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Abstract. The complex genomic structure of eukaryotic cells 
is primarily achieved by the binding of DNA to histones. 
Different members of the histone families form a complex with 
genomic DNA and, as a nucleosome, constitute the functional 
unit of chromatin. In addition to their structural functionality, 
histones are also involved in other molecular mechanisms, 
such as DNA damage recognition and repair. A very important 
factor of DNA damage management is the histone H2A.X. The 
phosphorylation of H2A.X initiates various processes of the 
DNA repair systems and plays significant roles in cellular regu‑
lation. The H2A.X phosphorylation status represents a central 
sum parameter for genome integrity and allows conclusions to 
be drawn about DNA‑associated processes in cells and tissues. 
As a biomarker for DNA damage and genotoxicity, as well as 
a clinical marker for radiotherapy outcome, drug efficacy and 
tissue regeneration, the H2A.X phosphorylation status repre‑
sents an effective biomarker for current and future biomedical 
applications. The present brief review article provides an over‑
view of the various molecular functions and cellular events in 
which the phosphorylation of histone H2A.X can occur.
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1. Introduction

In eukaryotic cells, genomic DNA is present as chromatin. 
This complex structuring is achieved as the DNA is bound 

to DNA‑binding proteins, the histones. The complex of DNA 
and histones is known as a nucleosome and represents the 
functional unit of chromatin (1). Such a nucleosome includes a 
DNA region of 145‑147 base pairs, which is wound as a super‑
helix around a histone octamer. The histone group consists 
of four families: H2A, H2B, H3 and H4. Two histones from 
each family form a dimer, H2A‑H2B and H3‑H4, which finally 
assemble as two tetramers (H2A‑H2B)2 and (H3‑H4)2 to form 
the functional histone octamer (1,2). The histones of each of the 
four families are encoded by several genes and are expressed 
during DNA synthesis in the S phase of the cell cycle (3).

2. Histone H2A.X and its phosphorylation

The histone family H2A consists of the members, H2A.1, 
H2A.2, H2A.X and H2A.Z (4). The main part of the histone 
family is represented by H2A.1 and H2A.2. The two isoforms 
differ in only a few amino acids and thus far, no differential 
functions have been detected. In eukaryotes, H2A.Z comprises 
~10% of the H2A histones, with H2A.X comprising even up 
to 25%. In mammals, however, H2A.X is much less expressed 
and represents only up to 10% of the H2A histones (5).

H2A.X is 124 amino acids in length and differs from 
the other members of the H2A family by a highly conserved 
22 amino acid domain at the C‑terminus. The C‑terminal 
motif Ser139‑Gln140‑Glu141‑Tyr142 is used for post‑translational 
modification of the histone, where the protein can be phos‑
phorylated at Ser139 (5,6).

H2A.X, as with all other histones, serves to structure and 
stabilize the DNA (7). It also has a very specific function in 
the complex DNA damage detection and repair machinery of 
higher eukaryotes. The phosphorylation of H2A.X at position 
Ser139 (γH2A.X) is one of the first signals for the detection 
of DNA double‑strand breaks (DSBs) and an essential step 
for the initialization of DNA repair (8,9). DSBs are genetic 
damage events with highest cytotoxicity (10). DSBs occur in 
human cells ~10 times per day and cell, which impressively 
reflects the enormous efficiency of the DNA damage detection 
and repair system of eukaryotic cells (11). The phosphorylation 
of H2AX serves as one of the first signals for a DSB, and is 
thus an essential prerequisite for the activation of DNA repair 
systems, and thus contributes significantly to the stabilization 
of the genome against genotoxic noxae.

A single DSB leads to the binding of several hundred 
to thousand γH2A.X proteins to the affected DNA region. 
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γH2A.X‑DNA binding extends over a length of 0.5‑1.7 mega‑
base pairs, so that the entire environment of the DSB is 
epigenetically labelled  (12). These mechanisms are well 
studied in radiation‑induced DSB. Phosphorylation of H2A.X 
to γH2A.X occurs within minutes after the damage event and 
is proportional to the dose of ionizing radiation (biodosim‑
etry). Per gray of radiation, ~1% of the H2A.X protein present 
in the nucleus is phosphorylated (4).

The phosphorylation of H2A.X is not limited to the effect of 
ionizing radiation (9,13) (Fig. 1). A number of other exogenous 
noxae can lead to the formation of γH2A.X. Physical noxae 
include ultraviolet radiation, low pH, and heat stress (14‑17). 
Chemical factors are DNA‑damaging agents, such as bleo‑
mycin, doxorubicin and reactive oxygen species (18‑20). There 
are also cellular events that can induce H2A.X phosphorylation. 
During somatic recombination to ensure antibody variability 
in B cells and for genome stabilization under replicative stress, 
phosphorylation of H2A.X occurs (15,21,22). Furthermore, 
DNA damage, including γH2A.X signals also occurs during 
aging and apoptosis  (23‑25). In mammalian germ cells, 
sex chromosomes X and Y are epigenetically silenced by 
condensing the chromatin of both chromosomes (XY body). 
In the regulation of this process, gH2A.X is involved along 
with a number of other factors of DNA repair (26). Since the 
phosphorylation of the histone variant sometimes occurs inde‑
pendently of DSBs, the characterization of kinetics, number, 
size and morphology of detected γH2A.X foci is of great 
relevance (27). The immunocytochemical γH2A.X detection 
using a phosphor‑specific antibody for the phosphorylation on 
Ser139 at the C‑terminus of H2A.X is based on the assump‑
tion that the intensity of immunofluorescence correlates 
stoichiometrically with the frequency of DSB (14,27,28). The 
phosphorylated histone isoform can be detected in so‑called 
γH2A.X foci.

gH2A.X activity is critical for maintaining genome 
stability in a wide variety of cellular processes. As with all 
regulatory processes, however, it must also be possible to 
switch off the corresponding signals. In the case of H2A.X 
activity, this is dictated by a phosphorylation‑dephosphoryla‑
tion cycle. Phosphorylation is catalyzed by the kinases ataxia 
telangiectasia mutated  (ATM), ataxia telangiectasia and 
Rad3‑related protein (ATR), DNA‑dependent protein kinase 
(DNA‑PK) and mitogen‑activated protein  (MAP) kinases 
p38, which can be reversed by the protein phosphatases (PP) 
PP2A, PP4, PP6 and wild‑type p53‑induced phospha‑
tase 1 (WIP1) (29‑32) (Fig. 2).

3. Phosphorylation of H2A.X in the DNA damage response

The cellular response to detected DNA damage includes both 
temporary cellular responses, such as checkpoint control acti‑
vation, as well as permanent cellular responses such as cell 
cycle arrest and apoptosis (7).

DNA damage detection and repair constitute a complex 
cellular event involving the entire histone biochemistry. Both 
the structure and function of nucleosomes are regulated 
by post‑transcriptional modifications to histone proteins. 
These include acetylation, methylation, ubiquitination and 
phosphorylation, which orchestrate the signaling pathways 
involved in DNA repair and induce structural changes in the 

DNA histone architecture required for this process (33). A key 
post‑translational modification in the context of DNA damage 
is the phosphorylation of H2A.X by the kinases, ATM, ATR 
and DNA‑PK (9,15,34‑36). As serine/threonine kinases, these 
enzymes belong to the phosphoinositide 3‑kinase (PI3K) family 
and act as sensors for DNA damage (37). PI3K phosphorylate 
their substrates on the amino acid motif serine or threonine, 
glutamine, and glutamic acid (Ser/Thr‑Gln‑Glu) (38).

During DNA damage detection, γH2A.X and DNA repair 
proteins, such as p53 binding protein 1 (53BP1) and breast 
cancer 1 (BRCA1) colocate (39,40). The activation of PI3K is 
still a general reaction to different DNA damage, and only the 
activation of H2AX by phosphorylation leads to the mobiliza‑
tion of DSB specific signal and repair proteins (41). However, 
current investigations indicate that both DSB recognition 
and the recruitment of repair factors are still feasible without 
γH2A.X (37).

4. γH2A.X as a protein biomarker

Based on the proportionality of γH2A.X formation and 
radiation dose as utilized in biodosimetry in radiobiology (4), 
γH2A.X was previously tested as a direct correlate for physi‑
cally and chemically induced DSB (6). Furthermore, γH2A.X 
was also tested as a biomarker for incidences correlating with 
DSB. It has been used as a biomarker of cell death in the pres‑
ence of chemotherapeutic agents and to detect the genotoxic 
effect of tobacco smoke in lung cells (18,42).

In the evaluation of the γH2A.X focus assay with primary 
mouse embryonic fibroblast cells, the test method was found 
to be as specific and sensitive as the two genotoxic standard 
procedures, the micronucleus assay and the comet assay (43). 
H2A.X phosphorylation has been defined as a genotoxic 
endpoint along with micronucleus formation and mutation 
frequency. γH2A.X detection is thus also used for clinical 
monitoring of DNA damage during chemotherapy (44) and for 
determining patient radiosensitivity (13,45,46).

In oncology, the quantification of γH2A.X can be used to 
detect precancerous lesions (47). The level of phosphorylated 
H2AX correlates with cancer‑associated genomic instability 
of tumor cells and could potentially be used as a biomarker 
for prediction and recurrence  (7,47,48). In addition, the 
DSB‑dependent accumulation of γH2A.X can be used as 
a biodosimeter to determine age (24). In recent years, it has 
become increasingly clear that H2AX phosphorylation not 
only serves to detect DNA damage, but also performs an 
essential task in the processes of chromatin remodeling and 
thus DNA repair itself. Therefore, in fractionated radiotherapy, 
there are approaches to individually determine the time inter‑
vals by monitoring the gH2A.X status, so that healthy tissue 
can recover as completely as possible (Table I) (49,50).

5. Conclusion and future perspectives

As discussed above, a growing body of literature demonstrates 
the importance of H2A.X in DNA damage recognition and 
repair, but also in genome remodeling processes in general. 
An essential component of this functionality is the activation 
and inactivation of the histone by phosphorylation and dephos‑
phorylation. The H2A.X phosphorylation status thus represents 
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a central sum parameter for the genome integrity of eukaryotic 
cells and allows conclusions to be drawn about DNA‑associated 
processes in cells and tissues. This can be of great use for 
applications in life sciences and medicine. As a biomarker for 
DNA damage and genotoxicity as well as a clinical marker for 
radiotherapy outcome, drug efficacy, and tissue regeneration, 
the H2A.X/γH2A.X status is already used or such applications 
are emerging. Particularly in the field of biological dosimetry, 
microscopic routine systems for the detection of γH2A.X are 
already in use, which allow automated, rapid and cost‑effective 
analysis even of large numbers of samples. The establishment 
of γH2A.X routine analysis in corresponding specialized treat‑
ment centers would therefore be easily feasible.

As with all biomarkers, the specificity of γH2A.X detection 
is of primary importance. The complex cellular mechanisms 
in which γH2A.X is involved listed in this review article there‑
fore also highlight potential limitations of practical/clinical 
use. Countering these is therefore an important goal of future 
γH2A.X research. For example, the combined detection of 
γH2A.X and 53BP1 significantly increased the precision 
of DSB‑based biodosimetry following radiation exposure. 
Combining multiple markers thus represents a promising 
strategy with which to increase the reliability of biomarkers 
and thereby bring them into practical application.
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Figure 1. Physical and (bio)chemical stress noxae, such as ionizing radiation, UV light, low pH, heat stress, DNA‑damaging agents, and reactive oxygen spe‑
cies can lead to the phosphorylation of serine 139 (Ser139) of histone H2A.X in eukaryotic cells. In addition, physiological cellular processes such as somatic 
recombination, replication, aging, apoptosis, and XY body formation may also result in Ser139‑phosphorylated H2A.X. UV, ultraviolet.

Figure 2. Regulation of H2A.X activity by the phosphorylation‑dephosphory‑
lation cycle of various kinases and protein phosphatases. Kinases involved are: 
ATM, ATR, DNA, MAPK p38. Protein phosphatases involved are: PP2A, PP4, 
PP6, WIP1. The figure has been modified from a previous study (32). ATM, 
ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3‑related pro‑
tein; DNA‑PK, DNA‑dependent protein kinase; MAPK p38, mitogen‑activated 
protein kinase p38; P2A, protein phosphatase 2A; PP4, protein phosphatase 4; 
PP6, protein phosphatase 6; WIP1, wild‑type p53‑induced phosphatase 1.

Table I. Current applications of γH2A.X detection in biomedi‑
cine.

γH2A.X application	 (Refs.)

Approved biological dosimetry	 (4,6)
Approved genotoxicity assay	 (42,44)
Cytostatics efficacy assay	 (18)
Radiotherapy outcome monitoring 	 (13,45,46)
Detection of precancerous lesions	 (47)
Detection of cancer progression	 (7,48)
Tissue regeneration monitoring	 (49,50)

For further details on these applications, please see main text.
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