1
|
Ambros V and Chen X: The regulation of
genes and genomes by small RNAs. Development. 134:1635–1641. 2007.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Hutvágner G and Zamore PD: A microRNA in a
multiple-turnover RNAi enzyme complex. Science. 297:2056–2060.
2002.PubMed/NCBI
|
3
|
Hwang HW and Mendell JT: microRNAs in cell
proliferation, cell death, and tumorigenesis. Br J Cancer.
96(Suppl): R40–R44. 2007.PubMed/NCBI
|
4
|
Ryan BM, Robles AI and Harris CC: Genetic
variation in microRNA networks: the implications for cancer
research. Nat Rev Cancer. 10:389–402. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kasinski AL and Slack FJ: Epigenetics and
genetics. microRNAs en route to the clinic: progress in validating
and targeting microRNAs for cancer therapy. Nat Rev Cancer.
11:849–864. 2011. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Weber MJ: New human and mouse microRNA
genes found by homology search. FEBS J. 272:59–73. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gaur A, Jewell DA, Liang Y, et al:
Characterization of microRNA expression levels and their biological
correlates in human cancer cell lines. Cancer Res. 67:2456–2468.
2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ruike Y, Ichimura A, Tsuchiya S, et al:
Global correlation analysis for micro-RNA and mRNA expression
profiles in human cell lines. J Hum Genet. 53:515–523. 2008.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Neville PJ, Conti DV, Krumroy LM, et al:
Prostate cancer aggressiveness locus on chromosome segment
19q12-q13. 1 identified by linkage and allelic imbalance studies.
Genes Chromosomes Cancer. 36:332–339. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Slager SL, Schaid DJ, Cunningham JM, et
al: Confirmation of linkage of prostate cancer aggressiveness with
chromosome 19q. Am J Hum Genet. 72:759–762. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Qu S, Yao Y, Shang C, et al: microRNA-330
is an oncogenic factor in glioblastoma cells by regulating SH3GL2
gene. PLoS One. 7:e460102012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lee KH, Chen YL, Yeh SD, et al:
microRNA-330 acts as tumorsuppressor and induces apoptosis of
prostate cancer cells through E2F1-mediated suppression of Akt
phosphorylation. Oncogene. 28:3360–3370. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chintharlapalli S, Papineni S, Ramaiah SK
and Safe S: Betulinic acid inhibits prostate cancer growth through
inhibition of specificity protein transcription factors. Cancer
Res. 67:2816–2823. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sankpal UT, Goodison S, Abdelrahim M and
Basha R: Targeting Sp1 transcription factors in prostate cancer
therapy. Med Chem. 7:518–525. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pore N, Liu S, Shu HK, et al: Sp1 is
involved in Akt-mediated induction of VEGF expression through an
HIF-1-independent mechanism. Mol Biol Cell. 15:4841–4853. 2004.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Baranwal S and Alahari SK: miRNA control
of tumor cell invasion and metastasis. Int J Cancer. 126:1283–1290.
2010.PubMed/NCBI
|
17
|
Iorio MV and Croce CM: microRNAs in
cancer: small molecules with a huge impact. J Clin Oncol.
27:5848–5856. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Watahiki A, Wang Y, Morris J, et al:
microRNAs associated with metastatic prostate cancer. PLoS One.
6:e249502011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chiefari E, Brunetti A, Arturi F, et al:
Increased expression of AP2 and Sp1 transcription factors in human
thyroid tumors: a role in NIS expression regulation? BMC Cancer.
2:352002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shi Q, Le X, Abbruzzese JL, et al:
Constitutive Sp1 activity is essential for differential
constitutive expression of vascular endothelial growth factor in
human pancreatic adenocarcinoma. Cancer Res. 61:4143–4154.
2001.
|
21
|
Yao JC, Wang L, Wei D, et al: Association
between expression of transcription factor Sp1 and increased
vascular endothelial growth factor expression, advanced stage, and
poor survival in patients with resected gastric cancer. Clin Cancer
Res. 10:4109–4117. 2004. View Article : Google Scholar
|
22
|
Zannetti A, Del Vecchio S, Carriero MV, et
al: Coordinate up-regulation of Sp1 DNA-binding activity and
urokinase receptor expression in breast carcinoma. Cancer Res.
60:1546–1551. 2000.PubMed/NCBI
|
23
|
Chen JL, Attardi LD, Verrijzer CP,
Yokomori K and Tjian R: Assembly of recombinant TFIID reveals
differential coactivator requirements for distinct transcriptional
activators. Cell. 79:93–105. 1994. View Article : Google Scholar : PubMed/NCBI
|
24
|
Furukawa T and Tanese N: Assembly of
partial TFIID complexes in mammalian cells reveals distinct
activities associated with individual TATA box-binding
protein-associated factors. J Biol Chem. 275:29847–29856. 2000.
View Article : Google Scholar
|
25
|
Majello B, Napolitano G, De Luca P and
Lania L: Recruitment of human TBP selectively activates RNA
polymerase II TATA-dependent promoters. J Biol Chem.
273:16509–16516. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sadovsky Y, Webb P, Lopez G, et al:
Transcriptional activators differ in their responses to
overexpression of TATA-box-binding protein. Mol Cell Biol.
15:1554–1563. 1995.PubMed/NCBI
|
27
|
Murthy S, Ryan AJ and Carter AB: SP-1
regulation of MMP-9 expression requires Ser586 in the PEST domain.
Biochem J. 445:229–236. 2012.PubMed/NCBI
|
28
|
Qin H, Sun Y and Benveniste EN: The
transcription factors Sp1, Sp3, and AP-2 are required for
constitutive matrix metalloproteinase-2 gene expression in
astroglioma cells. J Biol Chem. 274:29130–29137. 1999. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang CH, Chang HC and Hung WC: p16
inhibits matrix metalloproteinase-2 expression via suppression of
Sp1-mediated gene transcription. J Cell Physiol. 208:246–252. 2006.
View Article : Google Scholar : PubMed/NCBI
|