce activation 
of the NF-κB signaling pathway and eventually suppress apop-
tosis in liver cancer cells (20,21). By contrast, the inactivation 
of AKT strongly prevents NF-κB transcription factor p65 from 
entering the nucleus, the site at which p65 exerts its effects, 
and subsequently induces apoptosis in the HepG2 liver cancer 
cell line (22).

AKT is also capable of interacting and phosphorylating 
MST1/2 kinases, key components of the Hippo/YAP signaling 
pathway, on Thr 120. Such effects reduce the inhibitory impact 
of MST1/2 on the activity of YAP, the terminal effector of 
the Hippo/YAP signaling pathway, and thereby enhance 
AKT-maintained cell survival signaling (23).

AKT was found to have the ability to activate the 
Wnt/β‑catenin signaling pathway by directly interacting 
with GSK3β, a natural inhibitor of β-catenin. AKT represses 
GSK3β by initiating its phosphorylation at serine 9 and vice 
versa (24). The phosphorylation of β-catenin via GSK3β is 
then repressed, which facilitates β-catenin translocation from 
the cytoplasm into the nucleus and Wnt/β-catenin signaling 
is eventually activated (25,26). Notably, the close relationship 
between the activation of PI3K/AKT and the upregulation of 
Wnt/β-catenin activity was also observed in liver cancer (27). 
Additionally, promoted liver cancer cell growth and prolif-
eration was maintained by the PI3K/AKT and Wnt/β-catenin 
signaling pathways (28). The interaction between PI3K/AKT 
and Wnt/β-catenin is also critical for regulation of the cell 
cycle and epithelial-mesenchymal transition (EMT) during 
tumor formation, as following the respression of GSK3β by 
AKT, Wnt/β-catenin signaling down-stream effectors, such as 
cyclin D1, Snail and Mucin 1, are affected (29-31).

The MAPK/ERK is another important signaling pathway 
involved in a variety of cell processes including proliferation, 
differentiation, migration and survival. The MAPK/ERK 
signaling pathway is frequently activated in liver cancer 
often due to activating mutations or amplification of several 
components such as Ras, Raf and MEK  (32,33). Notably, 
emerging evidence suggests that AKT is also capable of acti-
vating the MAPK/ERK signaling pathway via interaction with 
MAPK/ERK signaling components. Firstly, Raf, MAP3K5, 
MAP3K8 and MAP3K11 are activated by AKT via phos-
phorylation (34-37). Secondly, MAPK2K4 is phosphorylated 
by AKT on serine 78 to suppress apoptosis (38). Additionally, 
MAPK14/p38 is directly bound to and activated by AKT, 
thus establishing a crosstalk between the MAPK/ERK and 
PI3K/AKT signaling pathways (39). In addition to the direct 
binding to the MAPK/ERK components, AKT can physically 
interact with certain proteins, which can indirectly influence 
MAPK/ERK signaling activity. For example, AKT is known 
to interact with MAPK8IP1/JIP1, a regulator of MAPK8/
JNK, to control inflammatory responses, cell proliferation 
and apoptosis (40). Furthermore, the downstream effectors of 
AKT, such as mTOR and GSK3β bind to the core regulator 
in the MAPK/ERK signaling pathway. For example, GSK3β 
physically interacts with and activates MAP3K1 in vitro and 
in vivo to regulate cell differentiation and apoptosis (41).

PPIs are also important for the crosstalk between 
PI3K/AKT and tumor suppressor p53 signaling pathways. 
AKT can directly interact with and regulate MDM2, one of 
the most well‑characterized oncogenic ubiquitin E3 ligases 
that negatively regulates p53 transcription activity. Activation 
of AKT leads to phosphorylation of MDM2 on Ser 166 and 
186, whereas inhibition of AKT decreases such phosphory-
lated levels  (42,43). Phosphorylation of MDM2 decreases 
the protein levels of p53, thereby suppressing apoptosis in 
liver cancer cells (44). When the cells were pretreated with 
Wortmannin, a well-known PI3K/AKT inhibitor, to suppress 
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AKT activation, both the upregulation of phosphorylation 
of MDM2 and downregulation of p53 were reversed in the 
HepG2 liver cancer cell line (45).

PPIs between PI3K/AKT and Notch signaling have also 
been identified (46). Upregulation of AKT is shown to induce 
the activation of Notch signaling (47), and these two signaling 
pathways are always activated in liver cancer (48). The simul-
taneous inhibition of these two pathways has been shown to be 
an effective option aiming at cancer in clinical treatment (49), 
suggesting the close relationship between PI3K/AKT and 
Notch signaling during tumorigenesis.

As for the JNK/STAT signaling pathway, the downstream 
effector of AKT, mTOR, has been shown to physically interact 
with STAT1 and STAT3 and regulates the transcription 
activity of these two transcription factors (50,51).

In general, according to the results of the aforementioned 
studies, AKT can physically bind to a series of core protein 
in different signaling pathways and activation of the AKT 
signaling pathway can directly or indirectly lead to the acti-
vation of several other signaling pathways. Thus, we suggest 
that PI3K/AKT is central to the complex signaling network 
involved in liver as well as in other organ tumorigenesis.

4. Proteins that physically interact with AKT as its 
downstream effectors in liver cancer

In liver cancer, deregulated PI3K/AKT signaling pathway 
often leads to uncontrolled cell growth, metabolism, survival, 
metastasis and tumor formation. The PPI between AKT and 
mTOR and the mechanism associated with this interaction 
has been largely investigated in liver cancer. mTOR exists in 
two different complexes, mTOR complex 1 (mTORC1) and 
mTORC2. The mTORC2 complex directly phosphorylates 
AKT on Ser473 and AKT conversely phosphorylates mTORC1 
at two COOH-terminal sites (Thr2446 and Ser2448) (14,53). 
p70S6 kinase and translational repressor protein 4E-binding 
protein 1 (4EBP1), the downstream effector of mTOR, are 
then phosphorylated by mTOR and regulate the translation of 
several important proliferative and angiogenic factors, such 
as c-Myc, cyclin D1, hypoxia-inducible factor (HIF) 1α and 
vascular endothelial growth factor (VEGF) (53-55), which 
are associated with tumor progression in liver cancer. The 
deregulated expression of mTOR signaling effectors ia present 
in 40-50% of HCC and activation of mTOR is correlated with 
poor prognosis and recurrence in HCC (56,57).

FOXO1 is also regarded as an AKT downstream effector. 
AKT has been proven to interact with FOXO1, which is a 
transcription factor involved in the regulation of gluconeo
genesis and glycogenolysis via insulin signaling, and FOXO1 
is also central to the decision for a preadipocyte to commit to 
adipogenesis (58). When FOXO1 is phosphorylated by AKT 
on Thr24, Ser256 and Ser319, it is spatially excluded from the 
nucleus and is then readily ubiquitinated and degraded (59). 
The phosphorylation of FOXO1 by AKT also impairs FOXO1-
induced hepatic glucose production through a reduction in the 
transcription of glucose 6-phosphatase (G6PC) gene (60).

Additionally, BAD has been shown to physically interact 
with AKT. BAD protein is a pro-apoptotic member of the 
Bcl-2 gene family, which is involved in initiating apoptosis. 
Dephosphorylated BAD forms a heterodimer with Bcl-2 

or Bcl-xL, represses them and thus initiates Bax/Bak-triggered 
apoptosis. When BAD is phosphorylated by AKT, it forms the 
BAD-14-3-3 protein heterodimer, allowing Bcl-2 to inhibit 
Bax-induced apoptosis (61). Inactivation of AKT removes its 
inhibitory effect to BAD, which may also decrease the levels 
of anti-apoptotic Bcl-2 and Bcl-XL proteins, and eventually 
lead to mitochondria-induced apoptosis in tumor cells (44). 
In liver cancer cells, AKT-mediated inhibitory effects on 
BAD-induced mitochondrial apoptotic signals were also 
observed (62).

AKT interacts with and activates S-phase kinase-associated 
protein 2 (Skp2) through phosphorylation of this protein on 
Ser72 (63,64). Skp2 behaves as an oncogene, and overexpres-
sion of this protein is frequently observed in human cancer 
progression and metastasis (wenxian). In human liver cancer 
cell lines and a murine liver cancer model, overexpression of 
AKT also led to the overexpression of Skp2 (65), indicating 
Skp2 may act as a downstream oncogenic effector of AKT 
during liver tumorigenesis.

Androgen receptor (AR) is activated by teh binding of 
androgenic hormones testosterone or dihydrotestosterone in 
the cytoplasm, and exerting its nuclear receptor function in the 
nucleus (66). AKT is capable of preventing AR from activa-
tion by androgen via the phosphorylation of AR on Ser210 
and Ser790 allowing AKT to suppress androgen-induced 
apoptosis (67). AR has been shown to promote the initiation 
and development of liver cancer during the early stage of the 
disease but to suppress liver cancer cell invasion during the 
later stages of the disease (68). Evidence from Nie et al (69) 
indicates that the activation of AKT directly impacts AR to 
inhibit apoptosis in HCC cells, suggesting the function of 
downstream AR responds to the function of upstream AKT.

In addition to the PPIs between AKT and the proteins 
described above, AKT can also interact with other proteins 
that are found to play significant roles in liver cancer. These 
proteins include T-cell leukemia/lymphoma protein 1 
(TCL1) (70,71), breast cancer type 1 susceptibility protein 
(BRCA1) (72), vimentin (73), integrin-linked kinase (ILK) 
(74,75), and heat shock protein 27 (HSP27) (76). The proteins 
that AKT can bind to liver cancer are provided in Table I.

5. AKT‑involved PPIs revealed in other models

A number of novel AKT-involved PPIs have been identified 
in other cancer types. For example, Nam et al (77) found that 
Cdc-2‑like kinase 2 (CLK2) is phosphorylated by AKT at Ser34 
and Thr127 in vitro and in vivo. This type of phosphorylation 
significantly increased cell growth whereas it inhibits cell 
apoptosis in Hela cells. Snail1, a transcriptional factor essen-
tial for triggering EMT, can directly interact and thus enhance 
AKT-induced open chromatin around the Snail1‑binding site 
within the E-cadherin promoter in different cancer cells (78). 
Sirtuin-6 (Sirt6), a tumor suppressor that plays negative roles 
on DNA repair, telomere maintenance, glycolysis and inflam-
mation, is directly inhibited by AKT through phosphorylation 
and subsequent degradation by MDM2, and this type of PPI 
between Sirt6 and AKT promotes tumorigenesis in breast 
cancer (79). cyclin-dependent kinase inhibitor 1C (CDKN1C), 
an inhibitor of cyclin-dependent kinases, is pivotal in regu-
lating cell cycle progression. AKT phosphorylates and inhibits 
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Table I. AKT-involved PPIs in homo sapiens.

Interactor		  Experimental evidence

BAD	 BCL2-associated agonist of cell death; promotes cell death.	 Affinity Capture-Western (161,162)
	 Successfully competes for the binding to Bcl-X(L), Bcl-2 and Bcl-W,
	 thereby affecting the level of heterodimerization of these proteins	 Biochemical Activity (161,163,164)
	 with BAX
BRCA1	 Breast cancer 1, early onset; the BRCA1-BARD1 heterodimer	 Affinity Capture-Western (165)
	 coordinates a diverse range of cell pathways such as DNA	 Biochemical Activity (165)
	 damage repair, ubiquitination and transcriptional regulation	 Reconstituted Complex (165,166)
	 to maintain genomic stability
CHUK	 Conserved helix-loop-helix ubiquitous kinase; acts as part of the	 Affinity Capture-Western (17,18)
	 IKK complex in the conventional pathway of NF-κB	 Biochemical Activity (17)
	 activation and phosphorylates inhibitors of NF-κB thereby
	 leading to the dissociation of the inhibitor/NF-κB complex
	 and ultimately the degradation of the inhibitor
CREB1	 CAMP responsive element binding protein 1; this protein binds the	 Biochemical Activity (167)
	 cAMP response element (CRE), a sequence present in many viral
	 and cellular promoters. CREB stimulates transcription on binding
	 to the CRE
FOXO1	 Forkhead box O1; transcription factor	 Biochemical Activity (168-170)
FOXO4	 Forkhead box O4; transcription factor	 Affinity Capture-Western (171)
		  Biochemical Activity (172)
		  Reconstituted Complex (171)
GSK3β	 Glycogen synthase kinase 3 β; participates in the Wnt signaling	 Biochemical Activity (173)
	 pathway. Involved in the hormonal control of several regulatory	 Reconstituted Complex (75,174-176)
	 proteins including glycogen synthase, MYB and the transcription
	 factor JUN
IKKB	 Inhibitor of κ light polypeptide gene enhancer in B-cells, 	 Affinity Capture-Western (19)
	 kinase β; acts as part of the IKK complex in the conventional
	 pathway of NF-κB activation and phosphorylates inhibitors of
	 NF-κB thus leading to the dissociation of the
	 inhibitor/NF-κB complex and ultimately the degradation
	 of the inhibitor
CSBP	 One of the major pre-mRNA-binding proteins. Binds tenaciously	 Affinity Capture-Western (39)
	 to poly(C) sequences. Likely to play a role in the nuclear metabolism	 Biochemical Activity (39,177)
	 of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich	 Reconstituted Complex (39)
	 sequences
MDM2	 Mdm2 p53 binding protein homolog (mouse); inhibits TP53/p53-	 Affinity Capture-Western (173,178)
	 and TP73/p73-mediated cell cycle arrest and apoptosis by binding its	 Biochemical Activity (179,180)
	 transcriptional activation domain. Functions as a ubiquitin ligase E3,
	 in the presence of E1 and E2, towards p53 and itself
MTOR	 Mechanistic target of rapamycin (serine/threonine kinase); kinase	 Affinity Capture-Western (181)
	 subunit of mTORC1 and mTORC2, which regulate cell growth	 Biochemical Activity (14,182,183)
	 and survival in response to nutrient and hormonal signals	 Reconstituted Complex (52)
NEDD4	 Essential E3 ubiquitin-protein ligase which accepts ubiquitin from an	 Affinity Capture-Western (184)
	 E2 ubiquitin-conjugating enzyme in the form of a thioester and then	 Biochemical Activity (185)
	 directly transfers the ubiquitin to targeted substrates
PTEN	 Phosphatase and tensin homolog; tumor suppressor. Acts as a	 Affinity Capture-Western (186)
	 dual-specificity protein phosphatase, dephosphorylating tyrosine-,
	 serine- and threonine-phosphorylated proteins
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Table I. Continued.

Interactor		  Experimental evidence

RICTOR	 RPTOR‑independent companion of MTOR, complex 2; subunit	 Affinity Capture-Western (187)
	 of mTORC2, which regulates cell growth and survival in response	 Biochemical Activity (85,188,189)
	 to hormonal signals. mTORC2 is activated by growth factors, however,	 Reconstituted Complex (190)
	 in contrast to mTORC1, seems to be nutrient- insensitive.
SIRT1	 Sirtuin (silent mating type information regulation 2 homolog) 1	 Affinity Capture-Western (191)
	 (S. cerevisiae); NAD-dependent protein deacetylase, which regulates	 Biochemical Activity (191)
	 processes such as apoptosis and muscle differentiation by deacetylating
	 key proteins.
SKP2	 S-phase kinase-associated protein 2 (p45); substrate recognition	 Affinity Capture-Western (62)
	 component of a SCF (SKP1-CUL1-F- box protein) E3 ubiquitin-protein	 Biochemical Activity (193)
	 ligase complex that mediates the ubiquitination and subsequent	 Co-localization (64)
	 proteasomal degradation of target proteins involved in cell cycle signal	 Reconstituted Complex (64)
	 progression, transduction and transcription.
MST2	 Stress-activated, pro-apoptotic kinase which, following caspase-cleavage,	 Affinity Capture-Western (193,194)
	 enters the nucleus and induces chromatin condensation followed by	 Biochemical Activity (193,194)
	 internucleosomal DNA fragmentation. Phosphorylates NKX2-1
	 (by similarity). Phosphorylates and activates LATS1 and LATS2
MAPK8IP1	 The JNK-interacting protein (JIP) group of scaffold proteins selectively	 Affinity Capture-Western (161)
	 mediates JNK signaling by aggregating specific components of the MAPK	 Biochemical Activity (40)
	 cascade to form a functional JNK signaling module.
MAPK14	 Mitogen-activated protein kinase 14; responds to activation by	 Affinity Capture-Western (39)
	 environmental stress, pro- inflammatory cytokines and lipopolysaccharide	 Biochemical Activity (39,177)
	 (LPS) by phosphorylating a number of transcription factors, such as ELK1	 Reconstituted Complex (39)
	 and ATF2 and several downstream kinases, such as MAPKAPK2 and
	 MAPKAPK5.
MAPKK4	 Mitogen-activated protein kinase kinase 4; dual specificity kinase that	 Affinity Capture-Western (38)
	 activates the JUN kinases MAPK8 (JNK1) and MAPK9 (JNK2) as well as	 Biochemical Activity (38,161)
	 MAPK14 (p38), but not MAPK1 (ERK2) or MAPK3 (ERK1)
MAPKKK5	 Mitogen-activated protein kinase kinase kinase 5; component of a	 Affinity Capture-Western (35)
	 protein kinase signaling transduction cascade. Phosphorylates and activates	 Biochemical Activity (35)
	 MAP2K4 and MAP2K6, which in turn activate the JNK and p38 MAP
	 kinases, respectively.
SNAIL1	 Snail homolog 1 (Drosophila) gene; this protein has many roles during	 Affinity Capture-Western (78)
	 post‑implantation development. It is involved in embryonic mesoderm	 Biochemical Activity (78)
	 formation and its maintenance and may also be involved in
	 chondrogenesis and in epithelial-mesenchymal inductive interactions.
SIRT6	 Sirtuin (silent mating type information regulation 2 homolog) 6	 Affinity Capture-Western (79)
	 (S. cerevisiae); NAD-dependent protein deacetylase. Has deacetylase	 Biochemical Activity (79)
	 activity towards ‘Lys-9’ and ‘Lys-56’ of histone H3. Modulates
	 acetylation of histone H3 in telomeric chromatin during the S phase of the
	 cell cycle.
MAPKKK8	 Mitogen-activated protein kinase kinase kinase 8; required for TLR4	 Affinity Capture-Western (37)
	 activation of the MEK/ERK pathway. Able to activate NF-κB 1	 Biochemical Activity (37)
	 by stimulating proteasome-mediated proteolysis of NF-κB 1/p105.
	 Plays a role in the cell cycle.
MAPKKK11	 Mitogen-activated protein kinase kinase kinase 11; activates the JUN	 Affinity Capture-Western (34)
	 N-terminal pathway. Required for serum-stimulated cell proliferation and	 Reconstituted Complex (34)
	 for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK)
	 and MAPK8 (JNK1). 
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CDKN1C on Ser 282 or Thr310, and then promotes cell 
proliferation, transformational activity and tumorigenicity in 
breast cancer cells (80). Although studies have mainly focused 
on how AKT regulates activities of other proteins, few have 
discussed how other proteins regulate AKT. Zeng et al (81) 
reported Jade-1 is a novel tumor suppressor that is bound to the 
catalytic domain and the C-terminal regulatory tail of AKT. 
This PPI inhibits AKT kinase activity and reduced Jade-1 
expression in clear-cell renal cell carcinoma and is regarded 
as a poor prognostic factor. Cylindromatosis (CYLD) is a 
directly deubiquitinating enzyme that triggers deubiquitina-
tion of K63-linked ubiquitination and inactivation of AKT. 
CYLD deficiency releases its inhibition to AKT and thereby 
promotes cell proliferation, glucose uptake and growth of 
prostate tumors (82). These AKT-involved PPIs were impor-
tant in tumor initiation and progression in other cancer types. 
However, whether and how these PPIs are critical during liver 
tumorigenesis remains largely unclear. Nevertheless, the role 
of these PPIs as novel therapeutic targets in clinical treatment 
remains to be investigated.

6. Therapies targeting PI3K/AKT-involved PPIs

Since the PI3K/AKT signaling pathway is a crucial pathway in 
liver cancer formation and progression, targeting PI3K/AKT 
pathway, these PI3K/AKT-involved physical PPIs in particular 
are novel aspects in the clinical treatment of liver cancer. 
mTOR inhibitors can abolish the interaction between AKT 
and mTOR by inhibiting the phosphorylation of AKT on Ser 
473 (83-85). As PPI between AKT and mTOR are important 
in liver cancer, the use of mTOR inhibitors, such as sirolimus, 
can significantly reduce the recurrence of liver cancer in the 

post-liver transplantation patient population (86). In a recent 
meta-analysis including 474 patients, the 1-, 3- and 5-year 
recurrence-free survival (RFS) and overall survival (OS) was 
considerably improved for the sirolimus group in comparison 
with the calcineurin inhibitors (CNIs) group. Lower recur-
rence, lower recurrence-associated mortality and lower overall 
mortality were observed in the sirolimus group compared 
to the CNIs group  (87). Other second-generation mTOR 
inhibitors, such as everolimus, Pp242, OSI027, CC-223 and 
AZD8055, have similar antitumor efficacy in liver cancer cell 
lines and xenograft models (88). A phase 1/2 study including 
28 patients revealed that everolimus is well tolerated in patients 
with advanced liver cancer, and 10 mg/day was defined as the 
phase 2 dose (89). In another cohort of 36 patients, everolimus 
was observed to repress cancer progression in patients with 
advanced liver cancer when used at a maximum tolerated dose 
of 70 mg weekly (88,90).

In addition to the therapy targeting mTOR, which may 
interrupt the PPI between mTOR and AKT, some drugs 
have been identified to simultaneous inhibit more than one 
signaling pathway. For example, hydroxytyrosol is capable 
of inhibiting cell proliferation and inducing G2/M cell cycle 
arrest and apoptosis in HCC cells by suppressing the PI3K/
AKT and NF-κB signaling pathways (91). OSU-A9, a potent 
indole-3-carbinol-derived PI3K/AKT/NF-κB signaling 
pathway inhibitor, can induce apoptosis by inactivating PI3K/
AKT/NF-κB signaling and killing HCC cells (92). NS398, a 
selective cyclooxygenase-2 (Cox2) inhibitor and simvastatin, a 
3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, 
were previously simultaneously used and this co-administra-
tion significantly reduced the activity of the PI3K/AKT and 
NF-κB signaling pathways, leading to inhibited liver cancer 

Table I. Continued.

Interactor		  Experimental evidence

AR	 Androgen receptor; steroid hormone receptors are ligand-activated	 Affinity Capture-Western (67,179)
	 transcription factors that regulate eukaryotic gene expression and affect	 Reconstituted Complex (67)
	 cell proliferation and differentiation in target tissues.
Notch1	 Notch homolog 1, translocation-associated (Drosophila); functions as a	 Biochemical Activity (46)
	 receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to
	 regulate cell-fate determination. Following ligand activation through the
	 released notch intracellular domain (NICD) it forms a transcriptional
	 activator complex with RBP-Jκ and activates genes of the enhancer of
	 split locus.

Affinity Capture-Western: an interaction is inferred when a bait protein is affinity‑captured from cell extracts by either polyclonal antibody or epi-
tope tag and the associated interaction partner identified by western blot analysis with a specific polyclonal antibody or second epitope tag. This 
category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification 
experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to eliminate potential 
contaminating proteins. Biochemical activity: an interaction is inferred from the biochemical effect of one protein on another, for example, 
GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. 
A modification value is recorded for interactions of this type with the possible values phosphorylation, ubiquitination, sumoylation, dephos-
phorylation, methylation, prenylation, acetylation, deubiquitination, proteolytic processing, glucosylation, Nedd(Rub1)ylation, deacetylation, 
no modification, and demethylation. Reconstituted Complex: an interaction is detected between purified proteins in vitro. Co-localization: 
interaction inferred from two proteins that co-localize in the cell by indirect immunofluorescence only when in addition, if one gene is deleted, 
the other protein becomes mis-localized. Includes co-dependent association of proteins with promoter DNA in chromatin immunoprecipitation 
experiments. The data are from BioGRID (http://thebiogrid.org).
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cell proliferation and induction of apoptosis (93). Baicalein 
is another drug that plays a negative role against liver cancer 
by targeting AKT and β-catenin in clinical treatment (94). 
An in  vitro study showed that Baicalein has significant 
cytotoxicity against liver cancer cells but moderate cyto
toxicity against immortalized human hepatocytes, suggesting 
Baicalein is an ideal drug that is less harmful to normal 
cells as compared to cancer cells. Baicalein has the ability to 
induce G0/G1-phase arrest in liver cancer cells by inhibiting 
PI3K/AKT signaling and promoting degradation of β-catenin, 
the key factor of Wnt/β-catenin signaling pathway. An in vivo 
study also demonstrated that Baicalein impairs tumor growth 
in a xenograft mouse model by inhibiting PI3K/AKT and 
β-catenin. Through a similar mechanism against PI3K/AKT 
and β-catenin, BCT-100, a new recombinant human arginase, 
has been revealed to inhibit cell proliferation and enhance 
caspase-dependent cell apoptosis (95). PI3K/AKT, mTORC1 
and MEK signaling can be simultaneously inhibited in vitro 
and in vivo by a novel 2-pyrimidyl-5-amidothiazole compound, 
DC120. Thus, this drug is able to suppress proliferation but 
also induce apoptosis in liver cancer cells (96).

Other PPIs can also be treated as potential therapeutic 
targets. Vassilev et al (97) developed a class of small mole-
cules, known as Nutlins, that can occupy the p53-binding 
pocket within the MDM2 protein, thereby blocking the PPI 
between MDM2 and p53. This effect facilitates the p53 tumor 
suppressor network to inhibit transformative phenotype of 
human cancer cells in vitro and in vivo. Curcumin has also 
been found to inhibit MDM2 by targeting PI3K/mTOR/ETS2 
in several cancer cell lines (98).

The treatment of ANISpm, a novel 3-amino-naphthalimide-
spermine conjugate, results in the inactivation of PI3K/AKT 
signaling followed by dissociation of BAD from BAD-Bcl 
complexes and the induction of Bcl-mediated apoptosis in 
liver cancer cells (99). The treatment of 3-nitro-naphthalimide 

and nitrogen mustard conjugate is another potential therapy 
that can induce apoptosis in liver cancer cells through the 
inhibition of PI3K/AKT signaling (100).

Macromolecules (macrodrugs) can be developed that inter-
fere with PPIs by binding with high affinity and specificity 
to contact surfaces. Although macrodrugs have inherent prob-
lems of bio-distribution and delivery to target cells in patients, 
their efficacies on the inhibition of cancers suggest that efforts 
to achieve the goal of clinical use should be pursued (101). 
Targeting physical PPIs especially PI3K/AKT-involved PPIs 
may become a new aspect in the clinical treatment of liver 
cancer (Fig. 1).

7. PPIs in other signaling pathways

There are a number of signaling pathways that can play onco-
genic roles in liver cancer. For example, the Notch signaling 
pathway is a highly conserved pathway in most multicellular 
organisms (102). The Notch system comprises four types of 
transmembrane Notch receptors (Notch-1, -2, -3 and -4), and 
two types of ligands, Serrate/Jagged (Jag-1 and -2) and Delta-
like (Dll-1, -3 and -4) (103). Extracellular epidermal growth 
factor (EGF)-like repeats in Notch receptors can interact with 
the delta serrate LAG-2 (DSL) domain in the ligands. Following 
ligand binding to the receptors, the extracellular domain of 
Notch receptors is cleaved by the γ-secretase complex, and the 
Notch intracellular domain (NICD) is released. NICD then 
shuttles into the nucleus and interacts with CBF1/Drosophila 
Su (H)/C. elegans LAG-1 (CSL)‑binding proteins, which are 
also known as recombination signal binding protein immuno-
globulin Jκ (RBP-Jκ). The co-repressors of RBP-Jκ are then 
replaced and the expression of a set of Notch target genes is 
activated (104). Notch proteins have been shown to interact 
with a family of mastermind-like transcriptional coactivators 
(MAML1, MAML2 and MAML3). MAML1 binds to the 

Figure 1. PI3K/AKT‑involved PPIs during tumor formation. Image of direct PPIs between AKT and key indicated proteins within certain signaling pathways. 
The potential therapeutic targets of certain drugs are shown.



Zhang et al:  Protein-protein interactions among signaling pathways in liver cancer632

ankyrin repeat domain of the four mammalian Notch recep-
tors, forms a DNA-binding complex with NICD and RBP-Jκ, 
and amplifies the Notch-induced transcription of HES1 (105). 
A dominant negative form of MAML can significantly reduce 
the proliferation of liver cancer cells (106). By contrast, there 
are also some PPIs that can inhibit Notch signaling. Protein 
Numb can interact with Notch receptors and antagonize Notch 
signaling. Mechanically, Numb recruits components of the 
ubiquitination machinery to the Notch receptor and thereby 
facilitating ubiquitination of Notch1 at the membrane and 
promoting the degradation of NICD. Numb acts as a tumor 
suppressor, and its function of inhibiting tumor cell prolifera-
tion occurs largely through the suppression of Notch signaling. 
In liver cancer cells, the downregulation of Numb is positively 
associated with activation of Notch signaling-induced cell 
proliferation and growth (107).

Hedgehog (Hh) is another important pro-tumorigenic 
signaling pathway that was first identified by the Nobel 
laureates Nüsslein-Volhard and Wieschaus through muta-
genesis screening assays in Drosophila (108). In mammals, 
hedgehog homologues include the Desert hedgehog (DHh), 
Indian hedgehog (IHh) and Sonic hedgehog (SHh). Hh 
proteins are synthesized as ~45-kDa precursors, followed 
by modifications at the amino-terminus with palmitic acids 
and carboxy-terminus with cholesterol groups (109,110). Hh 
proteins can bind to the Protein patched homolog (PTCH) 
receptor, which is a 12-span transmembrane protein (111,112). 
PTCH is also a negative regulator in Hh signaling because 
it can inhibit the activity of the 7‑pass transmembrane 
receptor‑like protein smoothened (SMO) (113). Binding of 
Hh proteins to PTCH leads to loss of the inhibitory activity 
of PTCH on SMO, which initiates an intracellular signaling 
cascade by releasing GLI proteins, terminal effectors of Hh 
signaling. These GLI proteins then enter into the cell nucleus 
to activate the transcription of Hh signaling target genes. The 
GLI proteins found in mammals include GLI1, GLI2 and 
GLI3. Numerous genes have been found to be regulated by 
these three GLI proteins. Overactivation of Hh signaling is 
responsible for proliferative diseases, including cancer. In 
2006, Hh signaling was firstly studied in HCC and investiga-
tors identified that SMO and GLI1 proteins are overexpressed 
in established liver cancer cell lines and liver cancer tissue 
samples. Furthermore, an increase in the stoichiometric ratio 
of SMO to PTCH mRNA levels in liver cancer was revealed 
to correlate with tumor size and be treated as a prognostic 
marker of liver cancer (114,115). GLI1 expression in HCC 
tissues was observed to be negatively associated with disease-
free and overall survival. Overexpression of GLI1 promotes 
the proliferation, viability, colony formation, migration and 
invasion of liver cancer cells, while silencing GLI1 expres-
sion in liver cancer cells leads to the opposite output (116). 
The protein zinc finger of the cerebellum 1 (ZIC1) interacts 
with GLI1 and repress the activity of GLI1 (117), thus ZIC1 is 
regarded as a tumor suppressor. In liver cancers, methylation 
frequencies of ZIC1 promoter are significantly higher than 
those in the corresponding non‑cancerous tissues. Moreover, 
patients whose ZIC1 promoters are methylated have poorer 
survival rates than those without such methylation (118).

The Hippo/YAP signaling pathway has become a hot 
research topic. This pathway was first identified in Drosophila 

and controls organ size through the regulation of cell prolif-
eration and apoptosis. All of the core components of the 
Hippo/YAP signaling pathway are conserved in mammalians. 
By phosphorylating the terminal transcriptional regulator of 
the Yes-associated protein (YAP) signaling pathway, large 
tumor suppressor kinase (LATS) promotes the PPI between 
YAP and 14-3-3 proteins, which helps to anchor YAP in the 
cytoplasm and prevents its transportation into the nucleus. 
When the upstream Hippo signaling is inactivated, YAP can 
translocate into the nucleus and bind to several transcrip-
tion factors including p73, runt-related transcription factor 2 
(Runx2) and TEA-domain family member (TEAD) protein 
families (119). A series of recent studies have demonstrated 
that the core components of the Hippo/YAP signaling pathway 
are important for liver tumorigenesis. Approximately 50% of 
human HCCs show aberrant expression and nuclear localization 
of YAP (120), with 30% HCCs showing low phosphorylation 
of YAP on Ser127, a hallmark of the inactivation of YAP (121). 
PPIs between YAP and other proteins have gradually been 
identified, including SMADs (122), p73 (123), ErbB4 (124), 
TEADs  (119), RUNX  (125), angiomotins (AMOTs)  (126-
128), zona occludens 1/2 (ZO1/2) (129) and LATS1/2 (130). 
In liver cancer, these PPIs play pivotal roles in promoting 
or inhibiting tumor formation. LATS kinases inhibit YAP 
function by promoting the cytoplasmic retention of YAP by 
phosphorylating YAP on Ser127 (131). A significant decrease 
in the expression and activity of LATS kinases is evident in 
HCC and CCC (132). YAP has been shown to interact with 
the TEAD family of transcription factors and upregulate genes 
that promote cell growth and inhibit apoptosis (133,134). The 
YAP-TEAD complex is important in YAP-overexpressing 
cancers and disruption of the YAP-TEAD interaction may 
provide an important approach for the treatment of liver cancer. 
The treatment of various types of cancer with verteporfin (VP) 
to disrupt the PPI between YAP and TEAD was suggested to 
become a new approach in clinical treatment (135). In addition 
to TEAD, YAP has been found to interact with tight junction 
proteins angiomotin (AMOT) and zona occludens-2 (ZO-2). 
AMOT acts as a YAP cofactor, preventing YAP phosphoryla-
tion and increasing its activity towards a specific set of genes 
that facilitate tumorigenesis in liver cancer. However, the 
functional role of PPI between YAP and ZO-2 in liver cancer 
remains to be investigated. These direct PPIs in the Notch, 
hedgehog, and Hippo/YAP pathways that are associated with 
liver cancer are shown in Fig. 2.

8. How to investigate and analyze PPIs

Methods that detect PPIs can be classified into three catego-
ries, i.e., in vitro, in vivo and in silico methods. For in vitro 
methods, a given procedure is carried out in a controlled 
environment outside a living organism; for in vivo methods, 
a given procedure is carried out inside a living organism; 
and for in silico methods, the procedure is performed in a 
computer simulation (136). In vitro methods for detecting 
PPIs include affinity chromatography (137), X-ray crystal-
lography  (138), co-immunoprecipitation  (139), tandem 
affinity purification  (140), protein arrays  (141), protein 
fragment complementation   (142) and nuclear magnetic 
resonance (NMR) spectroscopy (136,143). In vivo methods 
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for detecting PPIs include yeast two-hybrid (Y2H)  (144) 
and synthetic lethality  (145). As for in silico prediction, 
there are sequence‑based approaches (146), structure-based 
approaches (147), gene fusion analysis (148), chromosome 
proximity (149), in  silico two-hybrid  (150), phylogenetic 
tree (151), mirror tree (152) and gene ontology (153).

Massive identification of PPIs generates numerous inter-
actions, which are collected together in PPI databases that 
are continuously updated to provide complete interactions. 
The database of interacting proteins (DIP) is the first PPI 
database globally (154). The number of public PPI databases 
has increased rapidly. For example, the Biological General 
Repository for Interaction Datasets (BioGRID: http://thebi-
ogrid.org) is an open access database that houses genetic and 
protein interactions curated from the primary biomedical 
literature for all major model organisms and human. BioGRID 
contains 749,912 interactions as drawn from 43,149 publica-
tions describing studies in >30 model organisms  (155). 
Another example is the Protein Interaction Network Analysis 
(PINA) platform, which is for protein interaction network 
construction, filtering, analysis, visualization and manage-
ment. It integrates PPI data from six public curated databases 
and constructs a complete, non-redundant protein interaction 
dataset for six model organisms. PINA also provides a variety 
of built-in tools to filter and analyze the network to gain insight 
into the network (156).

Public databases such as HitPredict (http://hintdb.hgc.jp/
htp/) (157), IntAct (http://www.ebi.ac.uk/intact/) (158), Agile 
Protein Interaction DataAnalyzer (APID) (http://bioinfow.
dep.usal.es/apid/index.htm)  (159) and MINT (http://mint.

bio.uniroma2.it/mint/)  (160) include the PPIs data and are 
continuously updated.

9. Conclusion

In summary, signal transduction plays a fundamental role in 
many biological processes as well as in many diseases. In 
liver cancer, many signaling pathways including PI3K/AKT, 
Ras/Mek/ERK, IKK/NF-κB, Wnt/β-catenin, TGF-β, Notch, 
hedgehog and Hippo/YAP are shown to be dysregulated. 
The majority of these signaling pathways have PPIs with 
PI3K/AKT signaling pathways. Identification of PPI is the 
crucial step involved in identifying the signal transduction 
pathways. Signals propagation to inside and/or along the inte-
rior of cells depends on PPIs between the various signaling 
molecules. Numerous properties of PPI such as allosteric sites 
and hotspots, have been incorporated into drug-design strate-
gies. The relevance of PPI as putative therapeutic targets for 
the development of new treatments is particularly evident in 
liver cancer. The investigation of PPIs in signaling pathways 
may provide knowledge on biochemical cascades and disease 
pathogenesis, and new therapeutic targets in liver cancer.
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