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Abstract. In recent years, the cancer stem cell (CSC) theory 
has provided a new angle in the research of cancer, and has 
gradually gained significance. According to this theory, 
the multiple drug resistance (MDR) of cancer is most likely 
due to the resistance of CSCs, and a significant quantity of 
research has been carried out into the MDR mechanisms of 
CSC. Over time, some of these mechanisms have been gradu-
ally accepted, including ATP‑binding cassette transporters, 
aldehyde dehydrogenase, the CSC microenvironment and 
epithelial to mesenchymal transition. In the present review, we 
summarize these mechanisms in detail and review possible 
appropriate therapy plans against CSCs based on CSC theory.
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1. Introduction

Cancer is a notable threat to human health with a rising inci-
dence rate; however, there is still no known cure. In recent 
years, the cancer stem cell (CSC) theory was proposed, which 
provided a new angle in the research of cancer, and gradually 
gained significance. According to this theory, the multiple 
drug resistance (MDR) of cancer is most likely due to the 

resistance of CSCs, which have received increasing attention 
from oncologists around the world (1). Therefore, we intend 
to review the common mechanisms of MDR in CSC, so as to 
discuss possible relevant therapeutic strategies against cancer. 

2. Cancer stem cells

The concept of CSCs was first raised by Park et al  (2) in 
1971. The concept was that cancers are diseases driven by 
a subpopulation of self‑renewing CSCs, which possess the 
ability to generate the diverse differentiated cell populations 
that comprise the cancer mass  (3). Since then, CSCs have 
been identified and isolated from tumors of the hematopoietic 
system, breast, lung, prostate, colon, brain, head and neck, and 
pancreas. 

Existing therapies have been developed largely against the 
bulk population of tumor cells to shrink tumors. However, 
most cancer cells only have limited proliferative potential; 
an ability to shrink a tumor mainly reflects an ability to kill 
these cells. Even therapies that cause complete regression of 
tumors might spare sufficient CSCs to allow regrowth of the 
tumors (4). Only therapies that are more specifically directed 
against CSCs might result in more durable responses and even 
a cure for metastatic tumors.

3. Mechanisms of CSC MDR

ATP‑binding cassette (ABC) transporters. The ABC trans-
porter superfamily in humans includes at least 49 genes 
grouped into seven families (from A to G) with various 
functions, and at least 16 of these proteins are implicated in 
cancer drug resistance (5). They bind ATP and use the energy 
to drive the transport of various molecules across the plasma 
membrane; since they can eject anti‑cancer drugs from cells, it 
may lead to the drug's resistance (6). Among the ABC proteins, 
the most significant are glycoprotein P (P‑gp), encoded by 
the ABCB1 [multidrug resistance protein 1 (MDR1)] gene, 
and breast cancer resistance protein (BCRP or ABCG2), 
which was cloned from a mitoxantrone‑resistant subline of 
the breast cancer cell line MCF‑7. BCRP confers resistance 
to a number of chemotherapeutics, including mitoxantrone. 
Other well‑known proteins from the ABC family responsible 
for MDR are MDR‑related protein (MRP) 1 (ABCC1) and 
MRP2 (ABCC2). ABC transporters are also expressed in 
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normal stem cells to maintain a relatively stable intracellular 
environment and to keep them in a quiescent state. In addition, 
these transporters have certain other notable roles in normal 
physiology in the transport of drugs across the placenta and 
the intestine, and are essential components of the blood‑brain 
and blood‑testis barriers. By using the energy from ATP 
hydrolysis, these transporters actively efflux drugs from cells, 
serving to protect them from cytotoxic agents.

Evidence for MDR of CSCs mediated by ABC transporters. 
Numerous studies have demonstrated the role of ABC 
transporters in CSC resistance. CD133‑positive glioma stem 
cells exhibited a notable effect on tumor resistance to chemo-
therapy, which is possibly as a result of their high expression of 
ABCG2/BCRP1 (7). Similar results also were observed in the 
CSCs of lung cancer (8), osteoma sarcomatosum (9), ovarian 
cancer  (10), prostatic carcinoma  (11) and nasopharyngeal 
carcinoma (12). Furthermore, the high ABC transporter levels 
were associated with increased Akt signaling in drug‑resistant 
CSCs, and the Akt signaling was able to alter the subcellular 
localization of BCRP transporters, thus determining drug 
efflux in CSCs (13). In the same study, Akt signal inhibition by 
P13K inhibitors not only suppressed cancer cell proliferation, 
but also increased the sensitivity of drug‑resistant cells (13).

Therapeutic measures targeting MDR mediated by ABC  
transporters. Theoretically, ABC transporter inhibitors could 
reverse the chemotherapy resistance of CSCs and eliminate 
tumors. Currently, its inhibitors have been developed to 
the third generation. First‑generation compounds included 
drugs identified as ABCB1 inhibitors, including verapamil 
and cyclosporine, which were in clinical use to treat other 
diseases. These inhibitors were combined with a range of 
chemotherapy regimens for numerous types of cancer, but 
the results were not satisfactory. The clinical results for 
the second‑generation inhibitors, including valspodar and 
biricodar, were also disappointing. Fumitremorgin C and its 
chemically synthesized derivatives including Ko143 have been 
developed; certain studies have demonstrated a positive effect 
in vitro, particularly for Ko143, which has high specificity and 
low toxicity (14). Studies with Ko143 have also revealed that 
inhibition of ABCG2 allows for a greater absorption of certain 
drugs across the intestine  (14). In addition, the compound 
GF120918 is an ABCB1 inhibitor that has been demonstrated 
to inhibit ABCG2 in vitro as well as in vivo (15). Compared 
with those of previous generations, other inhibitors, including 
zosuquidar (LY335979) and tariquidar (XR9576), have 
higher inhibitory activity and selectivity, without affecting 
the metabolism of chemotherapeutic drugs themselves, and 
it is possible to overcome the resistance to CSCs. Moreover, 
they have already been approved for clinical studies. Certain 
drugs are in clinical use; for example, difluorinated curcumin 
enhances the sensitivity of CD44+CD166+ colon carcinoma 
stem cells to the combination of 5‑fluorouracil and oxaliplatin 
by a mechanism that involves ABCG2 downregulation (15). 
The crude extract of traditional Chinese medicine Schisandra 
and its active ingredient deoxyschizandrin have the effect of 
reversing MDR (16), and enhance the curative effect of vincris-
tine and adriamycin. Schisandrae Lignans inhibits the outflow 
of intracellular drugs (17,18). Chai et al (19) considered that 

schizandrin had strong potential in terms of reversing MDR, 
and that it could induce apoptosis and decrease the expres-
sion of P‑gp and protein kinase C. Other medicines, including 
salinomycin (20,21), nigericin and abamectin have a similar 
effect. Nicardipine is also an inhibitor of ABCG2 (7).

Aldehyde dehydrogenase (ALDH). The ALDHs are a 
family of nicotinamide adenine dinucleotide phosphate 
[NAD (P)+]‑dependent enzymes involved in detoxifying a 
wide variety of aldehydes to weak carboxylic acids, leading to 
increased protection of the cell against insult by environmental 
chemicals and drugs. ALDHs are also regarded as a type of 
biomarker for stem cells. They include the ALDH1 family 
(ALDH1A1, 1A2, 1A3, 1L1, 1L2), ALDH2 and ALDH3A1. 
In particular, ALDH1A1 and ALDH3A1 have been shown to 
play significant functional roles in stem cells (22), which was 
demonstrated in hematopoietic stem cells, neural stem cells 
and adipose tissue stem cells.

Evidence for MDR of CSCs mediated by ALDHs. ALDH1 is a 
CSC marker and its presence is strongly correlated with tumor 
malignancy as well as self‑renewal properties of stem cells 
in various tumors, including breast cancer, hepatoma, colon 
cancer and lung cancer (22). CSCs with a high expression of 
ALDH have the characteristics of being chemotherapy‑resis-
tant, which has been proven in breast cancer stem cells (23) 
and head/neck squamous cell carcinoma stem cells (24). The 
mechanism of ALDH expression of the gene may be associ-
ated with high Snail expression, since the knockdown of Snail 
expression significantly decreases the expression of ALDH1, 
inhibits cancer stem‑like properties and blocks the tumori-
genic abilities of CD44+CD24–ALDH1+ cells (24).

Therapeutic measures targeting MDR mediated by ALDHs. A 
number of natural compounds are effective against CSCs and 
lead to decreasing numbers of ALDH‑positive cells (25). For 
example, exposure of breast cancer cells to the dietary polyphe-
nols, curcumin and piperine, severely reduces mammosphere 
formation (26), as do sulforaphane (27) and butein (28). 

In addition, the role of chemical synthesis of the drug 
in inhibiting ALDH has also been studied. The specific 
ALDH inhibitor diethylaminobenzaldehyde may increase 
the sensitization of ALDHbriCD44+ cells to chemotherapy/ 
radiotherapy (23). Disulfiram is capable of inhibiting ALDH 
and enhancing the sensitization of cancer cells to chemo-
therapy  (29). All‑trans‑retinoic acid treatment results in a 
50‑60% reduction in ALDH activity and proteins of both 
isozymes, ALDH1A1 and ALDH3A1, leading to the increased 
sensitization of ALDH1+ cancer cells to chemotherapy.

Microenvironment
Mechanisms of the microenvironment influencing MDR of 
CSCs. Normal adult stem cells are regulated by molecular 
cues provided by neighboring connective tissue cells, mainly 
mesenchymal (fibroblast‑like) cells and vascular cells; these 
stromal cells contribute to the stem cell niche. CSCs often 
appear to be present in and influenced by a similar micro
environment, which has been proven in brain cancer  (30), 
squamous cell carcinoma (31), bladder cancer (32), leukemia 
(33,34) and colorectal cancer (35). The tumor microenviron-
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ment has been recognized as a major factor influencing the 
growth of cancer and impacting the outcome of therapy. Thus, 
niche cells have become an attractive target for chemothera-
peutic agents (36). Targeted therapies through the production 
of secreted factors which might drive tumor growth and 
MDR may be available (37). Hypoxia has been considered as 
a major feature of the tumor microenvironment and a poten-
tial contributor to the MDR and enhanced tumorigenicity of 
CSCs (38). The acidic microenvironment around hypoxia cells 
is combined with the activation of a subset of proteases that 
contribute to metastasis (39). Due to aberrant angiogenesis 
and the inaccessible location, hypoxic cells are less likely to 
accumulate therapeutic concentrations of chemotherapeutics, 
which lead to MDR. Therefore, targeting the CSC niche in 
combination with chemotherapy may provide a promising 
strategy for eradicating CSCs.

Therapeutic measures targeting MDR mediated by the 
microenvironment. Treatment of animals with DC101, an 
antibody of the vascular endothelial growth factor (VEGF) 
receptor, leads to a transient increase in oxygenation and 
deeper penetration of molecules into experimental tumors. 
An increased response of tumors to combined treatment 
with chemotherapy and anti‑angiogenic agents has been 
demonstrated (40). Bevacizumab, another type of antibody 
to VEGF receptor, was reported to have a similar effect 
(41). Agents that damage existing blood vessels in tumors 
may also influence the response to chemotherapy. Vascular 
disrupting agents (including tumor necrosis factor, flavone 
acetic acid and its derivatives, and tubulin‑binding agents 
including combretastatin A‑4 disodium phosphate) directly 
damage the established tumor endothelium and have been 
shown to increase vessel permeability and drug delivery (42). 
Certain other medicines, for example histamine, a selective 
endothelin receptor A antagonist and botulinum neurotoxin 
type A, increase tumor blood flow and have been shown to 
promote in vivo tumor perfusion and to delay tumor growth 
when combined with cyclophosphamide (10). However, there 
also is some dispute. Injecting vascular‑disrupting agents 
prior to chemotherapy may be problematic since it could 
result in reduced blood flow and increased interstitial fluid 
pressure, which together could impair the delivery of drugs 
to tumors and lessen the curative effect (42). 

Epithelial to mesenchymal transitions (EMT). EMT is a 
process involving the dissolution of endothelial cell‑cell 
junctions and loss of apico‑basolateral polarity of endothelial 
cells, resulting in the formation of migratory mesenchymal 
cells with invasive properties. The loss of polarity and gain 
of motile characteristics of mesenchymal cells during embry-
onic development has prompted comparisons with metastatic 
cancer cells during malignant progression (43). Notably, these 
properties have also been ascribed to normal stem cells and 
CSCs. Cancer is a disease of abnormal wound healing and 
tissue repair, which is accompanied by pathophysiological 
EMT in adult tissues. Accordingly, EMT is able to trigger 
reversion to a CSC‑like phenotype, providing an association 
between EMT, CSCs and MDR (44). In addition, a previous 
study has demonstrated that CSCs and EMT‑type cells could 
play critical roles in drug resistance (45). 

AMP‑activated kinase (AMPK) inhibits EMT; however, 
the diabetes drug metformin may activate AMPK, which 
results in the elective killing of CSCs in combination with 
chemotherapy (46). However, it was unclear whether the posi-
tive results were a result of the combination with metformin. 
In addition, histone deacetylase (HDAC) is another significant 
molecule in EMT, and HDAC promotes EMT by inhib-
iting E‑cadherin (47). Certain HDAC inhibitors, including 
trichostatin A and vorinostat, induce the differentiation of 
mesenchymal‑like cancer cells and CSCs, which could trigger 
apoptotic responses or chemosensitize these cells to other ther-
apies. Furthermore, HDACs affect the activity of non‑histone 
substrates, including HIF‑1 and NF‑κB, which have been 
implicated in driving EMT and drug resistance.

Molecular signaling pathways
Hedgehog (Hh) signaling pathway. Previous studies have 
suggested that the Hh pathway is essential for the maintenance 
of CSCs in various human cancer types including pancreatic 
cancer (48), gastric cancer (49) and colorectal cancer (50). It 
is also responsible for treatment resistance of cancer cells. 
Thus, inhibitors such as cyclopamine and GDC‑0449 (51), that 
obstruct the Hh signaling pathway, may cause depletion of 
CSCs, overcome MDR, and enhance the curative effect. Tang 
et al (48) observed that epigallocatechin‑3‑gallate (EGCG) 
inhibited the components of the sonic hedgehog (SHh) 
pathway (SMO, Ptch, Gli1 and Gli2) and Gli transcriptional 
activity, and the combination of quercetin with EGCG had 
synergistic inhibitory effects on the self‑renewal capacity of 
CSCs through attenuation of TCF/LEF and Gli activities. The 
authors suggested that therapeutics targeting the SHh pathway 
might improve the therapeutic outcome of patients with 
pancreatic cancer by targeting CSCs.

Notch signaling pathway. The Notch signaling pathway plays 
crucial roles in embryonic development and the proliferation, 
differentiation and apoptosis of stem cells. Specifically, Notch 
functions as an oncogenic protein in most human cancers 
including cervical, lung, colon, head and neck, prostate and 
pancreatic cancer, while it acts as a tumor suppressor in 
skin cancer, hepatocellular carcinoma and small cell lung 
cancer (52).

Fan et al (53) used G‑secretase inhibitors (GSIs) to block 
the Notch pathway in glioblastoma, resulting in reduced 
neurosphere growth and clonogenicity in  vitro, reduced 
expression of putative CSC markers and reduced tumor 
growth in vivo. Thus, they suggested that GSIs which block 
the Notch pathway might be useful chemotherapeutic reagents 
to target CSCs. MRK‑03 has a similar effect on breast cancer 
stem cells (54).

Wnt and other signaling pathways. The Wnt signaling pathway 
is another developmental pathway involved in multiple 
biological processes including embryogenesis, development, 
cell proliferation, survival and differentiation. However, 
oncogenic mutations or deactivation of the tumor suppressor 
may result in the dysregulation of the Wnt/β‑catenin 
pathway in CSCs, which induces neoplastic proliferation. 
Small molecule inhibitors include existing drugs such as 
nonsteroidal anti‑inflammatory drugs (NSAIDs) or natural 
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compounds, and molecular‑targeted agents such as the cAMP 
response‑element binding protein (CBP)/β‑catenin antagonist 
ICG‑001. These inhibitors interfere with the Wnt pathway 
and harvest a therapeutic effect. Takahashi‑Yanaga et al (55) 
demonstrated that CBP/β‑catenin antagonist ICG‑001 was 
able to target and eliminate drug‑resistant leukemic stem 
cells in vivo and in vitro. 

Other mechanisms. Other mechanisms are also involved 
in the MDR of CSCs; for example, microRNAs, which 
are single‑stranded 19‑25 nucleotide short RNAs, play 
a significant role in the regulation of MDR  (56). CSCs 
differentiation‑inducing agents also improve the efficacy of 
treatment in combination with chemotherapy (57).

4. Conclusion

Due to poor chemotherapy efficacy in most cancer types, 
particularly in the case of metastases, we should change our 
view of the development of drug resistance in cancer and try to 
develop chemotherapy based on the CSC model. However, there 
also are certain unresolved issues concerning therapy aimed 
directly at CSCs. For example, ABC transporters and ALDHs 
are markers of normal stem cells, and the inhibition of these 
molecules in CSCs may result in them occurring in normal stem 
cells, consequently leading to severe side effects. In addition, it 
is still unclear which ALDH isozymes contribute to the ALDH 
activity and whether this is the same among all tissue‑specific 
stem cells. It is even claimed that before CSCs can be clearly 
identified, therapeutic approaches designated to target them may 
actually cause more harm than good in glioblastoma multiforme 
patients (58). All these issues remain to be solved in the future.
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