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Abstract. Patients with a history of endometriosis have an 
increased risk of developing various autoimmune diseases such 
as rheumatoid arthritis, ankylosing spondylitis, systemic lupus 
erythematosus, multiple sclerosis and celiac disease. There is a 
potential association between endometriosis and an increased 
susceptibility for Sjögren's syndrome (SS). SS is a common 
chronic, inflammatory, systemic, autoimmune, multifactorial 
disease of complex pathology, with genetic, epigenetic and 
environmental factors contributing to the development of this 
condition. It occurs in 0.5‑1% of the population, is characterized 
by the presence of ocular dryness, lymphocytic infiltrations 
and contributes to neurological, gastrointestinal, vascular and 
dermatological manifestations. Endometriosis is an inflam‑
matory, estrogen‑dependent, multifactorial, heterogeneous 
gynecological disease, affecting ≤10% of reproductive‑age 
women. It is characterized by the occurrence of endometrial 
tissue outside the uterine cavity, mainly in the pelvic cavity, 
and is associated with pelvic pain, dysmenorrhea, deep dyspa‑
reunia and either subfertility or infertility. It is still unclear 
whether SS appears as a secondary response to endometriosis, 
or it is developed due to any potential shared mechanisms of 
these conditions. The aim of the present review was to explore 
further the biological basis only of the co‑occurrence of these 
disorders but not their association at clinical basis, focusing 

on the analysis of the partially shared genetic background 
between endometriosis and SS, and the clarification of the 
possible similarities in the underlying pathogenetic mecha‑
nisms and the relevant molecular pathways.
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1. Introduction

Sjögren's syndrome (SS) is a rare chronic and systemic auto‑
immune disorder, primarily characterized by lymphocytic 
infiltrations and autoimmune exocrinopathy and epithelitis as 
well as a female predominance (9:1 female‑to‑male predis‑
position ratio primarily in perimenopausal women) (1). The 
characteristic lymphocytic infiltration consists of activated 
T and B lymphocytes that affect exocrine glands and autoan‑
tibody production. SS occurs in 0.5‑1% of the population, and 
the spectrum of the manifestations of the disorder may extend 
from organ‑specific to systemic ones, including xerostomia, 
dry eyes, arthralgias/arthritis, rash, keratoconjunctivitis sicca, 
primary liver cirrhosis, lymphoma and lung involvement (2,3). 
The disorder is also characterized by hypergammaglobulinemia 
and autoantibody production, mainly against the ribonu‑
cleoproteins SS‑A/Ro and SS‑B/La characteristic of SS and 
identified in the serum of the patients (4). The increased levels 
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of various cytokines such as interferon (IFN)‑γ, interleukin 
(IL)‑6 and IL‑10 found in patients with SS have suggested 
their notable role in the pathogenesis of the disease (5,6). SS 
has a complex pathogenesis, involving interacting genetic, 
epigenetic, hormonal and environmental factors. Furthermore, 
additional activators of the disease include specific viruses, 
such as Epstein‑Barr virus, human T‑lymphotropic virus, 
retroviruses and Coxsackie virus (7‑9). No effective treatment 
for SS has been developed so far. Current medical treatments 
focus on the alleviation of the symptoms of the disease as well 
as the decrease of inflammatory events (10).

Endometriosis is an enigmatic, multifactorial disorder, 
representing one of the most common gynecological diseases 
affecting 3‑10% of women in their reproductive years, and it 
can be a debilitating disease leading to poor quality of life (11). 
Despite the frequent occurrence, its etiology and pathogenesis 
are poorly understood and the exact cause is unknown (12‑14). 
Multiple genetic and epigenetic factors, in combination with 
interacting environmental factors, including pollution agents 
and toxins, lead to the development of this condition (15). It 
is characterized by ectopic localization of endometrial cells 
and, therefore, the occurrence of endometrial tissue outside 
the uterine cavity on other organs (16,17). Endometriosis can 
appear as ovarian endometriotic cysts, peritoneal lesions, 
fibrosis and deeply infiltrative endometriosis (15). It is asso‑
ciated with chronic pelvic pain, dysmenorrhea, irregular 
menstrual bleeding, deep dyspareunia and urinary tract 
symptoms, while ~30% of patients with endometriosis also 
suffer from infertility (18‑20). Considering that all endome‑
triosis cases cannot be explained by a uniform theory, apart 
from the favorable and most accepted theory of Sampson (21) 
based on retrograde menstruation hypothesis, more pathways 
and cellular processes have been considered, including angio‑
genesis, chronic inflammation, increased oxidative stress 
and endothelial dysfunction  (22,23). Clinical presentation 
varies widely, ranging from asymptomatic to severe, and no 
diagnostic biomarkers have been approved for routine clinical 
diagnosis of endometriosis (24). Notably, the type and severity 
of symptoms depend on the extent of the disease and the loca‑
tion of the involved organ(s).

Advances in the past years have shown that female patients 
with endometriosis are at higher risk of developing chronic 
diseases as systemic comorbidities, such as cancer  (25), 
cardiovascular diseases  (26,27), asthma  (25), hypothy‑
roidism (25) and psychiatric disorders (28). Most importantly, 
epidemiological studies demonstrated that patients with endo‑
metriosis were associated with an increased risk of developing 
a number of autoimmune diseases compared with unaffected 
controls due to notable changes in immune‑related parameters. 
The autoimmune diseases included in this category include 
rheumatoid arthritis (RA), multiple sclerosis (MS), systemic 
lupus erythematosus (SLE), ulcerative colitis, Crohn's disease, 
coeliac disease, ankylosing spondylitis and autoimmune 
thyroid disorder (29‑33). However, it is unclear whether auto‑
immune diseases represent a risk factor of endometriosis, or 
these two types of diseases share similar pathogenetic media‑
tors.

Previous and recent epidemiological studies have suggested 
that endometriosis can increase the susceptibility to SS in 
these females compared with unaffected controls (29,34‑36). 

Although the pathogenesis of SS has not been elucidated, 
there has been strong evidence pointing out the important 
role of genetics in the development of this disease. Moreover, 
current research has demonstrated substantial deregulation 
of the immune system of female patients with endometriosis 
and epidemiological studies have presented evidence for a link 
between endometriosis and an increased risk of developing 
SS (29,34‑36). The etiology of this co‑occurrence remains 
poorly defined. It is possible that the immunological alterations 
and chronic inflammation characterizing endometriosis may 
lead to SS. These similarities between molecular and cellular 
pathways of endometriosis and SS may implicate a partially 
shared genetic background. Thus, in the current review, an 
overview of the shared genetic factors known thus far that are 
associated with an increased susceptibility for both disorders 
are presented, while the review did not focus on the plausible 
clinical basis and relevant aspects regarding the co‑occurrence 
of both diseases.

2. Genetics of endometriosis and SS

Endometriosis is a highly complex disease with numerous 
genetic, epigenetic and environmental factors interacting 
with each other, thus contributing to its pathogenesis (15). 
The identification and functional analysis of the numerous 
genetic factors involved in the development of endometriosis 
have notably contributed to the better understanding of the 
biological processes and molecular mechanisms leading to the 
disease, as presented in detail in recent studies by our research 
group (27,30,32). In brief, the strong genetic predisposition of 
the disease was documented firstly in monozygotic twin‑based 
and family studies  (37,38), followed by linkage analysis, 
various candidate and gene association, genome wide asso‑
ciation studies (GWAS), meta‑analyses and next‑generation 
sequencing studies (39‑53). As a consequence, a number of 
disease‑associated gene polymorphisms have been detected, 
which are involved in estrogen‑induced cell growth (WNT4 
rs7521902), vascular function (KDR rs17773813), cell adhesion 
(VEZT rs10859871, KAZN rs10928050), growth and migra‑
tion (FN1 rs1250241), matrix remodeling and angiogenesis 
(VEGF rs699947, LAMA5 rs2427284), cell cycle regulation 
(FAS rs1341643), transcription (ID4 rs7739264, MLLT10 
rs1802669), differentiation (GDAP1 rs554964149), prolifera‑
tion (MUC4 rs882605), oncogenesis (TP53 rs1042522, CHD5 
rs9434741), inflammation (COX‑2 rs20417), sex steroid 
hormone activity and metabolism (GREB1 rs13394619, FSHB 
rs74485684, SYNE1 rs71575922, CCDC170 rs1971256, ESR1 
rs2206949), immunity (STAT4 rs7574865, IL‑1A rs6542095, 
IL‑10 rs1800871, IL‑16 rs4072111) and oxidative stress (HIF‑1α 
rs11549465) (41,42,46,47,52,53). Furthermore, accumulating 
evidence suggests that epigenetic aberrations seem to play an 
important role in the pathophysiology of endometriosis (54) 
and the development of some specific complications such as 
pain and infertility (11,55). The levels of DNA methylation, 
histone modifications and microRNA (miR/miRNA) expres‑
sion reflect the main epigenetic information at the cellular 
level (56,57). These epigenetic changes may have potential 
applications in disease diagnosis, prognosis and therapeutic 
interventions (58). The importance of epigenetic modifica‑
tions regarding numerous biological processes has been so 
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far demonstrated according to findings from aberrant meth‑
ylation studies as well as epigenome‑wide association studies 
(EWAS) (59,60).

SS is a complex autoimmune disease with a number of 
well‑established susceptibility loci. Worldwide studies focused 
on the detection of SS‑associated alleles of human leukocyte 
antigen (HLA) genes, which encode cell surface antigen 
presenting proteins. Before the era of GWAS, associations 
between HLA genes and SS were detected concerning HLA‑Dw3, 
HLA‑B8, HLA‑DRw3, HLA‑DR3, DRw52 and HLA‑B8 
20 (61), while more recent studies focused on HLA identified 
DRw53 (62), DR2 (63), HLA‑DRB1*01:01, HLA‑B*35:01 (64), 
HLA‑DQA1*050  (65), HLA‑DRB1*0301  (66), HLA‑Cw7, 
HLA‑DR3 and HLA‑DR11  (67). Other genetic studies of 
SS had been focused on familial aggregation (68). The first 
GWAS performed focusing on SS (69) detected six non‑HLA 
loci, namely IFN regulatory factor 5 (IRF5)‑TNPO3, signal 
transducer and activator of transcription‑4 (STAT4), IL12A, 
FAM167A‑BLK, CXCR5 and TNIP1, while previously reported 
HLA associations (61‑67) were confirmed (69). Other GWAS 
established new associations with GTF2IRD1‑GTF2I and 
tumour necrosis factor (TNF)AIP3 (70) as well as IRF5 (71). 
Other studies showed association of SS with TNF‑α and 
IL‑10  (72), OAS1  (73) and IKZF1  (74). In the most recent 
GWAS conducted by Khatri et al (75) on patients of European 
ancestry, 10 novel genome‑wide marked SS‑associated loci 
were identified, including CD247, NAB1, PTTG1‑MIR146A, 
PRDM1‑ATG5, TNFAIP3, X Kell blood group complex 
subunit‑related family member 6 (XKR6), MAPT‑CRHR1, 
RPTOR‑CHMP6‑BAIAP6, tyrosine kinase 2 (TYK2) 
and SYNGR1, while a subsequent meta‑analysis based on 
ImmunoChip‑derived data revealed three additional SS‑loci, 
CD247, PRDM1‑ATG5 and TNFAIP3 (75). It is worth noting 
that the SS susceptibility loci identified by Khatri et al (75) 
are implicated in alterations in immune cell function, inflam‑
matory signaling, and cell stress, survival and proliferation. 
Regarding the epigenetic studies in SS, it was reported that 
in type I IFN‑regulated genes, which were upregulated in the 
blood and salivary glands (SGs) of patients with SS (76,77), 
DNA hypomethylation was observed (77). Previous studies 
assessed global DNA methylation levels and specific CpG 
sites in various candidate genes, such as LTA as well as type 
I IFN‑induced genes, including STAT1, IFI44L, MX1, IFI44L, 
PARP9 and IFITM1 (68). Furthermore, numerous large‑scale 
EWAS managed to identify genetic regions exhibiting a 
differential DNA methylation pattern between patients with 
SS and healthy controls, including IRF5 promoter regions, 
TNFSF7 promoter, FOXP3, KRT19 and DNMT1 genes as well 
as LINE‑1 (68,69).

3. Influence of immune system and angiogenesis in 
endometriosis and SS

Immune dysregulation leading to chronic inflammatory 
response in the ectopic endometrium aggravates a number 
of abnormalities in the cell‑mediated as well as the humoral 
immune systems of patients (30). Furthermore, other studies 
suggested the association of endometriosis with both antibody 
self‑reactivity and chronic local inflammation (11,23,27,30), 
caused by a variety of inflammatory factors such as cytokines, 

macrophages and prostaglandins, thus characterizing this 
disorder as an autoimmune one (74). In this framework, exten‑
sive research has been conducted to understand the influence of 
autoimmunity in endometriosis, aiming to gain better insight of 
the pathogenetic mechanisms leading to this condition (30). The 
identification of antibodies against endometrial antigens and 
the subsequent detection of anti‑nuclear and anti‑phospholipid 
antibodies in the blood and the peritoneal fluid (PF) of patients 
in combination with elevated levels of inflammatory cyto‑
kines, such as IL‑6, IL‑8 and TNF‑α, supported pre‑existing 
data indicating a critical role of autoimmunity in endome‑
triosis (78). This role was further strengthened by the loss of 
self‑tolerance, leading to immune‑mediated tissue destruction 
and multi‑organ involvement, which represent immunological 
alterations also occurring in endometriosis (77). Furthermore, 
natural killer (NK) cells were found to be decreased in local 
NK‑mediated cytotoxicity in the peripheral blood and PF of 
female patients with endometriosis (79), with this decrease 
being more pronounced in patients with endometriosis at 
stages II and IV as demonstrated by a notable reduction in 
NK activity (79). It has been suggested that inhibitory factors 
developing during the pathogenesis of endometriosis may 
suppress NK cell function (79). Abnormalities regarding the 
function and concentration of B‑ and T‑lymphocytes as well 
as the total number of macrophages have also been observed 
in patients (77,80). Dysregulation of the immune system may 
prevent the ability to eliminate the endometrium of the pelvic 
cavity, while macrophages and NK cells (78) may be unable 
to destroy cells in ectopic sites (77). The hormonal alterations 
observed in endometriosis, such as higher levels of estradiol 
and progesterone (15,17), have been related to the inflamma‑
tory imbalance that is characteristic of this disorder, given 
that inflammation affects hormonal regulation (81). The strong 
association of endometriosis with inflammation has also been 
indicated by the elevated levels of the inflammatory cytokines 
IL‑6, IL‑10 and TNF‑α (82) observed in the PF and peripheral 
blood of patients (83) (Fig 1).

As it was aforementioned, SS is a systemic, inflammatory, 
autoimmune disease characterized by exocrine dysfunc‑
tion due to immunologically‑mediated mechanisms (84). It 
follows the classical, multistep model of human autoimmune 
diseases. However, the immunological mechanisms that 
mediate the self‑directed destruction of SG tissue are still not 
well understood. A periductal mononuclear cell infiltration 
has been found, leading to the collection of distinct cellular 
aggregates in SGs and lachrymal glands, and the subsequent 
chronic inflammation with signs in various organs including 
lungs, liver and kidneys (85). Moreover, it has been reported 
that the observed chronic inflammation is caused by an 
imbalance of cytokine production locally in the glands and 
systemically in the blood (86). The dysregulation of cytokines 
refers to alterations of both local and systemic expression of 
pro and anti‑inflammatory cytokines released by infiltrating 
cells in inflamed tissues  (87). A notable research finding 
refers to functional differences between the glandular and the 
peripheral blood lymphocytes, thus suggesting the existence 
of a distinct microenvironment in the gland compared with 
that in the peripheral blood, while the putative disruption of 
the T helper (Th) 1 and 2 cell balance cannot be underesti‑
mated (88). Notably, the aforementioned studies have also 
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suggested a differential role for the action of Th1 and Th2 
cytokines in SS (85,86,88); The Th1 cytokines IL‑10, IL‑6 
and TGF‑β are critical for the induction of SS, but Th2 cyto‑
kines, such as IL‑4 and IL‑5, may be related to the disease 
progression (89). It is noteworthy that IL‑6 functions as a key 
player regarding B‑cell differentiation and the production 
of autoantibodies. IL‑6 is found at higher levels in patients 
with SS compared with healthy controls, thus contributing 
to the characteristic inflammatory state of the disorder (90). 
Moreover, it was recently reported that the proinflammatory 
cytokine IL‑17, produced mainly by Th17 cells, is upregulated 
in SS as shown in numerous studies, thus being involved in 
the development of SS and, in particular, associated with the 
degree of inflammation and clinical manifestations (91‑93). 
TNF‑α and TNF‑α‑receptors also appear to be dysregulated 
in peripheral blood and secreting cells from SGs from patients 
with SS (94,95). Mackay and Tangye (96) have emphasized the 
role of the B cell activating factor (BAFF), which is a protein 
member of the TNF family produced by monocytes, T and 
dendritic cells (DCs). This protein is upregulated in SS and 
is associated with autoantibody production and B‑cell toler‑
ance (97). Numerous pathways that are strongly associated 
with IFN signaling were found to be upregulated in patients 
with SS, especially in SGs and plasmacytoid DCs (98). TGF‑β, 
a cytokine crucial in Th17 polarization (93), is linked to the 
growth of regulatory T cells which are upregulated in inflamed 
SGs of patients with SS (98). It is noteworthy that accumu‑
lating evidence document that a broad spectrum of impaired 

immune functions results in the pathogenesis of SS, including 
the cytotoxic cellular cytokines IL‑1β, IL‑12p40, IL‑15 and 
TNF‑α, the humoral cytokine IL‑6, and the factors and death 
receptors TNF‑RI and TNF‑RII (99,100).

Although the etiology of endometriosis is highly complex 
and far from being fully elucidated, there is compelling 
evidence attributing a critical role in angiogenesis and 
lymphangiogenesis, which are involved in both the inva‑
sion to the extracellular matrix and ectopic implantation of 
endometrial tissue, and the development of endometriotic 
lesions (101). Angiogenesis confers to the maintenance of the 
endometriotic lesions by supplying them with functional blood 
vessels and, as a consequence, leading to the formation of a 
dense vascularization (102). The angiogenic properties of the 
endometrium and its strong potential to attract blood vessels 
from the surrounding tissue is well established (103). Moreover, 
various potent angiogenic factors such as TGF‑α, TGF‑β, 
basic fibroblast growth factor and angiopoietin  (32) have 
been found to be altered in endometriosis, thus suggesting the 
involvement of angiogenesis in the ectopic implantation of the 
endometrial cells (104). A number of genetic polymorphisms 
of key components of the angiogenesis mechanism, including 
placental growth factor rs2268614, hypoxia inducible factor‑1α 
(HIF‑1a) rs11549465 and vascular endothelial growth factor 
(VEGF) receptor 1 (VEGFR1) rs9582036, were found to be 
associated with the development of endometriosis. Thus, it has 
been demonstrated that all these single nucleotide polymor‑
phisms (SNPs) contribute to the variability in the plasma levels 

Figure 1. Proposed mechanisms for the interaction between endometriosis and SS. Major pathogenetic mechanisms include proinflammatory, proangiogenic, 
cell proliferation, aberrant apoptosis and immune functions. Genetic risk loci associated with both diseases are classified into major distinct mechanistic 
pathways. Shared genetic risk loci are associated with immune functions, interferon signaling, the NF‑κB pathway, angiogenesis and apoptosis. All pathways, 
apart from the genetic factors, are influenced at a next step by transcriptional and epigenetic factors, thus formulating the cross‑link between the shared genetic 
background, and endometriosis and SS. Figure partially adapted from Vazgiourakis et al (27). SS, Sjögren's syndrome.



INTERNATIONAL JOURNAL OF MOlecular medicine  53:  20,  2024 5

of the encoded proteins (105,106). In the same framework, 
data have shown that higher expression levels of VEGF and 
angiopoietin‑1 led to dysregulated angiogenic activity of the 
utopic endometrium in patients with endometriosis (101,107). 
It is known that VEGF activates the migration of various 
inflammatory cells, including monocytes and lymphocytes, 
into the extracellular matrix (108). It is noteworthy that another 
study showed that predominantly in adolescent and young 
adult female patients with endometriosis, increased levels and 
marked activation of circulating proteins related to angio‑
genesis and cell migration were observed (109). The further 
identification of new factors associated with angiogenesis may 
be important for developing novel therapeutic approaches for 
endometriosis.

Marked discoveries regarding the molecular mechanisms 
leading to SS have highlighted the role of angiogenesis (110), 
a fundamental process in growth and development  (111). 
Previous experiments have shown that the metalloproteinase 
TNF‑α‑converting enzyme, which participates in proangio‑
genic pathways leading to the formation of vessels (112,113), 
is involved in VEGF/VEGFR2‑mediated angiogenesis in 
SS  (114). Furthermore, it has been shown that infiltrating 
T‑cells, in combination with human SG epithelial cells 
(SGECs), produce increased amounts of proangiogenic factors 
through the activation of the VEGF‑A/VEGFR‑2 system (115). 
Various findings have shown that a proangiogenic protein, 
the metalloproteinase TNF‑α‑converting enzyme (TACE) 
is overproduced in SS, thus emphasizing the role of the 
VEGF‑A/TACE/VEGFR2/NF‑κB axis dysfunction in the 
pathogenesis of SS (114). In the same framework, neuropilin, 
which represents a transmembrane co‑receptor of the VEGF 
protein family members, was reported to promote angiogen‑
esis in SS by activating NF‑κB (116). Moreover, quantification 
and characterization of circulating angiogenic T (Tang) cells in 
minor SGs (MSGs) and in the peripheral blood of patients with 
SS showed that this type of cells may participate in endothelial 
dysfunction and glandular angiogenesis observed in SS (117). 

Importantly, Tang cells infiltrate MSGs and are directly asso‑
ciated with disease activity in patients with SS (117).

4. Shared susceptibility loci between endometriosis and SS 
and relative biological mechanisms

Shared genetic susceptibility loci. Previous findings have 
suggested an association between endometriosis and a higher 
risk of SS in various populations, including cases from the 
USA, Denmark and Taiwan (29,34‑36), an observation that 
posed a reasonable question concerning the putative existence 
of shared genetic factors that are involved in the co‑occurrence 
of these diseases. Notably, preexisting data that are presented 
in detail below, have demonstrated that various autoimmu‑
nity‑ and inflammation‑associated genes play a crucial role 
in the development of both conditions and, therefore, it seems 
intriguing to further explore plausible shared mechanisms 
underlying endometriosis and SS. Endometriosis may be a risk 
factor for, or share a common cause with SS.

Thus, the results of the literature search carried out as part of 
the present review showed that the IRF5 rs10488631 (118,119), 
STAT4 rs7574865 (71,120‑122), protein tyrosine phosphatase 
non‑receptor type 2 (PTPN22) rs2476601  (30,123), TYK2 
rs2304256  (75,124), TNF‑α rs1800629  (125,126), HIF‑1a 
rs11549465  (64,127), XKR6 rs11250098 SNPs  (75,128) as 
well as the HLA‑associated alleles DQB1*0301 (65,129,130) 
and DRB1*01:01 (64,131) are associated with both diseases 
(Table I).

Relative biological mechanisms
Polymorphisms in genes associated with IFN pathways and 
signaling. STAT4 is a key transcription factor expressed in 
activated peripheral blood monocytes, macrophages and DCs 
in humans (132), and it is involved in numerous processes, 
including transduction of IL‑12, IL‑23 and type 1 IFN‑mediated 
signals into Th1 and Th17 differentiation, IFN‑γ production 
and monocyte activation (133). STAT4 is encoded by the STAT4 

Table I. An overview of the genetic polymorphisms associated with the development of both endometriosis and SS as confirmed 
by gene association studies and/or genome‑wide association studies.

	 Endometriosis and
dbSNP ID	 SS‑associated gene	 Function	 (Refs.)

rs7574865	 STAT4	 Intracellular signaling	 (71,120)
rs7582694	 STAT4	 Intracellular signaling	 (121,122)
rs10488631	 IRF5	 Transcription factor with diverse roles	 (118,119)
rs2476601	 PTPN22	 T‑cell activation	 (123,151)
rs2304256	 TYK2	 Involved in interferon and cytokine signaling	 (75,124)
N/A	 HLA‑DQB1*0301	 Presents peptides derived from extracellular proteins	 (129,130)
N/A	 HLA‑DRB1*0101	 Presents peptides derived from extracellular proteins	 (64,131)
rs1800629	 TNF‑α 	 Multifunctional pro‑inflammatory cytokine	 (125,126)
rs11549465	 HIF‑1a	 Master transcriptional regulator of the adaptive response to hypoxia	 (64,127)
rs11250098	 XKR6	 Involved in apoptotic process	 (75,128)

SNP, single nucleotide polymorphism; SS, Sjögren's syndrome; STAT4, signal transducer and activator of transcription‑4; IRF5, interferon 
regulatory factor 5; PTPN22, protein tyrosine phosphatase, non‑receptor type 2; TYK2, tyrosine kinase 2; HLA, human leukocyte antigen; 
TNF‑α, tumor necrosis factor‑α; HIF‑1α, hypoxia inducible factor‑1α; XKR6, X Kell blood group complex subunit‑related family member 6.
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gene, which is located at 2q32.2‑q32.3, consists of 24 exons 
and spans a region of 120 kb (121). STAT4 is vital to signaling 
pathways in the immune response and autoimmune diseases; 
the requirement for a STAT4‑dependent cytokine regulation 
has been well documented (134). The STAT4 rs7574865 G/T 
SNP is a well‑known SLE‑ and RA‑associated polymor‑
phism (134) that was found to be associated with an increased 
risk of SS  (133) as well as endometriosis  (120). A second 
STAT4 SNP, rs7582694 (C/G), was reported to be associated 
with both SS and endometriosis (121,122). More specifically, 
the ‘T’ allele of the STAT4 rs7574865 SNP was more common 
in patients with SS (133). This SNP has been demonstrated 
to be weakly associated with the mRNA levels of several 
IFN‑induced genes when peripheral blood mononuclear cells 
(PBMCs) from patients with SS were analyzed (122). The SNP 
rs7574865 was shown to be associated with increased sensi‑
tivity to IFN‑α signaling in patients with SLE (135). Although 
the functional role of rs7574865 SNP in SS is still unclear, it 
has been assumed that the rate of transcription is altered due 
to the resulting nucleotide change, leading an alteration of 
the binding of histones in this genomic area (133). Notably, a 
previous bioinformatics analysis showed that this SNP did not 
disrupt any activator or transcription factor binding site (136). 
Moreover, experiments performed by the same research 
group showed a distinct impairment in STAT4 production 
as well as in STAT4 phosphorylation in the presence of the 
‘T’ allele (136). Regarding endometriosis, the frequency of the 
TT genotype of the rs7574865 SNP was increased in female 
patients with minimal or mild endometriosis compared with 
that in controls  (120). Furthermore, it has been suggested 
that the rs7574865 SNP may affect either gene expression or 
mRNA splicing, thus playing an important role in the regula‑
tion of Th17 pathways, due to its involvement in the induction 
of Th1 and Th17 cytokine responses and IFN signaling (120). 
A relationship between Th1 response pattern and deep infil‑
trating endometriosis has also been suggested (137).

The STAT4 rs7582694 C allele was associated with SS (122), 
but the levels of STAT4a (the full‑length mRNA) and STAT4b 
(the truncated form) mRNAs in PBMCs did not appear to have 
any notable association with the rs7582694 genotypes. Of note, 
a strong association between the mRNA levels of STAT4a 
and type‑1 IFN‑induced genes was observed, suggesting that 
STAT4 may play a crucial role in both the production of type 1 
and 2 IFN‑mediated effects (122). Similarly to SS, a notable 
association between the ‘C’ allele and endometriosis was 
detected and the GC genotype was markedly overrepresented 
in patients with endometriosis compared with controls (121).

The IRF5 gene, located on chromosome 7q32, encodes a 
transcription factor, of a range of 60‑63 kDa (138), expressed 
in B‑cells, macrophages as well as epithelial cells and DCs. It 
is involved in the regulation of the host defense and the tran‑
scriptional activation of various proinflammatory cytokines 
and type 1 IFN responsive genes  (139). The IRF5 protein 
mediates toll‑like receptor (TLR) signal transduction (140), 
while it has been suggested that it also acts as a molecular 
switch that controls macrophage cell‑mediated inflammatory 
mechanisms (141). It has been shown that a polymorphism 
in the IRF5 gene (downstream of IRF5), rs10488631 (T/C) 
SNP, is associated with an increased risk of developing both 
SS and endometriosis (40,119,142). Thus, it was found that 

the minor allele ‘C’ of rs10488631 is strongly associated 
with SS but further analysis based on bioinformatics did not 
manage to predict any clear functional role for this SNP (119). 
However, the genetic effect of IRF5 is strong enough for SLE, 
followed by SS and RA, thus emphasizing the importance of 
the type I IFN system in the etiopathogenesis of SS, while 
the risk allele of IRF5 SNP was reported to be independent 
of the autoantibody status of patients with SS (119,143,144). 
To date, the pathway with IRF5 as well as the STAT4 and 
IL12A genes involves increased IFN signaling and cytokine 
production, a finding that is consistent with the IFN gene 
signature observed in patients with SS  (145,146). Of note, 
when our research group previously examined the levels of 
serum IFN‑α in patients with SLE that had been stratified by 
the risk allele ‘C’ of rs10488631, an association of this allele 
with higher circulating type I IFN levels in these patients was 
observed (147). The Neanderthal‑derived TACA haplotype, 
as determined by the rs2004640, rs3807306, rs10488631 and 
rs2280714 IRF5 SNPs (148), which carries the rs10488631 
allele ‘C’, was also associated with SLE susceptibility, further 
supporting a functional consequence of this polymorphism in 
disease development (147). Furthermore, Bianco et al (142) 
reported that the rs10488631 SNP is involved in the risk for 
the development of moderate/severe endometriosis.

The PTPN22 gene maps to 1p13.3‑13.1 and codes for 
lymphoid‑specific phosphatase, which is also known as Lyp 
and represents an important downregulator of T‑cell activa‑
tion (149). Lyp protein is physically bound to the SH3 domain 
of the Csk protein, a kinase that is an important suppressor 
of kinases mediating T‑cell activation (150). The missense, 
functional rs2476601 (C1858T) SNP has been associated with 
an increased risk for both endometriosis and SS (123,151). 
This polymorphism leads to the change of the amino acid at 
position 620 from arginine to tryptophan thus disrupting the 
physical interaction between Lyp and Csk proteins, given that 
it encodes a gain‑of‑function Lyp enzyme. As a consequence, 
the protein complex cannot be formed, and the suppression 
of T‑cell activation is avoided (152). This SNP represents one 
of the best examples of a non‑HLA common polymorphism 
that is involved in the development of various autoimmune 
diseases  (153). Based on in vitro experiments, it has been 
shown that the ‘T’ allele of rs2476601 has a decreased binding 
efficiency to Csk compared with that of the major allele ‘C’, 
thus suggesting that T cells of subjects expressing the ‘T’ allele 
may have an overall increased reactivity of the immune system 
and are susceptible to autoimmune diseases (154). Of interest, 
it has been demonstrated that allele ‘T’ was more frequent in 
female patients with moderate/severe endometriosis than in 
patients with minimal/mild endometriosis (123). Consistently, 
the development and progression of this disease has been 
considered to be a result of genetic alterations and immune 
system deregulation (77). Moreover, the crucial role of the 
immune system in the onset and development of endometriosis 
has been pointed out given that in female patients with endo‑
metriosis, implantation of endometrial fragments in ectopic 
regions may be facilitated by alterations in T cell‑mediated 
immunity (155).

TYK2, a locus that has been confirmed to be associated 
with various autoimmune diseases thus far (156,157), encodes 
a member of the Janus kinase (JAK) protein families (158), 
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involved in the STAT signaling pathway by mediating the 
signaling of both type I and type III IFN signaling path‑
ways (159). The TYK2 gene is located at 19p13.2 and the 
non‑synonymous SNP rs2304256 (C/A) leads to a change 
of valine to phenylalanine at amino acid position 362 in 
exon 8, which was to be associated with endometriosis and 
SS  (75,124). Thus, the frequencies of both allele ‘A’ and 
genotype AA were notably increased in female patients with 
endometriosis compared with controls (124). Importantly, it 
has been shown that the risk allele ‘A’ disrupts a putative exonic 
splicing enhancer binding motif that affects the pre‑mRNA 
processing of TYK2. This pre‑mRNA processing is crucial 
for the incorporation of exon 8 in the mRNA, considering 
the pivotal role of this exon in the binding of TYK2 to the 
cytokine receptor (160). In an attempt to elucidate further 
the functional significance of TYK2 in the development 
of endometriosis, an association between IL‑13, which is a 
Th2 cytokine playing a central role to endometriosis (161), 
and TYK2 has been suggested (161). Thus, elevated mRNA 
and protein levels of IL‑13 were detected in the PF of 
female patients with endometriosis (162) as well as in their 
ectopic endometrium (161). Moreover, TYK2 mediates the 
function of IL‑13 in pathways that are associated with Th2 
immune responses (163), while IL‑13/TYK2 signaling in B 
cell proliferation and other biological processes have been 
shown in endometriosis (164). Therefore, any aberration in 
TYK2 expression may result in escaping from the immune 
surveillance (165), thus pointing out its importance in the 
inflammatory responses characterizing endometriosis. Of 
note, a bioinformatics analysis suggested that the missense 
variant rs2304256 in TYK2 is likely to be functional in SS 
pathogenesis (75).

Polymorphisms in genes involved in immune responses 
(MHC). HLA genes encode HLA proteins, which bind antigen 
peptides and then, present them to T cells. At a next step, the 
differentiation of T cells into cytotoxic or helper T cells takes 
place as a subsequent stage following specific recognition of 
the antigen‑HLA molecules complexes (131). HLA proteins 
play a crucial role in order to restrict the recognition of anti‑
genic peptides by T cells (166). HLA genes play key roles in 
the immune response and exhibit the highest degree of poly‑
morphism, with most of them being involved in mechanisms 
that shape the T cell repertoire (166).

The HLA‑DQB1*0301 allele of the HLA class  II gene 
DQB1 has been associated with increased susceptibility for 
both endometriosis (129) and SS (65,130,167). In a sequencing 
analysis of DQBI*0301 conducted in some patients with SS, 
data showed that the N‑terminal domain was identical to the 
one found in a healthy population (168). This identity observed 
at the level of nucleotide sequences was also reported in 
the case of MS, another autoimmune disease (169). Thus, it 
is likely that susceptibility to SS cannot be attributed to the 
DQBI*0301 HLA allele found in patients. Apart from data 
showing that leucine at the amino acid position 26 of the 
outermost domain of DQB1 chain plays a ‘gene dosage’ role of 
anti‑Ro/La autoantibody response, no leucine was found at this 
position of the DQBI*0301 allele in patients with SS (168). The 
association between endometriosis and the genes encoding 
the protein components of the HLA system has not yet been 

fully elucidated (129). However, a notably higher frequency 
of the HLA‑DQB1*0301 allele has been observed in patients 
with endometriosis, although the underlying mechanism of 
association has not been fully clarified thus far. This allele has 
also been associated with systemic sclerosis (170) and mycosis 
fungoides (171).

The HLA‑DRB1*0101 allele has been associated with an 
increased risk of endometriosis (131) and SS (64). In patients 
with SS, HLA‑DRB1*0101 was revealed as a risk factor for 
the development of this condition, while an association with 
an increased production of anti‑Ro/SSA was also found (64). 
Moreover, an increased frequency of HLA‑DRB1*0101, 
was observed in patients with endometriosis compared with 
controls (131). It has been suggested that defects in the activity 
of NK cells in the recognition and lysis of endometrial cells 
may be a crucial factor in the mechanism of endometriosis 
pathogenesis. Semino et al (172) revealed that the increased 
risk for lysis of endometrial cells by NK‑like T cells has been 
associated with the expression of HLA class I molecules, 
including HLA‑DRB1, on endometrial cells.

Polymorphisms in genes involved in the NF‑κB pathway, 
angiogenesis and apoptosis. The TNF‑α gene encodes the 
proinflammatory cytokine TNF‑α, which plays an important 
role in the pathogenesis of a number of inflammatory and 
infectious diseases (173,174). This protein is produced mainly 
by monocytes, macrophages and activated leukocytes (175). 
The TNF‑α gene has four exons, is mapped to 6p21 within 
the MHC between the HLA‑B and HLA‑DR loci (79). It has 
been found that, in patients with SS, TNF‑α promotes the 
influx of mononuclear cells into SGs (176). The TNF‑α‑308 
G/A rs1800629 SNP, located in the promoter region of TNF‑α, 
has been associated with an increased susceptibility for endo‑
metriosis (125) and SS (126). Previous studies have suggested 
that the presence of the minor allele ‘A’ of rs1800629 in the 
promoter region results in an increase of the transcription 
levels of TNF‑α compared with the major allele ‘G’, which 
subsequently increases the serum levels of the TNF‑α 
protein (176,177). In endometriosis, inflammation is involved 
in the initiation as well as the development of ectopic endo‑
metrial tissue in the peritoneal cavity (178), and this process 
is mediated by various proinflammatory cytokines, including 
TNF‑α (125). In this framework, TNF‑α has been detected 
in the PF of patients with endometriosis (179), while elevated 
levels of TNF‑α are associated with the implantation of 
ectopic endometrial tissue (180), establishing it as an impor‑
tant factor in the development of endometriosis. Altogether, 
the increased TNF‑α levels observed in patients carrying 
the ‘A’ allele of rs1800629 may explain the role of this allele 
in endometriosis  (125). Furthermore, a study focusing on 
patients with SS revealed an association between allele ‘A’ and 
elevated levels of TNF‑α in the peripheral blood or tissue of 
patients (126,181).

The HIF‑1a gene encodes the ‘α’ subunit of the transcription 
factor HIF‑1, a heterodimer composed of an α and a β subunit. 
This protein functions as a master transcriptional regulator of 
the adaptive response to hypoxia (182), whereas additional data 
have suggested its involvement in innate immunity (183) and 
various cellular functions including cell proliferation, apop‑
tosis, embryonic vascularization and angiogenesis (64,184). 

https://www.spandidos-publications.com/10.3892/ijmm.2024.5344
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Some genetic variants of the HIF‑1a gene have been associated 
with development of various inflammatory and autoimmune 
diseases, including RA and SLE  (185,186). It has been 
reported that the missense rs11549465 (C/T, Pro582Ser) SNP 
of the HIF‑1a gene is associated with both endometriosis (127) 
and SS (64). This polymorphism, located in exon 12, leads to 
a substitution of proline with serine in the amino acid posi‑
tion 582 of the HIF‑1α protein  (64). The aforementioned 
amino acid position has been suggested to be important for 
the functionality of the protein, considering that the polymor‑
phism is in the oxygen‑dependent degradation/pVHL binding 
domain of HIF‑1α (187). The ‘T’ allele of rs11549465 has 
been associated with increased susceptibility to minimal‑mild 
endometriosis (127). Female patients with endometriosis who 
have the CT genotype of rs11549465 exhibited notably higher 
plasma levels of the HIF‑1α in compared with patients with 
CC genotype  (127). Regarding SS, it has been shown that 
HIF‑1α enhances the development of Th17 cells by activating 
the transcription of RAR‑related orphan receptor γ t (188), and 
this Th17 subpopulation was found to be increased in the SG 
tissue of patients with SS (91). Data have shown that HIF‑1α 
upregulates the expression of IFN‑γ in the synovial fibroblast 
of patients with RA (189) and, similarly, IFN‑γ has been asso‑
ciated with severe types of SS that are characterized by high 
grade infiltration of macrophages, lymphocytes and DCs (190). 
Moreover, an additional in vitro study (191) emphasized the 
relevance of the rs11549465 variant in the transcription of 
several HIF‑1α target genes involved in primary SS (pSS) 
pathology.

The XKR6 gene is located on chromosome 8p23.1 (192), 
between the FAM167A and BLK genes (193). It encodes the 
XKR6 protein, which has been predicted to be an integral 
component of membranes, involved in the apoptotic process 
related to development and is expressed in red blood cells, 
colon, esophagus, small intestine, stomach and thyroid (194). 
The XKR6 rs11250098 (A/G) SNP has been associated with 
both endometriosis and SS (75,128); for endometriosis, this 
SNP appears a GWA significance rate (128). The association 
of rs11250098 with increased SS susceptibility is unclear 
considering that there is not an obvious link to pathways 
implicated in the disease, probably because little is known 
about gene function (75). However, it has been suggested that 
rs11250098 is likely to impact enhancer activity that prob‑
ably targets XKR6 and myotubularin‑related protein 9 (75). 
Furthermore, another SNP in XKR6 locus has been detected, 
considered to be a childhood‑onset SLE‑associated poly‑
morphism, but no functional effects have been reported 
so far  (193). The XKR6 locus has been associated with 
inflammatory bowel disease as well (194), and based on its 
expression, it was suggested that it may be an immune‑related 
protein  (195). Since little is known about the function of 
XKR6, its actual role in endometriosis and SS pathogenesis 
remains uncertain, and additional studies are required to 
understand in depth its biological importance.

5. Role of miRNAs in the co‑occurrence and pathophysiology 
of endometriosis and SS

miRNAs are naturally‑occurring, small (~22 nucleotides in 
length), non‑coding, post‑transcriptional regulatory molecules, 

expressed in a tissue‑specific and cell‑type‑specific manner, 
targeting numerous mRNAs (196,197). miRNAs represent an 
evolutionary system that regulates numerous biological processes 
such as embryonic development, cell cycle, migration and 
proliferation, differentiation, immune responses as well as apop‑
tosis (198,199), while also being implicated in the development of 
various autoimmune diseases including SLE, RA, MS, AS, SS, 
experimental autoimmune encephalomyelitis, type 1 diabetes 
mellitus, inflammatory bowel disease, psoriasis, primary biliary 
cirrhosis and idiopathic thrombocytopenic purpura (199‑201). 
To date, various studies have demonstrated an aberrant expres‑
sion of miRNAs in affected tissues or blood serum samples of 
patients with endometriosis (56,57,202). Moreover, the critical 
role of miRNAs has been documented in SS with regards to 
the post‑transcriptional mRNA expression on PBMCs and 
SGs (203). Thus, several studies have investigated the participa‑
tion and contribution of miRNAs in endometriosis as well as SS 
etiopathogenesis (204,205). Notably, various miRNAs have been 
reported to have a similar expression profile in both diseases, 
including miR16  (203,206‑210), miR18a‑5p  (203,211,212), 
miR19b‑3p  (208,213‑215), miR26a‑5p  (208,209,213), 
miR30c‑5p (59,208,209), miR122‑3p (214,216), miR142 (217,218), 
miR146a‑5p   (217,219,220),  miR155‑5p   (218,221), 
miR181a (222‑225), miR200b (220,226), miR223‑3p (203,213) 
and miR378a‑3p (213,227) (Table II).

miR16 was found to be upregulated in the plasma of patients 
with endometriosis compared with controls (206) as well in 
the saliva of patients with SS (207). This miRNA is consid‑
ered a potential diagnostic biomarker for endometriosis (228). 
Furthermore, it was shown that there is an association between 
miR16 and autoantibodies against both Ro/SSA (SSA) and 
La/SSB (SSB) in labial SG tissues of patients with SS (205).

miR17‑5p was reported to be downregulated in the serum 
and blood of female patients with endometriosis (162,208) as 
well as in the saliva of patients with SS (203,210). Investigation 
of the expression of this miRNA led to its use as a non‑invasive 
diagnostic marker of endometriosis  (162). The observed 
downregulation of miR17‑5p results in the upregulation of the 
targets BCL2 and cell cycle repressor cyclin‑dependent kinase 
inhibitor 1A repressing cell proliferation (229). Furthermore, 
the downregulation of miR17‑5p is involved in neo‑angio‑
genesis, through its association with HIF‑1α (230) as well as 
VEGF‑A (231). Notably, the miRNA under discussion exhibits 
a notable inverse association with thrombospondin 1 levels, a 
protein that modulates cell migration and adhesion (232).

miR18a‑5p has been found to be upregulated in the serum 
of patients with stage  III and IV endometriosis compared 
with control subjects (211), and in the SGs of patients with 
SS (203,212). It has been previously reported that this serum 
miRNA is considered a diagnostic marker of endome‑
triosis (211).

miR19b‑3p is downregulated in the blood of patients 
with endometriosis compared with controls  (208) and in 
B‑lymphocytes of patients with SS  (213). This miRNA is 
a member of a miRNA cluster that plays a pivotal role in 
cell proliferation and apoptosis but is often deregulated in 
immune‑associated diseases  (233). Moreover, decrease in 
miR19b‑3p levels was associated with accumulation of mature 
B cells that have been linked to autoimmune diseases including 
SS (210,234).
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miR21‑3p was found to be upregulated in ectopic endome‑
trium of female patients with severe endometriosis compared 
with control subjects (214) as well as in patients with SS (215). 
This miRNA was previously shown to be associated with endo‑
metrial receptivity as well (235), while it has been reported 
to be regulated by oxidative stress (236). Thus, this miRNA 
participates in the oxidative stress‑ and immune‑related AKT 
pathway, by targeting the inhibitory molecule PTEN (237), 
while it also targets PDCD4, E2F1 and TGFBRII (238).

miR26a‑5p was found to be downregulated in the blood of 
patients with endometriosis compare with controls (208), and 
in B‑lymphocytes of patients with SS (213).

miR30c‑5p was shown to be downregulated in the serum of 
patients with endometriosis compared with controls (208,209), 
and in the saliva of patients with SS (59,203). Furthermore, 
downregulation of this miRNA by targeting PAI‑1 was shown 
to increase the invasion, migration and proliferation of human 
embryonic stem cells, thus pointing out the role of miR30c‑5p 
in endometriosis (215). Functional experiments showed that 
the expression of miR30b‑5p in B cells from patients with 
SS was inversely associated with the expression of the BAFF 
gene (209). Furthermore, this miRNA was found to play a role 
as a negative regulator of BAFF in both systemic sclerosis and 
RA fibroblasts (239). miR30b‑5p was also found to be notably 
deregulated in the B cells of patients with SS (209). Thus, 
miR30b‑5p was found to be 3.5 times more downregulated in 
B cells of seropositive (anti‑SSA+) patients with pSS compared 
with control subjects, than B cells from seronegative (anti‑SSA) 
patients with SS (209).

miR122‑3p is upregulated in the serum and PF of patients 
with endometriosis compared with controls (213,240); simi‑
larly, the same miRNA was found to be upregulated in PBMCs 
from patients with SS (215). The diagnostic power of this 
miRNA has been assessed in endometriosis, and it was shown 

that serum miR122‑3p had a sensitivity of 95.6 and a specificity 
of 91.4 for the diagnosis of the status of the disease (216). Thus, 
this miRNA can be considered as a putative serum biomarker 
for endometriosis (216).

miR142 was found to be upregulated in the utopic endo‑
metrium of patients with endometriosis compared with 
controls (228), while it was also found to be upregulated in 
the saliva and SGs of patients with SS (218). This miRNA 
regulates autophagy mediated by KLF9 and, therefore, may 
suppress endometriosis (35).

miR146a is upregulated in the utopic endometrium of 
patients with endometriosis compared with controls (217), 
and is also upregulated in the PBMCs of patients with 
SS (218,220). It represents an excellent example of a master 
regulator as it contributes to numerous aspects of immu‑
nity, including the control of cytokine overproduction, the 
suppression of regulatory T (Treg) cells and the control of 
TLR signaling in recurrent bacterial infection  (241‑243). 
This miRNA can also modulate cell death processes and, 
therefore, it can act as an antiapoptotic factor in T cells (244). 
Moreover, miR146a is activated by NF‑kB that plays a crucial 
role in controlling the TLR/IFN pathway (245). In this frame‑
work, the elevated expression of miR146a found in PBMCs 
from patients with SS (220) is of high importance given that 
it regulates the inflammatory response (negative regulator) 
by controlling properly the expression of IRAK1 and TRAF6 
genes  (246). Furthermore, elevated miR146a levels have 
been associated with an increased percentage of Th17 cells 
in patients with SS compared with healthy subjects (247). 
All aforementioned data suggest that abnormal regulation 
of miR146a is involved in early disease pathogenesis and 
progression.

miR155‑5p was found to be downregulated in the plasma 
of patients with endometriosis compared with control 

Table II. miRNA expression profiling in endometriosis and patients with SS.

miRNA	 Source of miRNA	 Expression	 (Refs.)

miR16	 Plasma, saliva	 Upregulated	 (206,207)
miR17‑5p	 Serum, blood, saliva	D ownregulated	 (208,210)
miR18a‑5p	 Serum, SGs	 Upregulated	 (211,212)
miR19b‑3p	 Blood, B‑lymphocytes	D ownregulated	 (208,213)
miR21‑3p	 Endometrium, PBMCs	 Upregulated	 (214,215)
miR26a‑5p	 Blood, B‑lymphocytes	D ownregulated	 (208,213)
miR30c‑5p	 Serum, saliva	D ownregulated	 (59,208)
miR122‑3p	 Serum, PF, PBMCs	 Upregulated	 (214,216)
miR142	 Endometrium, saliva, SGs	 Upregulated	 (217,218)
miR146a‑5p	 Endometrium, PBMCs	 Upregulated	 (217,220)
miR155‑5p	 Plasma, PBMCs	D ownregulated	 (218,221)
miR181a	 Blood, SGs, SGECs, PBMCs	 Upregulated	 (222,223)
miR200b	 Endometrium, PBMCs	 Upregulated	 (220,226)
miR223‑3p	 Endometrium, PBMCs, saliva	 Upregulated	 (203,214)
miR378a‑3p	 Plasma, B‑lymphocytes	D ownregulated	 (213,227)

In the ‘source of miRNA’ column, the upper line refers to endometriosis and the lower one to patients with SS. PF, peritoneal fluid; PBMCs, 
peripheral blood mononuclear cells; SGs, salivary glands; SGECs, cultured salivary glands epithelial cells; miR/miRNA, microRNA.
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subjects (221) and in PBMCs of patients with SS compared 
with controls (219). This miRNA is considered a key modu‑
lator regarding both the innate and adaptive immune response, 
activated by NF‑kB, which is known to control the TLR/IFN 
pathway (245), while it further regulates the proliferation and 
function of B and T cells (248). miR155‑5p is also involved in 
the regulation of immune cells, particularly in SS (220).

miR181a is upregulated in the blood of patients with 
endometriosis compared with controls (222) as well as in the 
SGECs and PBMCs of patients with SS (223‑225). The levels 
of miR181a in PBMCs of patients with SS have been associated 
with exocrine gland dysfunction and antigen sensitivity (225), 
while additional data have shown that miR181a targets the 
muscarinic receptor 3 gene, which harbors genetic variants 
that are markedly associated with SS (249,250). The increased 
levels of miR181a have been associated with the degree of 
inflammation observed the patients with SS (209).

miR200b is upregulated in the ectopic endometrium of 
patients with endometriosis compared with the utopic endo‑
metrium of controls (226). This miRNA is also upregulated 
in SS (220). Regarding endometriosis, it has been suggested 
that the regulation of miR200b may modulate the proliferation 
and differentiation of stem cells (251). miR‑200b targets the 
ZEB1, ZEB2 and KLF4 genes, thus affecting the proliferation 
and invasiveness of endometriotic cells (251). Furthermore, it 
participates in the regulation of various target genes involved 
in epithelial‑mesenchymal transition and angiogenesis (252), 
thus contributing to the pathogenesis of endometriosis (253).

miR223‑3p is upregulated in the ectopic endometrium of 
patients with endometriosis compared with the utopic endome‑
trium of control subjects (214). Similarly, it is upregulated in 
PBMCs and saliva of patients with SS (203,254). The miR223 
gene is located within the q12 locus of the X chromosome and 
its product was also found at high levels in vascular smooth 
muscle cells (255). It has been assumed to play a role in endo‑
metriosis considering its well documented involvement in cell 
proliferation, migration as well as in vascular remodeling and 
apoptosis (256). The role of miR223‑3p in SS is still unclear. 
However, it was also found to be upregulated in CD4+ naïve 
T lymphocytes from patients with RA patients, suggesting a 
possible role of this miRNA in disease pathogenesis (257). This 
miRNA has been characterized as an inflammation‑related one 
but it has also been linked to oxidative stress regulation (258). 
A study focused on a neuronal model treated with H2O2, over‑
expression of miR223 reduced malondialdehyde and reactive 
oxygen species levels, a finding that could be explained by the 
effect of this miRNA that targets FOXO3a and leads to the 
inhibition of thioredoxin interacting protein (258).

miR378a‑3p is downregulated in the plasma of patients 
with endometriosis compared with controls  (227), and in 
B‑lymphocytes of patients with SS (213).

6. Conclusions and future perspectives

The present review is a first attempt at searching the litera‑
ture and analyzing the genetic and epigenetic factors that 
are involved in the co‑occurrence of endometriosis and SS, 
aiming to shed a light in some shared mechanisms involved in 
both conditions while also pointing to the delineation of the 
relevant biochemical and molecular pathways. In the present 

review, the clinical basis underlying the co‑occurrence of 
both diseases was not investigated. As presented already in 
the current review, the influence of autoimmunity, inflamma‑
tion, tissue remodeling and angiogenesis in the underlying 
biochemical, cellular and pathophysiological mechanisms 
leading to the reported association between endometriosis 
and SS has been documented. Although it was beyond the 
scope of the present review to discuss all these processes in 
detail, some aspects regarding their role in the development 
of SS and endometriosis were clearly shown in previous 
sections. The role of autoimmunity in endometriosis has 
been hypothesized and/or established considering that a 
series of anti‑nuclear, anti‑phospholipid and anti‑endometrial 
antibodies are present in this condition, in combination 
with elevated levels of inflammatory cytokines and various 
immune cell‑mediated abnormalities  (74,78). Aiming to 
unravel the aforementioned mechanisms, different explana‑
tions can be given, including the putative role of chronic 
inf lammation and immune dysregulation appearing in 
endometriosis when it co‑occurs with SS. The development 
of ectopic endometrial cells and lesions may provoke an 
increased immune response, which may be combined with 
pathological causes leading to SS. Furthermore, the hypoth‑
esis that endometriosis should be considered an autoimmune 
disease has been strengthened by the beneficial effects of 
danazol and GnRH agonists as part of endometriosis treat‑
ment, likely due to their immunomodulatory action (259) as 
well as the increased number of peritoneal macrophages, high 
T and B lymphocyte counts (260) and the increased levels 
of circulating anti‑endometrial antibodies (261). However, 
the putative mechanisms leading to endometriosis in female 
patients with SS remain largely uncertain, given that studies 
from different countries examining this relationship have not 
yet reached a consensus. Together, the possible role of SS in 
the etiology of endometriosis or the occurrence of SS as a 
secondary response to endometriosis needs further explora‑
tion from a genetic and biological aspect (36).

It is known that understanding the genetic basis of 
complex diseases may provide a unique window into human 
disease pathogenesis, which will facilitate the development 
of improved diagnostic and therapeutic strategies and enable 
personalized medicine. However, apart from the substantial 
contribution of various GWAS to the identification of a number 
of SNPs associated with an increased risk of endometriosis 
or SS development, only a small number of these associations 
have been analyzed in depth from a functional aspect, thus 
minimizing the potential of these SNPs to be considered as 
putative therapeutic targets. Therefore, despite the efforts to 
analyze the biochemical pathways leading to endometriosis, 
it remains an emerging public health problem of reproduc‑
tive‑age women and the pathogenesis remains elusive. It has 
been reported that the prevalence rate of endometriosis in 
women with chronic pelvic pain is >33%, and in patients with 
SS the prevalence rate is 6.3% (262). In the same study (262), 
it was reported that patients with endometriosis were more 
likely to also have SS compared with controls  (262). The 
risk of endometriosis has been strongly linked to ethnicity 
but the main differences between population groups have not 
been well defined (263). A nine‑fold increase in the risk of 
developing endometriosis among females from the East Asian 
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population was found compared with European or American 
female populations (263). It is noteworthy that various studies 
are currently trying to delineate how disease risk variation is 
linked to ethnicity, and to identify minor differences in SNP 
variation and differences in autoimmune disease risk vari‑
ants reported across different continental populations (263). 
The worldwide range of prevalence of SS is 0.05‑4.8% with 
an overall 9:1 female‑to‑male ratio, which appears highest 
in Asian females (36). However, a limitation of this type of 
studies is the lack of information on the patient's socioeco‑
nomic status, personal health behaviors or toxic habits, with 
all of them representing confounding factors of the association 
between endometriosis and SS (36).

Taking into account that endometriosis has been associ‑
ated with various autoimmune diseases, this condition may be 
considered a risk factor for SS, which requires specific coun‑
seling and medical management. Immune and inflammatory 
dysfunctions are considered challenging therapeutic targets 
for endometriosis and SS. The ultimate task of this type of 
study is the development of either novel therapeutic alterna‑
tive by using the in depth understanding of the role of the 
associated shared genetic factors or the use of some miRNAs, 
a class of agents considered possible immunomodulators, 
considering that miRNAs exhibiting a deregulation in both 
endometriosis and SS have been identified. Thus, translation 
of recent discoveries based on miRNAs may allow the devel‑
opment of novel therapeutics for endometriosis and SS in the 
near future, considering that it has been shown that this type of 
drugs provide specificity and reduced toxicity compared with 
other therapeutic agents (264,265). The human miRNAome 
has been recently analyzed to define a saliva‑based diagnostic 
miRNA signature for patients with endometriosis, based on 
their expression profile, and the results of this study may 
contribute to the early diagnosis of this condition (266).

The treatment of complex diseases has undergone 
substantial change over the last few years and novel, prom‑
ising therapies have been developed. As presented in the 
current review, two SNPs of the STAT4 gene, a member of the 
JAK/STAT pathway playing a pivotal role in IFN signaling 
related to immunological processes promoting chronic inflam‑
mation, are associated with both endometriosis and SS. As a 
consequence, a promising therapeutic option may be JAK 
inhibitors that interrupt the transduction of the aforementioned 
JAK/STAT pathway (267,268). Accumulated results suggest 
that the JAK inhibitor tofacitinib, a signal transducer associ‑
ated with inflammation, can be used as an anti‑inflammatory 
agent in patients with SS (269). The JAK/STAT pathway, espe‑
cially STAT3 phosphorylation, is upregulated in the utopic 
endometrium of female patients with endometriosis (270), and 
it has been reported that inhibition of JAK/STAT signaling 
using tofacitinib may be a viable method for the treatment 
of endometriosis as well  (271). One of the genes that are 
activated by STAT3 is HIF1α, which is associated with both 
diseases (64,127).

The SNP rs1800629 of the TNF‑α gene is associated with 
both endometriosis and SS (Table  I). The targeting of the 
inflammatory cytokine TNF‑α expressed at high levels in 
the peripheral blood or tissue of patients with SS (126,181) 
may represent another beneficial therapeutic option for a 
large percentage of affected patients. In this context, it has 

already been shown that TNF‑α also stimulates proliferation 
of endometriotic stromal cells, thus playing the role of an 
essential factor for the pathogenesis of endometriosis (272). 
This cytokine was found at high levels in female patients with 
endometriosis (273). Etanercept, a TNF‑α blocker that can 
neutralize the activity of TNF and is currently used to alle‑
viate the symptoms of autoimmune diseases clinically (274), 
has been shown to block the ability of the PF in endometriosis 
to enhance the proliferation of utopic or ectopic endometrial 
cells (275). However, the efficacy of etanercept in the treat‑
ment of SS has not been addressed. When it was used for a 
prolonged treatment of patients with SS, it did not appear to 
reduce the main symptoms of the patients, being beneficial in 
a small subgroup of patients with severe fatigue only (276), 
while Sankar et al (277) did not find any evidence suggesting 
that treatment with etanercept is clinically efficient in patients 
with SS (277). Consistently, Moutsopoulos et al  (278) also 
presented data indicating that etanercept is an ineffective ther‑
apeutic agent in SS, thus suggesting that TNF‑α may not be a 
pivotal cytokine in the pathogenesis of SS (278). In addition, 
infliximab, another anti‑TNF‑α agent, failed to demonstrate 
any beneficial effect in SS (279) and endometriosis (280).

Clinicians should always keep in mind that patients with 
endometriosis may also have additional autoimmune diseases, 
including SS, while the possible co‑occurrence of endome‑
triosis in patients with SS should not be underestimated. Thus, 
female patients with endometriosis, apart from their reference 
for follow‑up with the gynecologist have to be alerted if they 
have any symptoms characterizing SS, such as xerophthalmia, 
xerostomia, fatigue, vaginal dryness, myalgia or arthralgia, 
and report it immediately to the rheumatologist. It has been 
reported that female patients with endometriosis have a higher 
risk of developing SS within the first 5 years (36). Thus, a suit‑
able medication must be provided to these female patients by 
clinicians. In this framework, Bardi et al (281) presented the 
new concept of ‘holism’ for endometriosis, which leads physi‑
cians to evaluate this disorder in a complex and global way, 
considering its increased risk to co‑occur with various autoim‑
mune diseases. This combined, global approach is expected to 
result in beneficial patient management, taking into account 
the heterogeneous character of these diseases. In conclusion, 
information that can be derived by analyzing the intersection 
between autoimmunity, inflammation and angiogenesis, and 
the identified shared genetic factors may be of high value 
in understanding the underlying biochemical and cellular 
mechanisms of the association between endometriosis and 
SS, thus contributing to the development of novel therapeutic 
alternatives for both disorders.
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