1
|
Caspi A and Moffitt TE: Gene-environment
interactions in psychiatry: Joining forces with neuroscience. Nat
Rev Neurosci. 7:583–590. 2006. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Tsuang MT, Bar JL, Stone WS and Faraone
SV: Gene-environment interactions in mental disorders. World
Psychiatry. 3:73–83. 2004.
|
3
|
Cross-Disorder Group of the Psychiatric
Genomics Consortium: Identification of risk loci with shared
effects on five major psychiatric disorders: A genome-wide
analysis. Lancet. 381:1371–1379. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Meister G and Tuschl T: Mechanisms of gene
silencing by double-stranded RNA. Nature. 431:343–349. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Martinez NJ and Gregory RI: MicroRNA gene
regulatory pathways in the establishment and maintenance of ESC
identity. Cell Stem Cell. 7:31–35. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Olde Loohuis NF, Kos A, Martens GJ, Van
Bokhoven H, Nadif Kasri N and Aschrafi A: MicroRNA networks direct
neuronal development and plasticity. Cell Mol Life Sci. 69:89–102.
2012. View Article : Google Scholar :
|
9
|
Bravo JA and Dinan TG: MicroRNAs: A novel
therapeutic target for schizophrenia. Curr Pharm Des. 17:176–188.
2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Dwivedi Y: Evidence demonstrating role of
microRNAs in the etiopathology of major depression. J Chem
Neuroanat. 42:142–156. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Forero DA, van der Ven K, Callaerts P and
Del-Favero J: miRNA genes and the brain: Implications for
psychiatric disorders. Hum Mutat. 31:1195–1204. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hunsberger JG, Austin DR, Chen G and Manji
HK: MicroRNAs in mental health: From biological underpinnings to
potential therapies. Neuromolecular Med. 11:173–182. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Miller BH and Wahlestedt C: MicroRNA
dysregulation in psychiatric disease. Brain Res. 1338:89–99. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Siew WH, Tan KL, Babaei MA, Cheah PS and
Ling KH: MicroRNAs and intellectual disability (ID) in Down
syndrome, X-linked ID, and Fragile X syndrome. Front Cell Neurosci.
7(41)2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Brinton RD: Estrogen-induced plasticity
from cells to circuits: Predictions for cognitive function. Trends
Pharmacol Sci. 30:212–222. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li Y, Pehrson AL, Waller JA, Dale E,
Sanchez C and Gulinello M: A critical evaluation of the
activity-regulated cytoskeleton-associated protein (Arc/Arg3.1)'s
putative role in regulating dendritic plasticity, cognitive
processes, and mood in animal models of depression. Front Neurosci.
9(279)2015. View Article : Google Scholar
|
17
|
Perri R, Nares S, Zhang S, Barros SP and
Offenbacher S: MicroRNA modulation in obesity and periodontitis. J
Dent Res. 91:33–38. 2012. View Article : Google Scholar :
|
18
|
Markou A, Sourvinou I, Vorkas PA, Yousef
GM and Lianidou E: Clinical evaluation of microRNA expression
profiling in non small cell lung cancer. Lung Cancer. 81:388–396.
2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xu Y, Li F, Zhang B, Zhang K, Zhang F,
Huang X, Sun N, Ren Y, Sui M and Liu P: MicroRNAs and target site
screening reveals a pre-microRNA-30e variant associated with
schizophrenia. Schizophr Res. 119:219–227. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liao Y and Lönnerdal B: Beta-catenin/TCF4
transactivates miR-30e during intestinal cell differentiation. Cell
Mol Life Sci. 67:2969–2978. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wu F, Zhu S, Ding Y, Beck WT and Mo YY:
MicroRNA-mediated regulation of Ubc9 expression in cancer cells.
Clin Cancer Res. 15:1550–1557. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang J, Guan X, Guo F, Zhou J, Chang A,
Sun B, Cai Y, Ma Z, Dai C, Li X, et al: miR-30e reciprocally
regulates the differentiation of adipocytes and osteoblasts by
directly targeting low-density lipoprotein receptor-related protein
6. Cell Death Dis. 4:e8452013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Khanna A, Muthusamy S, Liang R, Sarojini H
and Wang E: Gain of survival signaling by down-regulation of three
key miRNAs in brain of calorie-restricted mice. Aging (Albany NY).
3:223–236. 2011.
|
24
|
Gardiner E, Beveridge NJ, Wu JQ, Carr V,
Scott RJ, Tooney PA and Cairns MJ: Imprinted DLK1-DIO3 region of
14q32 defines a schizophrenia-associated miRNA signature in
peripheral blood mononuclear cells. Mol Psychiatry. 17:827–840.
2012. View Article : Google Scholar :
|
25
|
Mellios N, Huang HS, Baker SP, Galdzicka
M, Ginns E and Akbarian S: Molecular determinants of dysregulated
GABAergic gene expression in the prefrontal cortex of subjects with
schizophrenia. Biol Psychiatry. 65:1006–1014. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Perkins DO, Jeffries CD, Jarskog LF,
Thomson JM, Woods K, Newman MA, Parker JS, Jin J and Hammond SM:
microRNA expression in the prefrontal cortex of individuals with
schizophrenia and schizoaffective disorder. Genome Biol. 8:R272007.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Rege SD, Geetha T, Pondugula SR, Zizza CA,
Wernette CM and Babu JR: Noncoding RNAs in neurodegenerative
diseases. ISRN Neurol. 2013(375852)2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Banigan MG, Kao PF, Kozubek JA, Winslow
AR, Medina J, Costa J, Schmitt A, Schneider A, Cabral H,
Cagsal-Getkin O, et al: Differential expression of exosomal
microRNAs in prefrontal cortices of schizophrenia and bipolar
disorder patients. PLoS One. 8:e488142013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xu XS, Ma ZZ, Wang F, Hu BH, Wang CS, Liu
YY, Zhao XR, An LH, Chang X, Liao FL, et al: The antioxidant
Cerebralcare Granule attenuates cerebral microcirculatory
disturbance during ischemia-reperfusion injury. Shock. 32:201–209.
2009. View Article : Google Scholar
|
30
|
Wang F, Hu Q, Chen CH, Xu XS, Zhou CM,
Zhao YF, Hu BH, Chang X, Huang P, Yang L, et al: The protective
effect of Cerebralcare Granule® on brain edema, cerebral
microcirculatory disturbance, and neuron injury in a focal cerebral
ischemia rat model. Microcirculation. 19:260–272. 2012. View Article : Google Scholar
|
31
|
Huang P, Zhou CM, Qin-Hu, Liu YY, Hu BH,
Chang X, Zhao XR, Xu XS, Li Q, Wei XH, et al: Cerebralcare
Granule® attenuates blood-brain barrier disruption after
middle cerebral artery occlusion in rats. Exp Neurol. 237:453–463.
2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sun K, Hu Q, Zhou CM, Xu XS, Wang F, Hu
BH, Zhao XY, Chang X, Chen CH, Huang P, et al: Cerebralcare
Granule, a Chinese herb compound preparation, improves cerebral
microcirculatory disorder and hippocampal CA1 neuron injury in
gerbils after ischemia-reperfusion. J Ethnopharmacol. 130:398–406.
2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xiong L, Zhang JJ, Sun D and Liu H:
Therapeutic benefit of Yangxue Qingnao Granule on cognitive
impairment induced by chronic cerebral hypoperfusion in rats. Chin
J Integr Med. 17:134–140. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Abordo-Adesida E, Follenzi A, Barcia C,
Sciascia S, Castro MG, Naldini L and Lowenstein PR: Stability of
lentiviral vector-mediated transgene expression in the brain in the
presence of systemic antivector immune responses. Hum Gene Ther.
16:741–751. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Miyoshi H, Blömer U, Takahashi M, Gage FH
and Verma IM: Development of a self-inactivating lentivirus vector.
J Virol. 72:8150–8157. 1998.PubMed/NCBI
|
36
|
Naldini L, Blömer U, Gage FH, Trono D and
Verma IM: Efficient transfer, integration, and sustained long-term
expression of the transgene in adult rat brains injected with a
lentiviral vector. Proc Natl Acad Sci USA. 93:11382–11388. 1996.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Zufferey R, Dull T, Mandel RJ, Bukovsky A,
Quiroz D, Naldini L and Trono D: Self-inactivating lentivirus
vector for safe and efficient in vivo gene delivery. J Virol.
72:9873–9880. 1998.PubMed/NCBI
|
38
|
Rattiner LM, Davis M, French CT and
Ressler KJ: Brain-derived neurotrophic factor and tyrosine kinase
receptor B involvement in amygdala-dependent fear conditioning. J
Neurosci. 24:4796–4806. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Heldt SA, Stanek L, Chhatwal JP and
Ressler KJ: Hippocampus-specific deletion of BDNF in adult mice
impairs spatial memory and extinction of aversive memories. Mol
Psychiatry. 12:656–670. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chenghong Zoology experimental guidance.
Tsinghua University; ISBN: 978-7-302-10763-72005
|
41
|
Paxinos G and Franklin KBJ: The mouse
brain in stereotaxic coordinates. San Diego: Academic Press;
2001
|
42
|
Morris RGM: Spatial localization does not
require the presence of local cues. Learn Motiv. 12:239–260. 1981.
View Article : Google Scholar
|
43
|
Ripke S, O'Dushlaine C, Chambert K, Moran
JL, Kähler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer
M, et al: Genome-wide association analysis identifies 13 new risk
loci for schizophrenia. Nat Genet. 45:1150–1159. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hobert O: Gene regulation by transcription
factors and microRNAs. Science. 319:1785–1786. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Nilsen TW: Mechanisms of microRNA-mediated
gene regulation in animal cells. Trends Genet. 23:243–249. 2007.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Beveridge NJ, Tooney PA, Carroll AP,
Gardiner E, Bowden N, Scott RJ, Tran N, Dedova I and Cairns MJ:
Dysregulation of miRNA 181b in the temporal cortex in
schizophrenia. Hum Mol Genet. 17:1156–1168. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang F, Xu Y, Shugart YY, Yue W, Qi G,
Yuan G, Cheng Z, Yao J, Wang J, Wang G, et al: Converging evidence
implicates the abnormal microRNA system in schizophrenia. Schizophr
Bull. 41:728–735. 2015. View Article : Google Scholar
|
48
|
Murphy KC, Jones LA and Owen MJ: High
rates of schizophrenia in adults with velo-cardio-facial syndrome.
Arch Gen Psychiatry. 56:940–945. 1999. View Article : Google Scholar : PubMed/NCBI
|
49
|
Beveridge NJ, Gardiner E, Carroll AP,
Tooney PA and Cairns MJ: Schizophrenia is associated with an
increase in cortical microRNA biogenesis. Mol Psychiatry.
15:1176–1189. 2010. View Article : Google Scholar :
|
50
|
Beveridge NJ, Tooney PA, Carroll AP,
Gardiner E, Bowden N, Scott RJ, Tran N, Dedova I and Cairns MJ:
Dysregulation of miRNA 181b in the temporal cortex in
schizophrenia. Hum Mol Genet. 17:1156–1168. 2008. View Article : Google Scholar : PubMed/NCBI
|
51
|
Feng J, Sun G, Yan J, Noltner K, Li W,
Buzin CH, Longmate J, Heston LL, Rossi J and Sommer SS: Evidence
for X-chromosomal schizophrenia associated with microRNA
alterations. PLoS One. 4:e61212009. View Article : Google Scholar : PubMed/NCBI
|
52
|
Hansen T, Olsen L, Lindow M, Jakobsen KD,
Ullum H, Jonsson E, Andreassen OA, Djurovic S, Melle I, Agartz I,
et al: Brain expressed microRNAs implicated in schizophrenia
etiology. PLoS One. 2:e8732007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Juhila J, Sipilä T, Icay K, Nicorici D,
Ellonen P, Kallio A, Korpelainen E, Greco D and Hovatta I: MicroRNA
expression profiling reveals miRNA families regulating specific
biological pathways in mouse frontal cortex and hippocampus. PLoS
One. 6:e214952011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Rinaldi A, Vincenti S, De Vito F, Bozzoni
I, Oliverio A, Presutti C, Fragapane P and Mele A: Stress induces
region specific alterations in microRNAs expression in mice. Behav
Brain Res. 208:265–269. 2010. View Article : Google Scholar
|
55
|
McLoughlin HS, Fineberg SK, Ghosh LL,
Tecedor L and Davidson BL: Dicer is required for proliferation,
viability, migration and differentiation in corticoneurogenesis.
Neuroscience. 223:285–295. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Nigro A, Menon R, Bergamaschi A, Clovis
YM, Baldi A, Ehrmann M, Comi G, De Pietri Tonelli D, Farina C,
Martino G and Muzio L: MiR-30e and miR-181d control radial glia
cell proliferation via HtrA1 modulation. Cell Death Dis.
3:e3602012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Xu Y, Liu H, Li F, Sun N, Ren Y, Liu Z,
Cao X, Wang Y, Liu P and Zhang K: A polymorphism in the
microRNA-30e precursor associated with major depressive disorder
risk and P300 waveform. J Affect Disord. 127:332–336. 2010.
View Article : Google Scholar : PubMed/NCBI
|