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Abstract. Non‑coding RNAs (ncRNAs) play a vital role in the 
diagnosis and treatment of hepatitis B virus (HBV). ncRNAs 
include major classes, such as microRNAs (miRNAs/miRs) 
and long ncRNAs (lncRNAs). The present study focused on 
miR‑100 and metastasis‑associated lung adenocarcinoma tran‑
script 1 (MALAT1) single nucleotide polymorphisms (SNPs) 
and their expression levels. In addition to their dual effect on 
susceptibility to hepatitis B virus (HBV) infection, new molec‑
ular biomarkers of HBV infection are suggested. In the present 
study, 100 patients with HBV infection vs. 100 healthy controls 
were enrolled. miR‑100 SNP (rs1834306T/C) was detected 
using the polymerase chain reaction sequence‑specific primers 
technique, while MALAT1 SNP (rs619586A/G) was detected 

using the restriction fragment length polymorphism‑PCR 
technique. Their expression levels were measured using 
reverse transcription‑quantitative PCR. As per the miR‑100 
genotyping results, the TC genotype represented the most 
frequent genotype in all subjects. However, in MALAT1 SNP, 
only the dominant AA genotype was detected. A significant 
upregulation of both miR‑100 (P<0.01) and MALAT1 (P<0.05) 
expression was observed in the patient group compared to the 
controls. A positive correlation was found between the viral 
load and an elevation in miR‑100 and MALAT1 expression 
levels (r=0.508, P<0.01; and r=0.282, P<0.05, respectively). 
On the whole, the present study demonstrates that miR‑100 
and MALAT1 may be considered as potential molecular 
markers for the prognosis of patients with HBV infection. 
To the best of our knowledge, this is the first observational 
prospective case‑control study to scrutinize all the possible 
correlations between miR‑100 (rs1834306T/C) and MALAT1 
(rs619586A/SNPs) and their expression levels. Further exten‑
sive studies with large sample sizes are recommended to 
confirm the findings obtained herein.

Introduction

Hepatitis B infection is a life‑threatening liver disease 
resulting from the hepatitis B virus (HBV) (1). There is high 
inter‑individual variability in the clinical presentation of 
HBV infection, ranging from self‑limited to acute fulminant 
hepatitis. This can cause chronic liver inflammation leading 
to cirrhosis and hepatocellular carcinoma (HCC) (2). Despite 
the presence of effective antiviral therapies and vaccines (3), 
the mortality rates have increased from 0.8 to 1.4 million 
from 1990 to 2013 (4). Therefore, it is crucial to consider the 
molecular aspects affecting HBV.

Non‑coding RNAs (ncRNAs) are RNA molecules that are 
not translated into proteins (5). They regulate diverse cellular 
functions and processes by controlling gene expression (6). 
High‑throughput DNA sequencing and array‑based tech‑
nologies have revolutionized the classification of ncRNAs (7). 
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Among several types of ncRNAs, short ncRNAs, including 
microRNAs (miRNAs/miRs) and long ncRNAs (lncRNAs), 
have been considered a standpoint (8).

miRNAs are ~19 to 22 nucleotides (nt) in length (9). To 
date, >2,000 miRNAs have been registered in the ‘miRbase’ 
database; however, the functional role of the majority of 
miRNAs remains unclear; they have emerged as eminent 
players in human pathophysiological processes (10). miRNAs 
affect gene expression through various mechanisms, such as 
de‑adenylation, targeting mRNA cleavage and suppression 
of translation, supporting the evidence that a single miRNA 
can regulate hundreds of genes; hundreds of miRNAs (11) can 
also regulate a single gene. An example of miRNAs that have 
been highly expressed in the liver is miR‑100, which is located 
on chromosome 11 at 11q24.1 (12). It promotes HBV protein 
production, DNA replication and progeny secretion (13).

lncRNAs, the most recent acknowledged class of ncRNAs, 
are transcripts with lengths >200 nt without protein‑coding 
capacity (14). lncRNAs are messenger RNA (mRNA)‑like 
transcripts, but without stable open reading frames (ORFs). 
The majority of lncRNAs can regulate gene expression through 
chromatin modification, transcription and post‑transcriptional 
processing (15). An increasing number of lncRNAs have been 
characterized in studies, focusing on their roles in regulating 
gene expression (16,17). 

Metastasis‑associated lung adenocarcinoma transcript 1 
(MALAT1) is one of the most abundant lncRNAs in normal 
tissues and is highly conserved between humans, also known 
as nuclear‑enriched abundant transcript 2 (NEAT2) (18). It 
consists of >8,000 nt and is coded by chromosome 11q13. 
MALAT1 has been reported to regulate gene expression; there 
is substantial evidence to suggest the vital role of MALAT1 
in liver cell proliferation (19,20). Recently, MALAT1 has 
gained considerable attention due to its association with a 
number of diseases, also acting as a potential biomarker for 
the diagnosis, prediction and therapeutic target for numerous 
types of cancer (21).

Single nucleotide polymorphisms (SNPs) have been 
suggested to be biological markers for revealing the evolu‑
tionary history and common genetic polymorphisms that 
explain the heritable risk for common diseases (22). SNPs in 
ncRNAs have been reported to alter their secondary struc‑
ture or modify expression levels, thereby influencing their 
regulatory function, contributing to disease development (23). 
In a previous study, the authors examined the presence of 
SNP (rs1834306 T/C) in miR‑100 in HBV‑infected patients 
and its effect on gene expression (24). In continuation of 
this, the present study focused on examining SNP rs619586 
(A/G) in MALAT1, and its expression level in HBV‑infected 
Egyptian patients compared to other healthy controls. Possible 
correlations between both miR‑100 and MALAT1 in HBV 
infection were also investigated.

Subjects and methods

Ethics approval. All subjects provided written informed 
consent for genetic analysis in the present observational 
prospective case‑control study. All methods and analyses 
were carried out following the guidelines of the Ministry of 
Health and approved by the Research Ethics Committee for 

Experimental and Clinical Studies at the Faculty of Pharmacy, 
University of Cairo, Egypt [BC (1837)].

Patients and study design. A total of 200 subjects; 100 outpa‑
tients (70 males and 30 females; under the medical supervision 
of the National Liver Institute, Menoufia University, Menoufia, 
Egypt) with an approved diagnosis of HBV infection by 
enzyme‑linked immunosorbent assay (ELISA) and poly‑
merase chain reaction (PCR) were included in parallel to 
100 individuals (64 males and 36 females) with normal liver 
function test results, no history of hepatic diseases and negative 
for HBV and hepatitis C virus (HCV) serology, which served 
as controls. As previously described by Motawi et al (24), viral 
assessment in all subjects was performed. Patients with HCV 
infection or other viral or hepatic disorders were excluded from 
the study. All biochemical investigations included alanine 
aminotransferase (ALT) and aspartate aminotransferase 
(AST) activities. According to the manufacturer's instructions, 
total bilirubin, albumin and creatinine levels were measured 
in blood for all subjects using a Cobas 6000 analyzer (Roche 
Diagnostics GmbH).

SNP selection. Based on the data from the HapMap 
(http://www.hapmap.org); NCBI dbSNP (http://www.ncbi.nlm.
nih.gov/SNP/) and miRNAs (http://microrna.sanger.ac.uk) 
databases, miR100 (rs1834306 T/C) and MALAT1 (rs619586 
A/G) SNPs were selected for analyses in the present study. 

DNA extraction and SNP genotyping. Genomic DNA was 
extracted from 5 ml of venous blood samples [collected in 
ethylene‑diamine‑tetra‑acetic acid (EDTA) sterile vacutainer] 
from each participant using the GentraPuregene Blood kit 
(Qiagen GmbH) according to the manufacturer's instructions. 
A Nanodrop™ 2000/2000c spectrophotometer (Thermo Fisher 
Scientific, Inc.) was used to assess the purity and the concen‑
tration of the extracted DNA. The extracted DNA was applied 
to 1% agarose gel electrophoresis to confirm its integrity.

miR‑100 rs1834306 T/C was ana lyzed using 
PCR‑sequence‑specific primers (PCR‑SSP), as previ‑
ously described by Motawi et al (24). However, MALAT1 
polymorphism rs619586 A/G was genotyped by restriction 
fragment length polymorphism‑PCR (RFLP‑PCR). The 
primer sequences of both miR‑100 andMALAT1 were 
designed using Primo SNP 3.4: SNP PCR Primer Design 
(https://www.changbioscience.com/primo/primosnp.html) and 
secondly checked using primer blast (https://www.ncbi.nlm.
nih.gov/tools/primer‑blast/) (Table I). A 25 µl PCR reaction 
mixture contained MyTaq™ Red Mastermix (2X; Meridian 
Life Science, Inc.), 10 pmoles of each primer and 150 ng DNA. 
The PCR reaction conditions were as follows: 95˚C for 10 min 
(one cycle) followed by 35 cycles of 94˚C for the 30 sec, 59˚C 
for 30 sec, and 72˚C for 1 min, then a final extension step at 
72˚C for 7 min. All PCR reactions were performed in a 2720 
thermal cycler (Applied Biosystems; Thermo Fisher Scientific, 
Inc.). A 2% agarose electrophoresis stained with ethidium 
bromide (10 mg/ml) was used to visualize the PCR product 
(188 bp) in comparison to the 100 bp DNA ladder (Fermentas; 
Thermo Fisher Scientific, Inc.) (Fig. 1). The PCR product was 
digested by the addition of BveI (BspMI) restriction enzymes 
(Fermentas; Thermo Fisher Scientific, Inc.). The restriction 
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product size was 188bp for the A/A genotype, 121/67 bp for 
G/G and 188/121/67 bp for A/G. The digestion products were 
visualized by 3% agarose gel electrophoresis and estimated by 
comparing with the 50 bp DNA Ladder (Fermentas; Thermo 
Fisher Scientific, Inc.). In total, 10% of samples were randomly 
selected to be sequenced to control genotyping quality and 
validate the results.

RNA isolation and reverse transcription‑quantitative PCR 
(RT‑qPCR). Total RNA (from 200 µl plasma samples) was puri‑
fied using the miRNeasy Mini kit (cat. no. 217004; Qiagen, Inc.) 
according to the manufacturer's instructions. For the miR‑100 
expression level, cDNA was prepared using the miScriptII RT 
kit (cat. no. 218061; Qiagen, Inc.). qPCR was performed using 
the miScript SYBR‑Green PCR kit (cat. no. 218073; Qiagen, 
Inc.), as previously described in the study by Motawi et al (24).

To determine the transcripts of the gene of interest 
(MALAT1),  RNA was reverse‑t ranscr ibed using 
the High‑Capacity DNA Reverse Transcription kit 
(cat no. 4368814; Applied Biosystems; Thermo Fisher 
Scientific, Inc.). The target cDNA was then amplified using the 

TaqMan™ Universal Master Mix II (cat no. 4440043; Applied 
Biosystems; Thermo Fisher Scientific, Inc.) according to the 
manufacturer's protocol. The expression of glyceraldehyde 
3‑phosphate dehydrogenase (GAPDH) was used as an internal 
control for quantitative normalization. RT‑qPCR amplification 
began with an initial holding period at 50˚C for 2 min, 95˚C for 
10 min followed by a PCR program consisting of 40 cycles of 
95˚C for 15 sec and 60˚C for 1 min. Differences in the Ct values 
(Ct) between MALAT1 and GADPH were calculated using 
the formula ΔΔCt=ΔCt (tested sample)‑ΔCt (control sample) 
to determine the relative expression levels; the fold change in 
MALAT1 was calculated using the 2‑ΔΔCq method (25).

Statistical analysis. All statistical analyses were performed 
using the clinical Statistical Package for Social Science (SPSS) 
version 19 (SPSS, Inc.). Data are presented as the mean ± stan‑
dard deviation/error (SD/SE). An independent paired t‑test was 
applied to compare numerical variables between the patients 
with HBV and controls for quantitative variables. SNP/STAT 
was performed using the online tool (http://bioinfo.iconco‑
logia.net/SNP stats). The receiver operating characteristic 

Table I. PCR primers sequences used for the amplification of miR‑100 and MALAT‑1 in patients with HBV and the controls.

  PCR  Restriction
SNP Primers Product (bp) Enzyme product

miR‑100 Forward T: 5'‑GTGGAAACCAAGGGAAGCACGT‑3' 301 ‑ ‑
rs1834306  Forward C: 5'‑TGGAAACCAAGGGAAGCACGC‑3'   
T/C Reverse: 5'‑ATAAGCAAAGCCCCAGGTCC‑3'   
MALAT‑1 Forward:5'‑AAAGTCCGCCATTTTGCCAC‑3' 188 BspMI AA:188
rs619586 Reverse: 5’‑CACAAAACCCCCGGAACTT‑3’   AG:188/121/67
A/G    GG:121/67

MALAT1, metastasis‑associated lung adenocarcinoma transcript 1; miR, miRNA; SNP, single nucleotide polymorphism.

Figure 1. A 2% agarose electrophoresis stained with ethidium bromide (10 mg/ml). Lane 1, 100 bp DNA ladder; lanes 4‑17, PCR product of the metastasis‑ 
associated lung adenocarcinoma transcript 1 single nucleotide polymorphism (188 bp). 
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(ROC) curve analyzed the sensitivity versus specificity of the 
scoring system. Pearson's correlation analysis was used for 
correlation analysis. All P‑values were two‑tailed; A P‑value 
<0.05 was considered to indicate a statistically significant 
difference.

Results

Demographic and biochemical characteristics of patients 
with HBV vs. the control subjects. All patients with HBV were 
found positive for hepatitis B surface antigen (HBsAg) and 
HBV‑DNA. The demographic and biochemical characteristics 
of the patients with HBV vs. the control subjects have been 
previously described in the study  by Motawi et al (24)

Genetic variation of MALAT1 rs619586 A/G and miR‑100 
rs1834306 T/C. The study of the genotypes of MALAT1 
rs619586 A/G revealed the presence of only one genotype: 
The dominant AA genotype, with a complete disappearance 
of other genotypes in the two studied groups. On the contrary, 
all genotypes of miR‑100 rs1834306 (T/C) were found, 
although no statistically significant difference in the geno‑
type distribution between patients with HBV and the normal 
controls was demonstrated. The genotype and allelic frequency 
of MALAT1 rs619586 (A/G) and miR‑100 rs1834306 (T/C) 
are presented in Fig. 2.

Expression of miR‑100 and MALAT1. The analysis of the 
miR‑100 and MALAT1 expression levels revealed a significant 
upregulation ofmiR‑100 (P<0.001) and MALAT1 (P<0.001) 
expression in patients with HBV vs. the controls (Fig. 3). The 
results of the analysis of the ROC curve for both miR‑100 
and MALAT1 are summarized in Table II. Combined ROC 
curve analysis resulted in an improvement in the diagnostic 
potential of both ncRNAs, leading to 75% sensitivity and 92% 
specificity (Fig. 4).

Correlations between increased miR‑100 and MALAT1 
expression levels with some biochemical tests and the viral 
load in patients HBV vs. the controls. No statistically signifi‑
cant correlation was found between MALAT1 and miR‑100 
concerning their genotyping or expression level in patients with 
HBV. A positive correlation between the viral load of HBV, and 
both MALAT1 expression and (r=0.282 and r2 =0.079; P<0.05) 
and miR‑100 expression (r=0.489 and r2=0.239; P<0.001) was 
found. In view of the biochemical tests, a positive correlation 
(r=0.316 and r2=0.099; P<0.05) between MALAT1 expression 
and the ALT level was detected (Table III). 

Discussion

Viral infections are of global public health concern; HBV 
is one of the leading causes of mortality (26), and the main 
obstacle to its treatment is the inability to achieve a full cure 
for HBV (27). Thus, it is urgent to consider the molecular 
field affecting HBV. Recent research has devoted ample 
attention to genetic alterations (28). In this respect, diverse 
classes of ncRNAs, ranging from miRNAs to lncRNAs, play 
a crucial role in the epigenetic regulation of gene expression; 
genome stability also acts as a defense against foreign genetic 
elements (29).  

Over the past decade, an increasing number of scientific 
studies and research have focused on the pivotal biological 
functions of one of the key lncRNAs, MALAT1, which was 
originally discovered as a prognostic marker for lung cancer 
metastasis, and has been linked to several other human tumor 

Figure 2. Genotype distribution and allelic frequency of miR‑100 rs1834306 
(T/C) and MALAT1 rs619586 (A/G) in the controls (white bars) and patients 
with hepatitis B virus (black bars). MALAT1, metastasis‑associated lung 
adenocarcinoma transcript 1; miR, miRNA.

Table II. ROC curve of miR‑100 and MALAT‑1.

Parameters Cut‑off AUC Sensitivity Specificity 95% CI P‑value

miR‑100 1.017 0.778 76.9%, 63.2% 0.644‑0.913 P<0.01
MALAT1 0.830 0.670 66.7% 75% 0.510‑0.831 P<0.05
Combined   0.853   0.727‑0.978 P<0.001

MALAT1, metastasis‑associated lung adenocarcinoma transcript 1; miR, miRNA.
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entities (30). Previous studies have revealed that MALAT1 
gene polymorphisms are associated with disease suscepti‑
bility; for example, the MALAT1 rs619586 has been found to 
be associated with a decreased risk of developing HCC and 
colorectal cancer (31‑32).

With respect to an SNP of MALAT1 rs619586 A/G in 
HBV‑infected patients vs. the control group, the genotyping 
results of the present study revealed the dominant appearance 

of AA genotype in both groups. By contrast, the AG and GG 
genotypes were lacking. In agreement with these results, 
Motawi et al (33) demonstrated that the AA genotype was more 
frequent than AG or GG genotypes in HBV‑infected Egyptian 
patients. An earlier study on the Chinese population reported 
that the AA genotype was the most frequent with a lack of 
significance, apart from reporting no significant association 
between MALAT1 rs619586 SNP and HBV clearance (31). 

Figure 3. Relative fold change in the expression of miR‑100 and MALAT‑1 in the controls and patients with HBV. MALAT1, metastasis‑associated lung 
adenocarcinoma transcript 1; miR, miRNA; HBV, hepatitis B virus.
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Figure 4. ROC curve of miR‑100 and MALAT1. MALAT1, metastasis‑associated lung adenocarcinoma transcript 1; miR, miRNA.

Table III. Correlation between biochemical tests and the viral load with miR‑100 and MALAT1 expression level.

 r/r2 value     Total   
 and P‑value Group AST ALT Albumin bilirubin PCR miR‑100 MALAT1

Group r 1       
AST r 0.365b 1      
 r2 0.133       
 p <0.001       
ALT r 0.368b 0.865b 1     
 r2 0.135 0.748      
 p <0.001 <0.001      
Albumin r ‑0.718b ‑0.069 ‑0.078 1    
 r2 0.515 0.004 0.006     
 p <0.001 NS NS     
Total bilirubin r 0.353b 0.724b 0.781b ‑0.051 1   
 r2 0.124 0.524 0.609     
 p <0.001 <0.001 <0.001 NS    
PCR r 0.598b 0.698b 0.722b ‑0.280b 0.732b 1  
 r2 0.357 0.487 0.521 0.078 0.535   
 p <0.001 <0.001 <0.001 <0.001 <0.001   
miR‑100 r 0.478b 0.356a 0.334a ‑0.302a 0.401b 0.489b 1 
 r2 0.228 0.126 0.111 0.091 0.160 0.239  
 p <0.001 <0.05 <0.05 <0.05 <0.01 <0.001  
MALAT1 r 0.294a 0.236 0.316a ‑0.151 0.248 0.282a 0.102 1
 r2 0.086 0.055 0.099 0.022 0.061 0.079 0.010 
 p <0.05 NS <0.05 NS NS <0.05 NS 

aP<0.05 and bP<0.01/0.001, indicate statistically significant differences. NS, not significant; MALAT1, metastasis‑associated lung adenocarci‑
noma transcript 1; miR, miRNA; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
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In the Taiwanese population, Yuan et al (34) pointed to an 
insignificant association between MALAT1 rs619586 and 
the risk of developing HCC in the HBV‑positive subgroup, 
with higher frequency persistence of the AA genotype over 
the AG and GG genotypes. However, Wang et al (35) found 
that tge MALAT1 rs619586 polymorphism decreased the risk 
of developing HCC under a dominant model, indicating that 
this SNP has the potential to be a biomarker for HCC risk 
and prognosis. In general, only a limited number of studies 
have focused on the genetic variation of MALAT1 rs619586 
A/G in HBV infection. In other diseases, the AA genotype 
is the most dominant genotype, such as in lung cancer (36), 
congenital heart disease (37), ischemic stroke (38), thyroid 
carcinoma (39) and recurrent miscarriage (40).

It is not surprising that disease‑associated SNPs can alter 
their gene expression levels (23). Supporting this issue, recent 
studies have focused (41‑46) on the dysregulation of MALAT1 
in various diseases. The present study demonstrated a signifi‑
cant upregulation of MALAT1 expression in the plasma of 
patients with HBV compared to healthy controls. Generally, 
only a limited number of studies are available to date which 
quantify MALAT1 expression in patients with HBV. Consistent 
with the results obtained herein, Konishi et al (41) reported 
that MALAT1 plasma levels were progressively and signifi‑
cantly elevated in both hepatic disease and patients with HCC. 
Evidence from other recent studies has reported an increase in 
the MALAT1 level in HCC tissues (42,43). Multiple lines of 
evidence have reported the prognostic usefulness of MALAT1 
across various types of cancer (44‑45), such as being a putative 
non‑invasive biomarker in HCV‑induced HCC (46).

In addition to MALAT1, miR‑100 is another type of 
non‑protein‑coding transcript, miRNA. Previously, it was 
reported by Motawi et al (25) that miR‑100 was signifi‑
cantly upregulated inpatients with HBV, and this elevation 
is synchronized with the presence of the T allele, suggesting 
that miR‑100 may be considered a potential molecular marker 
to appraise the prognosis of patients with HBV. As lncRNAs 

may interact with miRNAs and modulate each other's expres‑
sion (47), MALAT1 has been described to regulate several 
miRNAs (48).

The present study hypothesized the presence of correla‑
tions between miR‑100 and MALAT1. Although no significant 
correlation was observed, miR‑100 and MALAT1 were signif‑
icantly upregulated in the HBV‑infected patients. A positive 
correlation between the viral load of HBV and both miR‑100 
and MALAT1 was detected. Both miR‑100 and MALAT1 may 
be regarded as non‑invasive molecular markers in HBV infec‑
tion in the Egyptian population (Fig. 5). Therefore, the present 
preliminary study focused on two major classes of ncRNAs; 
miR‑100 and MALAT1. Both ncRNAs were upregulated 
in patients with HBV, and both were found to be positively 
correlated with the HBV viral load. Accordingly, they may 
be considered a molecular biomarker in HBV infection. To 
confirm these findings, further studies with larger sample 
sizes with other SNPs in both genes are required to clarify 
the associations between SNPs and their susceptibility to HBV 
infection in the Egyptian population. 
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