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Abstract. Platelets are crucial components of the tumor 
microenvironment that function to promote tumor progression 
and metastasis. In the circulation, the interaction between 
tumor cells and platelets increases invasiveness, protects 
tumor cells from shear stress and immune surveillance, and 
facilitates tumor cell extravasation to distant sites. However, 
the role and presence of platelets in the primary tumor have 
not been fully determined. Here, we investigated the presence 
of platelets around breast cancer primary tumor cells and the 
associations between these cells. We further investigated the 
associations among platelets, tumor cells, chemoresistance, 
and epithelial‑mesenchymal transition (EMT). We retrospec-
tively analyzed data from 74 patients with human epidermal 
growth factor receptor 2 (HER2)‑negative breast cancer who 
underwent biopsies before treatment and subsequent neo‑adju-
vant chemotherapy. In biopsy specimens, we evaluated the 
expression of platelet‑specific markers and EMT markers 
using immunohistochemistry. The associations among the 
expression of platelet‑specific markers in biopsy specimens, 
EMT, response to neo‑adjuvant chemotherapy, and survival 
were analyzed. The presence of platelets was observed in 
44 out of 74 (59%) primary breast cancer biopsy specimens. 
Platelet‑positive tumor cells showed EMT‑like morphological 
changes and EMT marker expression. Primary tumor cells 
associated with platelets were less responsive to neo‑adjuvant 
chemotherapy (pCR rate: 10 vs. 50%, respectively; p=0.0001). 
Platelets were an independent predictor of the response to 
chemotherapy upon multivariable analysis (p<0.0001). In 

conclusion, there was a significant association between plate-
lets surrounding primary tumor cells in the biopsy specimens 
and the chemotherapeutic response in breast cancer. Platelets 
surrounding primary tumor cells may represent novel predic-
tors of chemotherapeutic responses.

Introduction

Cancer is the leading cause of death worldwide, accounting 
for 8.2 billion deaths in 2012 alone  (1). Multimodal treat-
ment, including chemotherapy, surgery, and radiotherapy, 
has dramatically reduced cancer mortality and improved the 
quality of life of individuals with cancer (1‑3). However, not 
all patients respond positively to currently available therapies, 
and relapse is common in patients who initially respond to 
chemotherapy. The epithelial‑mesenchymal transition (EMT) 
is an essential mechanism involved in tumor progression and 
metastasis, and the tumor microenvironment, including the 
extracellular matrix and numerous stromal cell types, has 
been shown to induce EMT (4,5). Therefore, the development 
of novel treatments targeting the EMT process may provide 
effective therapies for patients who do not respond to current 
treatments or who experience chemoresistant relapse.

Platelets, the smallest anucleate hematopoietic cells, 
are now recognized as key regulators of tumor progression 
and metastasis (6‑8). In the circulation, platelet aggregation 
protects cancer cells from shear stress and immune surveil-
lance through the formation of a platelet cloak. Platelets also 
facilitate cancer cell adherence to vascular endothelial cells, 
which leads to extravasation into the stroma and the formation 
of secondary tumors (9). However, the presence and role of 
platelets in primary tumors are not well understood.

Platelets contain numerous platelet‑derived growth 
mediators and cytokines related to EMT, such as trans-
forming growth factor‑β  (TGF‑β), vascular endothelial 
growth factor‑A  (VEGF‑A), and plasminogen activator 
inhibitor‑1 (PAI‑1). Labelle et al reported that direct signaling 
between platelets and breast cancer cells in the vasculature 
induces the latter to undergo EMT (10). Furthermore, investi-
gations have demonstrated that tumors undergoing EMT show 
increased resistance to chemotherapy (11,12). Moreover, in a 
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study targeting chemoresistant breast cancer cells following 
neo‑adjuvant chemotherapy, we found that some patients 
achieved pathological complete response (pCR; defined as no 
residual invasive cancer in the breast and lymph nodes), which 
would be expected to be associated with a more favorable 
prognosis than that in patients who did not achieve pCR (13). 
Chemoresistance involves numerous complex mechanisms, 
including gene pathways associated with apoptosis/senescence 
and DNA repair, which are often influenced by communica-
tion between host and tumor cells (14). Furthermore, EMT, 
anti‑apoptotic mechanisms, and stemness induced by the 
cancer microenvironment have been shown to play important 
roles in chemoresistance (15).

Therefore, we hypothesized that platelets surrounding 
tumor cells could also be detected in primary sites and could 
be associated with EMT and chemoresistance. The aims 
of this study were as follows: ⅰ) to confirm the presence of 
platelets surrounding primary tumor cells in breast cancer; 
ⅱ) to explore the associations between tumor cells associated 
with platelets and EMT; and ⅲ) to evaluate the association 
between the presence of platelets surrounding tumor cells and 
chemoresistance, and survival.

Materials and methods

Patients and clinical specimens. We retrospectively analyzed 
data from 74 patients with human epidermal growth factor 
receptor 2 (HER2)‑negative breast cancer who had undergone 
neo‑adjuvant chemotherapy at Kanazawa University Hospital 
between 2006 and 2013. Patients were selected according to the 
following inclusion criteria: women, histologically confirmed 
invasive ductal carcinoma of the breast with no evidence of 
metastatic disease and defined as clinical stage I to ⅢC (any 
T, N3, M0) with the same neo‑adjuvant chemotherapy regimen 
[four cycles of docetaxel (Taxotere) 75 mg/m2 followed by four 
cycles of fluorouracil, epirubicin 100 mg/m2, and cyclophos-
phamide  (FEC‑100)]. Additionally, patients were excluded 
from the analysis if they met any of the following criteria: 
ⅰ)  invasive lobular carcinoma; ⅱ)  ductal or lobular carci-
noma in situ; and ⅲ) HER2‑positive breast cancer, defined as 
immunohistochemistry (IHC) 3+ or fluorescence in situ hybrid-
ization (FISH)/dual in situ hybridization (DISH) positive. All 
study procedures were approved by the Ethics Committee of 
the Kanazawa University Hospital. Written informed consent 
was obtained from each patient enrolled in the study.

The tumors were staged according to the International 
Union against Cancer tumor‑node‑metastasis (TNM) classi-
fication 7th edition (16). Histological subtype and grade were 
classified on the basis of the World Health Organization (WHO) 
guidelines for the Pathology and Genetics of Tumors of the 
Breast and Female Genital Organs (17). ER status, proges-
terone receptor  (PR) status, Ki‑67 index, histology, and 
nuclear grade were evaluated in biopsy specimens analyzed 
prior to neo‑adjuvant chemotherapy. Biopsies were performed 
by taking 3‑5 extra cores in a needle biopsy with a 14‑gauge 
needle or by vacuum‑assisted biopsy with an 11‑gauge needle. 
Biopsy samples were obtained uniformly from various regions 
of the entire tumor.

The pathological response to neo‑adjuvant chemotherapy, 
including anthracycline and/or taxanes, was evaluated in 

surgical specimens after therapy. pCR was defined as the 
complete eradication of all invasive cancer in both the breast 
and axillary nodes. Any other response was considered to be 
non‑pCR.

Associations between clinicopathological parameters, 
including CD42b expression and pCR, were investigated with 
univariable/multivariable logistic regression. Odds ratios (ORs) 
and 95% confidence intervals (CIs) with two‑sided p‑values 
were used. p<0.05 was considered statistically significant. 
Overall survival (OS) was defined as the time between the 
first day of chemotherapy and the date of breast cancer‑related 
death; patients still alive were censored at the last date of 
follow‑up. Recurrence‑free survival (RFS) was defined as the 
interval between the first day of chemotherapy and the date of 
disease relapse or death from related causes; patients still alive 
were censored at the last date of follow‑up.

Immunohistochemical examination. The Dako Envision 
system, with dextran polymers conjugated to horseradish 
peroxidase  (Dako, Carpinteria, CA, USA), was used for 
immunohistochemical staining to avoid any endogenous biotin 
contamination. Formalin‑fixed, paraffin‑embedded tissues 
were cut into sections (4 µm thick). The sections were deparaf-
finized with xylene and rehydrated in increasing dilutions of 
ethanol. Endogenous peroxidase was blocked by immersing 

Table I. Patient characteristics.

Characteristics	D ata

Age (years), median (range)	 52 (27‑73)
Menopause, n (%)
  Premenopause	 31 (48)
  Postmenopause	 33 (52)
Stage, n (%)
  Ι	 22 (30)
  IIA	 18 (24)
  IIB	 14 (19)
  IIIA	 7 (9)
  IIIB	 4 (6)
  IIIC	 9 (12)
ER status, n (%)
  Positive	 48 (65)
  Negative	 26 (35)
Ki‑67 index, % (range)	 40 (0‑90)
Histology, n (%)
  Scirrhous carcinoma	 55 (74)
  Papillotubular carcinoma	 8 (11)
  Solid‑tubular carcinoma	 9 (12)
  Unknown	 2 (3)
Nuclear grade, n (%)
  1	 14 (19)
  2	 11 (15)
  3	 34 (46)
  Unknown	 15 (20)
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sections in 3% H2O2 and 100% methanol for 20 min at room 
temperature. Antigen retrieval was achieved by microwaving 
sections at 95˚C for 10 min in 0.001 M citrate buffer (pH 6.7). 
After blocking the endogenous peroxidase, the sections were 
incubated with Protein Block Serum‑Free  (Dako) at room 
temperature for 10  min to prevent non‑specific staining. 
Sections were then incubated with primary antibodies 
[anti‑glycoprotein Ib (CD42b; Abcam, Cambridge, UK) at a 
1:100 dilution for platelet identification; anti‑E‑cadherin (clone 
4A2C7; Zymed) at a 1:50 dilution; anti‑vimentin (ab92547; 
Abcam) at a 1:250 dilution; and anti‑β‑catenin  (ab16051; 
Abcam) at a 1:1,000 dilution as a marker for EMT] followed 
by quenching of the endogenous peroxidase activity. 
Peroxidase activity was detected using the enzyme substrate 
3‑amino‑9‑ethylcarbazole. Sections were incubated in 
Tris‑buffered saline without the primary antibodies as nega-
tive controls, counterstained with Mayer's hematoxylin, and 
mounted with mounting medium.

All biopsy specimens were fixed with 10% formalin and 
embedded in paraffin. The percentage of stained cells was 
recorded in at least five fields at x400 magnification in randomly 

selected areas. Cases in which >10% of cancer cells were 
stained were defined as positive. To eliminate sampling bias, 
we confirmed that there was no difference between available 
resected specimens and biopsy specimen for this evaluation 
method. Two observers who were unaware of the clinical data 
independently reviewed all the pathological slides.

Statistical analysis. Statistical analysis was performed using 
GraphPad Prism software following the guidelines described 
by Bremer and Doerge (18) and the GraphPad Prism User 
Guide. Differences in categorical variables were tested for 
significance using χ2 tests. Results were considered signifi-
cant when p<0.05. OS and RFS rates were estimated using 
Kaplan‑Meier method and compared using the log‑rank test.

Results

Patient and clinicopathological characteristics. Patient 
characteristics, including age, menopausal status, and tumor 
stage are summarized in Table I. The median patient age was 
52 years (range, 27‑73 years), and 31 patients were premeno-

Figure 1. Immunohistochemical analysis of CD42b expression in biopsy specimens from patients with primary breast cancer. (A) Expression of CD42b (black 
arrow) was detected around primary tumor cells in the biopsy specimens, but not within the membrane or cytoplasm. Tumor cells with CD42b expression 
(black arrow) were observed in (B) perivascular tissue (red dotted line shows the blood vessels), (C) around the capillaries (white arrow), and (D) in the blood 
vessels (red dotted line). (E) Tumor cells with CD42b expression showed EMT‑like morphological changes [i.e., loss of apical‑basal polarity (green arrow) and 
tumor cell migration (blue arrow)]. (F) These were detected at the invasive front (yellow dotted line). Magnification, x400.
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pausal. The tumor stages were as follows: stage  I, n=22; 
stage Ⅱ, n=32; and stage Ⅲ, n=20. ER status was positive in 
48 tumors and negative in 26 tumors. The median Ki‑67 index 
was 40 (range, 0‑90). With respect to histological subtype, 
72 tumors were invasive ductal carcinoma, and two were of an 
unknown subtype. The nuclear grades of the tumors were as 
follows: 1 in 14 cases, 2 in 11 cases, 3 in 34 cases, and unknown 
in 15  cases. The median follow‑up time was 69  months 
(range, 28‑117 months). There were 5 deaths (4 deaths in 
CD42b‑positive and 1  death in CD42b‑negative groups) 
and 9 recurrences (7 recurrences in the CD42b‑positive and 
2  recurrences in the CD42b‑negative group). The median 
RFS and OS values were not reached. The 5‑year RFS and 
OS rates were 93.2 and 98.6%, respectively.

Platelets surrounding primary tumor cells. All tumors were 
evaluated for CD42b expression, a platelet‑specific marker. 
CD42b expression was observed in 44 of 74 (59%) primary 
breast tumors  (Fig.  1A), with particularly strong staining 
at the invasive front, which was observed in 37 of 74 (84%) 
specimens  (Fig.  1F), and migratory tumor cells in the 
perivascular tissue, which was observed in 30 of 44 (68%) 
specimens (Fig. 1B‑D).

Relationship between platelets surrounding primary tumor 
cells and clinicopathological features. The relationships 
between CD42b expression and clinicopathological features, 

including stage, nuclear grade, histology, ER status, and patho-
logical responce are summarized in Table Ⅱ. A statistically 
significant association was noted between CD42b expres-
sion and pathological response (p<0.0001). There were no 
significant associations between CD42b expression and stage, 
nuclear grade, histology, or ER status.

Expression of EMT markers in primary tumor cells associated 
with platelets. Tumor cells associated with CD42b immunore-
activity showed EMT‑like morphological changes, including 
loss of apical‑basal polarity and detachment from the basement 
membrane at the invasive front (Fig. 1E and F). In order to 
investigate the expression of EMT markers in CD42b‑positive 
tumor cells, immunohistochemistry was performed on 
biopsy specimens. All tumors were evaluated for E‑cadherin, 
vimentin, and β‑catenin expression. We found nuclear staining 
of β‑catenin in CD42b‑positive tumor cells (Fig. 2A and C), 
while CD42b‑negative tumor cells showed a membranous 
pattern of β‑catenin staining (Fig. 2B and D). CD42b‑positive 
tumor cells also showed loss of E‑cadherin expression and 
gain of vimentin expression  (Fig.  2E and G). In contrast, 
CD42b‑negative tumor cells showed membranous expression 
of E‑cadherin and β‑catenin, but loss of vimentin expres-
sion (Fig. 2F and H).

Relationship between platelets surrounding primary tumor 
cells in biopsy specimens and pathological response to 

Table Ⅱ. Relationship between CD42b expression and the clinicopathological characteristics of the primary breast cancer cases.

	 CD42b expression
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	 Positive (≥10%)	 Negative (<10%)	 t or χ2 test
Clinicopathological parameters	 n (%)	 n (%)	 (p‑value)

Patients	 44 (59)	 30 (41)	
Stage			   0.2280
  I	 11 (25)	 11 (36)	
  II	 18 (41)	 14 (46)	
  III	 15 (34)	 5 (18)	
Nuclear grade			   0.1539
  G1	   6 (14)	 8 (26)	
  G2	   6 (14)	 5 (18)	
  G3	 25 (56)	 10 (33)	
  Unknown	 7 (16)	 7 (23)	
Histology			   0.4172
  Scirrhous carcinoma	 33 (75)	 22 (73)	
  Papillotubular carcinoma	   3 (7)	 5 (16)	
  Solid‑tubular carcinoma	 6 (13)	 3 (11)	
  Unknown	   2 (5)	 0 (0)	
ER status			   0.6115
  Positive	 29 (66)	 22 (73)	
  Negative	 15 (34)	 8 (27)	
Chemotherapy response			   0.0001
  pCR	   4 (9)	 15 (50)	
  Non‑pCR	 40 (91)	 15 (50)	
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neo‑adjuvant chemotherapy. Analysis of the relationship 
between CD42b expression and pathological response to 
neo‑adjuvant chemotherapy showed that pCR differed 
significantly with respect to CD42b expression. When 
compared to patients with CD42b‑positive tumors, those with 
CD42b‑negative tumors achieved a pCR far more frequently 
(10 vs. 50%, respectively; p=0.0001) (Table Ⅱ).

Univariate analysis of clinicopathological parameters 
showed that CD42b expression (p<0.0001) was significantly 
associated with pCR rate. Multivariate analysis identified 
CD42b expression (p<0.0001), ER status (p=0.03), and 
nuclear grade (p=0.02) as independent predictors of pCR 
rate (Table Ⅲ).

Relationship between CD42b expression and survival 
outcomes. RFS and OS between tumors with CD42b expression 
and those without CD42b expression are shown in Fig. 3. RFS 

and OS displayed no significant differences, regardless of 
CD42b expression (p=0.18 and 0.24) (Fig. 3).

Discussion

In cancer progression and metastasis, platelets play an essential 
role in the host tumor microenvironment and have been shown 
to interact with cancer cells. In this study, we demonstrated 
that platelets aggregated around primary tumor cells in 59% 
of the breast cancer specimens. Moreover, we showed that 
primary tumor cells surrounded by platelets were found in 
sites in which EMT was occurring based on molecular and 
morphological changes. Finally, we also found that primary 
tumor cells associated with platelets exhibited chemoresistance 
to common anticancer drugs (including anthracycline and 
taxanes). Therefore, our data provide important insights into 
the mechanisms of breast cancer progression.

Figure 2. Expression of epithelial‑mesenchymal transition markers in CD42b‑positive tumor cells in serial sections. (A) CD42b expression around primary 
tumor cells. (B) Absence of CD42b expression around primary tumor cells. (C) Nuclear staining of β‑catenin in CD42b‑positive primary tumor cells. 
(D) Membranous staining pattern of β‑catenin in CD42b‑negative primary tumor cells in serial sections from a sample from a single patient. (E) CD42b‑positive 
primary tumor cells showing loss of E‑cadherin expression. (F) CD42b‑negative primary tumor cells showing membranous staining of E‑cadherin in serial 
sections from a sample from a single patient. (G) CD42b‑positive primary tumor cells showing membranous staining of vimentin. (H) CD42b‑negative 
primary tumor cells showing loss of vimentin expression in serial sections from a sample from a single patient. Magnification, x400.
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In patients with platelets surrounding primary tumor 
cells, wherein platelets were present at numbers >10% of 
the total number of tumor cells, significant residual invasive 
carcinoma cells were observed in surgical specimens resected 
after chemotherapy. These results indicated that platelet 
aggregation around primary tumor cells may play a crucial 
role in inducing EMT and chemoresistance. Thus, platelet 
aggregation around primary tumor cells may be an effective 
predictor of chemoresistance and a novel therapeutic target for 
overcoming chemoresistance, one of the major complications 
of cancer therapies.

Platelets, the smallest anucleate hematopoietic cells, cannot 
be detected by traditional hematoxylin and eosin staining. 
Therefore, the presence of platelet aggregation around primary 
tumor cells is difficult to recognize. Cancer cells were shown 
to have the ability to interact with platelets in vitro several 

decades ago (19‑22). Furthermore, the interaction between 
circulating tumor cells  (CTCs) and circulating platelets is 
now recognized as a hallmark of the metastatic potential of 
cancer (6,8). Recent studies have demonstrated that the pres-
ence of platelet aggregation around tumor cells can be detected 
both in the circulation and in primary tumor cells in patients 
with pancreatic cancer (23). Here, we used immunohistochem-
istry to demonstrate that platelets aggregated around primary 
tumors in about half of the breast cancer patients. Therefore, 
these data further support that the metastatic potential of plate-
lets in primary sites, in addition to those in circulation, should 
also be analyzed.

Platelets were detected in HER2‑negative breast cancer, 
regardless of stage, nuclear grade, ER status, and Ki‑67 index. 
Other studies have reported the interaction between intrinsic 
subtype and tumor cell‑platelet interactions. Luminal‑type 
breast cancer cells have been reported to induce greater 
aggregation of platelets than other types of breast cancer 
cells  in vitro  (19,24). Moreover, in addition to facilitating 
tumor invasiveness, migration, tumor growth, cell survival, 
and angiogenesis, circulating platelets also play a crucial role 
in inducing EMT in malignancy (10). Circulating platelets are 
supported by chemical mediators, such as TGF‑β, VEGF‑A, 
and PDGF, released from activated platelets  (10,25). We 
demonstrated that primary tumor cells associated with platelet 
aggregation showed morphological and molecular charac-
teristics of EMT in breast cancer. In particular, we observed 
nuclear translocation of β‑catenin, which reflects the down-
regulation of E‑cadherin and may lead to activation of the Wnt 
pathway, thus inducing transcriptional enhancement of c‑Myc 
and cyclin‑D (26). These events could promote tumor cell 
migration from the primary site. Miyashita et al reported that 
primary tumor cells surrounded by platelets exhibited charac-
teristics of EMT in pancreatic cancer (23). Thus, these findings 
support our hypothesis that induction of EMT by platelet 
aggregation may occur during early processes of metastasis, 
even at primary tumor sites.

In this study, we also showed that primary tumor cells 
associated with platelet aggregation were less responsive to 
chemotherapy. Patients whose pre‑treatment biopsy specimens 
contained platelets surrounding tumor cells at a rate >10% of 
the total number of tumor cells showed significant residual 
cancer cells in surgical specimens following chemotherapy. 
Recent reports have demonstrated that human platelets 
increase cancer cell survival, proliferation, and chemoresis-
tance to 5‑fluorouracil and paclitaxel in colon and ovarian 

Table Ⅲ. Univariable and multivariable analysis of clinicopathological parameters including CD42b expression for prediction 
of pCR.

	U nivariable analysis	 Multivariable analysis
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑--‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑--‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Clinicopathological parameters	 OR	 95% CI	 P‑value	 OR	 95% CI	 P‑value

CD42b expression (≥10 vs. <10%)	 0.1	 0.02‑0.34	 <0.0001	 0.03	 0.003‑0.15	 <0.0001
ER status (positive vs. negative)	 0.49	 0.17‑1.44	 NS	 0.21	 0.04‑0.9	 0.03
Clinical stage (III vs. I‑II)	 0.45	 0.11‑1.78	 NS	 1.08	 0.18‑5.76	 NS
Nuclear grade (G3 vs. G1‑2)	 1.77	 0.61‑5.1	 NS	 5.31	 1.27‑29.4	 0.02

Figure 3. (A) Recurrence‑free survival and (B) overall survival according to 
CD42b expression status.
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cancer  in  vivo  (27). Moreover, chemoresistance could be 
induced by platelets throughout EMT (28), PAI‑1‑mediated 
anti‑apoptotic pathways, direct protection, or immunosuppres-
sion mediated by downregulation of NKG2‑D (29,30). These 
results indicate that platelet aggregation surrounding primary 
tumor cells may be a predictive factor for chemotherapeutic 
success. Additionally, if platelet‑mediated EMT and chemo-
resistance could be modulated, we may be able to achieve 
enhanced chemotherapeutic efficacy. As such, it is imperative 
to elucidate the mechanisms of tumor cell‑platelet interactions 
in primary tumor sites.

In the present study, we were unable to demonstrate 
a significant relationship between CD42b expression and 
survival outcomes. The prognostic impact of pathological 
complete response (pCR) varies dependent on the intrinsic 
subtype of breast cancer. pCR is a suitable surrogate end 
point for luminal B /HER2‑negative, HER2‑positive, and 
triple‑negative disease, but not in luminal breast cancer. 
Because our study consisted of these different subtypes, 
there is necessity to evaluate a greater number of samples. 
Moreover, duration of follow‑up limited the ability to evaluate 
the recurrence and death of breast cancer; increased follow‑up 
time is required.

This study had several limitations, including its retrospec-
tive nature, small sample size, potential selection bias, and 
heterogeneity of tumor characteristics. With respect to the 
heterogeneity of tumor characteristics, we performed prelimi-
nary experiments on the expression of CD42b in available 
resected specimens and biopsies as consistently as possible to 
reduce the effects of tumor heterogeneity. We confirmed that 
there was no difference between available resected specimens 
and biopsy specimen for this evaluation method.

We concluded that platelets may have tremendous potential 
to induce tumor progression and metastasis, even when found 
within the primary tumor site. This phenomenon may repre-
sent a novel predictive factor for chemoresistance, and our 
results may provide important insights into new therapeutic 
targets in breast cancer. To discover and validate novel thera-
peutic targets, we are now conducting research to elucidate 
the mechanisms of the chemoresistance caused by platelets in 
breast cancer cells.
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