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Abstract. Chronic neuroinflammation serves a key role in 
the onset and progression of neurodegenerative disorders. 
Mitochondria serve as central regulators of neuroinflamma‑
tion. In addition to providing energy to cells, mitochondria 
also participate in the immunoinflammatory response of 
neurodegenerative disorders including Alzheimer's disease, 
Parkinson's disease, multiple sclerosis and epilepsy, by 
regulating processes such as cell death and inflammasome 
activation. Under inflammatory conditions, mitochondrial 
oxidative stress, epigenetics, mitochondrial dynamics and 
calcium homeostasis imbalance may serve as underlying regu‑
latory mechanisms for these diseases. Therefore, investigating 
mechanisms related to mitochondrial dysfunction may result 
in therapeutic strategies against chronic neuroinflammation 
and neurodegeneration. The present review summarizes the 
mechanisms of mitochondria in chronic neuroinflammatory 
diseases and the current treatment approaches that target mito‑
chondrial dysfunction in these diseases.
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1. Introduction

Neuroinflammation is a response orchestrated by the central 
nervous system (CNS) in response to infection and injury. 
The acute neuroinflammatory response reduces damage by 
promoting the repair of injured tissue. However, persistent 
stimulation leads to the transformation of the inflammatory 
response from acute to chronic, resulting in neuronal func‑
tional impairment and thus facilitates the progression of CNS 
diseases (1). Chronic neuroinflammation has been reported 
as a pathological feature present in several neurodegenerative 
diseases such as Alzheimer's disease (AD), Parkinson's disease 
(PD), multiple sclerosis (MS) and epilepsy, amongst other 
neurological disorders (2,3). The close association between 
neuroinflammation and neurodegeneration suggests that neuro‑
inflammatory mechanisms may trigger neuronal degeneration, 
leading to neurotoxicity and a loss of neuronal cells.

Microglia, which are activated by pathological stimuli 
such as infections, foreign pathogens and neurodegeneration, 
produce chemotactic factors and proinflammatory cytokines, 
including nitric oxide, reactive oxygen species (ROS), inter‑
leukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α (TNF‑α), to 
eliminate detrimental elements. Nonetheless, persistent stimu‑
lation can lead to an overabundance of inflammatory factors, 
which in turn inflict damage upon neurons (4). Likewise, astro‑
cytes exhibit dual roles in neuroinflammation. In response to 
cerebral trauma, astrocytes undergo proliferation and transition 
into a neuroprotective state, fostering reparative and regen‑
erative mechanisms such as remyelination (5). Conversely, 
in neuroinflammatory diseases, astrocytes are excessively 
activated into a neurotoxic state by cytokines secreted by 
microglia, releasing uncontrolled pro‑inflammatory cytokines 
and complement proteins, which exacerbate damage to neigh‑
boring cells (6,7). Moreover, astrocytes facilitate lymphocyte 
movement across the blood‑brain barrier, engage in antigen 
presentation between lymphocytes and microglia, and activate 
peripheral B cells and T cells via the lymphatic system, thereby 
amplifying the cerebral inflammatory cascade (1,8,9). 

In the CNS, mitochondria serve as the primary energy 
source for cellular metabolic processes and are pivotal in regu‑
lating cellular metabolism, calcium signaling and programmed 
cell death  (10). Neurons rely on mitochondrial oxidative 
phosphorylation (OXPHOS) to meet their energy demands, 
maintain ion gradients and facilitate neurotransmitter uptake 
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and recycling (11). Astrocytes contribute to the mitigation of 
neuronal and oligodendrocyte free fatty acid peroxidation and 
ROS generation through mitochondrial fatty acid β‑oxidation 
(FAO), which accounts for ~20% of the brain's energy supply (12). 
Additionally, mitochondrial calcium ions modulate key enzymes 
of the tricarboxylic acid cycle, such as pyruvate dehydrogenase, 
thereby regulating OXPHOS (13). Mitochondrial calcium ions 
also regulate synaptic communication and excitability by modu‑
lating astrocytic proliferation and the release of excitotoxic 
glutamate (14). In addition, microglial mitochondria enhance 
migration and phagocytosis through calcium ion influx (15). 
Once mitochondrial dysfunction occurs, the mitochondria 
become insufficient to meet the heightened energy demands of 
overstimulated neurons and hyperactive glial cells, leading to 
abnormal cell metabolism and widespread cell death (10).

Mitochondrial dysfunction serves as both a cause and a 
consequence of chronic neuroinflammatory diseases. Neuronal 
mitochondrial dysfunction has been observed in AD, PD and 
amyotrophic lateral sclerosis (16‑18). Chronic inflammation leads 
to the secretion of cytokines that sustain inflammation and redox 
stress, inducing mitochondrial DNA (mtDNA) damage (19). 
Correspondingly, damaged mitochondria can further induce 
persistent inflammatory responses and downstream pathological 
inflammation (20,21). A study has shown that inhibiting mito‑
chondrial complex I activates microglia, whereas inhibiting 
mitochondrial fission reduces pro‑inflammatory cytokine gener‑
ation (12). Due to mitochondrial damage, overactivated microglia 
undergo a metabolic shift from OXPHOS to glycolysis, resulting 
in increased generation of ROS and reactive nitrogen species 
(RNS), thereby exacerbating the inflammatory response (22). 
Concurrently, microglia can induce the generation of pro‑inflam‑
matory astrocytes by releasing fragmented mitochondria (23). 
Furthermore, impairment of mitochondrial FAO in astrocytes 
contributes to the development of neuroinflammation and 
subsequent neurodegenerative processes (24). Additionally, the 
accumulation of damaged mitochondria in neurons can accel‑
erate the progression of diseases by initiating programmed cell 
death (23). Mitochondria may therefore be a key link between 
chronic neuroinflammation and the pathogenesis of neurodegen‑
erative diseases. Thus, repairing mitochondrial dysfunction may 
improve the outcomes of neurodegenerative diseases, such as 
AD and PD (25,26).

The aim of the present review was to summarize the 
molecular characteristics of mitochondrial dysfunction and 
provide potential directions for targeting mitochondria in the 
treatment of chronic neuroinflammatory diseases.

2. Pathogenesis of mitochondrial dysfunction

Mitochondrial dysfunction. Mechanisms of mitochondrial 
dysfunction involved in the progression and prognosis of 
chronic neuroinflammatory diseases include oxidative 
stress, epigenetics, mitochondrial dynamics and calcium 
homeostasis (27‑32) (Fig. 1).

Oxidative stress. In normal, healthy cells, 90% of ROS 
are generated as a result of cellular respiration. During this 
process, electrons detach from the electron transport chain 
and attach to oxygen, producing superoxide anions (O2

‑) (33). 
Additionally, metal enzymes present within organisms utilize 

the interaction between oxygen and metal ions to generate 
ROS, which is a result of cellular metabolism (34). Conversely, 
normal cells also possess a protective system against free 
radicals, primarily composed of antioxidant enzymes such 
as glutathione peroxidase (GPX), non‑enzymatic antioxidant 
factors, superoxide dismutase (SOD) and catalase (33). The 
excessive reduction of free radicals is catalyzed by antioxidant 
enzymes. SOD acts on O2

‑ to produce hydrogen peroxide 
(H2O2), which has a lower oxidative capacity than O2

‑, while 
catalase and GPX enzymes, with the assistance of certain 
cofactors, convert H2O2 into H2O. When this regulatory 
process is disrupted, ROS can inflict destructive damage on 
cells (33). Excessive ROS further induces peroxidation modi‑
fications of cellular macromolecules such as lipids, proteins, 
RNA and DNA (35). For instance, protein peroxidation may 
acquire toxic functions by forming cytotoxic aggregates. 
Therefore, the accumulation of ROS caused by various factors 
(such as increased oxygen consumption in the brain due to 
high energy demand, elevated levels of unsaturated fatty acids 
in neuronal membranes, high levels of redox transition metal 
ions, low antioxidant levels and neurotransmitter oxidation) 
makes the brain highly susceptible to the damaging effects 
of oxidative stress  (36). The excessive generation of ROS, 
leading to oxidative stress, has emerged as a shared underlying 
mechanism implicated in multiple chronic neuroinflammatory 
disorders, such as AD and PD (37,38).

Due to being the primary source of ROS, mitochondrial 
dysfunction appears to be a potential focal point for the 
underlying pathology of neuroinflammation (39). Excessive 
free radicals damage the inner mitochondrial membrane, 
leading to compromised mitochondrial energy production and 
metabolism in the brain. This results in neuronal dysfunction 
and further exacerbates oxidative stress, promoting neuronal 
dysfunction and apoptosis. Furthermore, free radicals can 
directly or indirectly induce abnormal mitochondrial perme‑
ability transition pore (mPTP) function, indirectly altering 
the fluidity, permeability and osmotic properties of the mito‑
chondrial membrane, thereby facilitating mPTP‑related ROS 
release (40). Moreover, free radicals also interfere with elec‑
tron transport chain (ETC) complexes, further promoting ROS 
generation (41). A study has also reported that mitochondrial 
ROS (mtROS) can lead to impairment of complex I within 
the mitochondrial ETC. This in turn results in a reduction of 
mitochondrial OXPHOS efficiency (42). This cycle formed 
by mitochondrial dysfunction and inflammation‑related 
oxidative stress exacerbates the pathological damage in 
neuroinflammatory disorders.

Mitochondrial epigenetics. Epigenetic modifications within 
the mitochondria can influence mitochondrial gene expression 
and function. In neuroinflammatory conditions, heightened 
ROS production induces deleterious effects on mitochondrial 
respiration and OXPHOS, leading to DNA oxidation, rearrange‑
ments and mutations (43). mtDNA, with its elevated mutation 
rate and proximity to OXPHOS sites, is more susceptible to 
oxidative stress compared with nuclear DNA (43). Methylation 
is a primary epigenetic mechanism within mitochondria 
due to the absence of histones in mtDNA (44). Decreased 
mtDNA methylation levels have been observed in blood 
samples and postmortem brain tissues from individuals with 
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neuroinflammatory diseases (44). Additionally, chronic stress 
activates the hypothalamic‑pituitary‑adrenal axis, resulting in 
excessive glucocorticoid release and the regulation of mtDNA 
transcription and mtRNA expression (45). Conversely, mtDNA 
mutations exacerbate ROS production and trigger apoptosis 
through disruptions in the electron transport chain, impaired 
protein synthesis, and increased replication errors, influ‑
encing disease onset and progression (46). MtDNA damage 
results in impaired ETC function, reduced ATP generation, 
increased levels of ROS and disrupted calcium homeostasis, 
leading to exacerbated amyloid‑β (Aβ) processing and 
aggregation in AD mice (47). Another study reported that 
Aβ induced mtDNA methylation, which persisted after the 
removal of Aβ and induced cognitive impairment in AD (48). 
Furthermore, non‑coding RNAs are implicated in chronic 
low‑grade systemic inflammation, known as inflammageing, 
impacting the energetic, oxidative and inflammatory status 
of senescent cells by modulating NF‑κB/NLR family pyrin 
domain containing 3 (NLRP3) pathways and triggering senes‑
cence‑associated secretory phenotype (43). Downregulation 
of microRNAs could also promote neuroinflammation by 
affecting the expression of genes critical for neuronal function 
and immune response in PD (49). It is evident that mitochon‑
drial epigenetics is closely associated with the development 
of neuroinflammation. Understanding the regulatory role of 
mitochondrial epigenetics is therefore crucial for unraveling 
the underlying mechanisms of various neurological disorders.

Mitochondrial dynamics. The complex processes of mitochon‑
drial fusion and fission collectively maintain mitochondrial 
functionality in the face of cellular metabolic or environmental 
stress (50). Mitochondrial fusion involves the merging of indi‑
vidual mitochondria, resulting in larger and interconnected 
networks. This process allows for the exchange of contents, 
including proteins, lipids and mtDNA, thereby promoting 
functional complementation and maintaining mitochondrial 
integrity. Mitochondrial fission is the opposite of fusion and 
involves the division of mitochondria into smaller fragments. 
Fission has a crucial role in quality control mechanisms, as it 
allows for the removal of damaged or dysfunctional portions 
of mitochondria through a process termed ‘mitophagy’ (51). 
Moreover, mitochondrial fission also facilitates the distribu‑
tion of mitochondria throughout the cell (52).

Chronic neuroinflammation disrupts mitochondrial 
dynamics. Under neuroinflammatory conditions, dysfunc‑
tional mitochondria release ROS and damage‑associated 
molecular patterns (DAMPs) (53), activating microglia and 
astrocytes, and triggering the release of pro‑inflammatory 
cytokines and chemokines  (54), thereby exacerbating the 
damage. In addition, disruption of mitochondrial dynamics 
can result in the accumulation of dysfunctional mitochondria, 
leading to increased susceptibility to inflammation‑induced 
neuronal death. For instance, microglia can activate astrocytes 
into a neurotoxic state by releasing mitochondrial fragments 
and damaged mitochondria, further mediating extracellular 

Figure 1. Crosstalk between mitochondrial dysfunction and neuroinflammation. ROS, reactive oxygen species; GPX, glutathione peroxidase; SOD, superoxide 
dismutase; mPTP, mitochondrial permeability transition pore; ETC, electron transport chain; DAMPs, damage‑associated molecular patterns; mtDNA, 
mitochondrial DNA; MAMs, mitochondria‑associated membranes; NLRP3, NLR family pyrin domain containing 3.
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neuronal death in neuroinflammation  (23). Furthermore, 
mitophagy also proves advantageous in eliminating impaired 
mitochondria and decreasing the infiltration of inflamma‑
tory molecules at the location where damaged mitochondria 
accumulate (55).

Mitochondrial dynamics may also have a significant 
involvement in inflammasome activation in chronic inflam‑
mation. Inhibition of dynamin‑related protein 1 (Drp1) and 
overexpression of fusion proteins can attenuate inflamma‑
tion‑associated inflammasome responses (56). During RNA 
virus infection, mitofusin‑2 interacts with NLRP3 to activate 
inflammasomes (57). Thus, molecules involved in mitochon‑
drial dynamics may be crucial regulators of inflammasome 
activation. In summary, mitochondrial dynamics are essential 
for maintaining neuronal health and survival and a balanced 
fusion and fission process is beneficial for maintaining healthy 
mitochondrial function.

Mitochondrial calcium homeostasis. Mitochondrial calcium 
homeostasis holds significant importance in maintaining the 
functionality of neurons and glial cells (58). Mitochondrial 
function not only sustains the energy prerequisites of both spon‑
taneous and induced neuronal activities in the brain through 
energy metabolism, but also governs neuronal signaling 
via uptake and cycling of mitochondrial calcium ions (59). 
Furthermore, the dynamic regulation of mitochondrial calcium 
homeostasis is also important for cell survival (13).

In the progression of neuroinflammatory diseases, calcium 
homeostasis remains a crucial molecular mechanism (60). The 
dysregulation of neuronal calcium homeostasis leads to oxida‑
tive stress, mitochondrial dysfunction, protein conversion 
disorders and neuroinflammation (61). Activated glial cells 
serve a crucial role in neuroinflammation and release soluble 
signaling molecules, including chemokines, pro‑inflammatory 
cytokines, glutamate, prostaglandins, ROS, RNS and damaged 
mitochondria (62‑64). Astroglial calcium signaling appears 
to be dysregulated in AD, which is potentially linked to the 
accumulation of Aβ in the brain  (65). Depletion of mito‑
chondrial calcium transporters has been shown to mitigate 
the inflammatory damage caused by glial cells activated by 
lipopolysaccharides (66). 

Mitochondrial Ca2+ accumulation stimulates oxidative 
metabolism by modulating Ca2+‑sensitive dehydrogenases and 
metabolite carriers (67). Calcium homeostasis disruption can 
lead to an excessive buildup of matrix Ca2+ and subsequent 
initiation of the mPTP, thereby affecting mitochondrial func‑
tion (68). This results in a decrease in ATP synthesis and an 
increase in ROS generation (69,70). Similar to Ca2+, ROS also 
serve a crucial role in initiating the opening of the mPTP. 
This event results in mitochondrial swelling and impair‑
ment of the respiratory chain, thereby exacerbating oxidative 
stress‑induced damage (71). Notably, mitochondria‑associated 
membranes (MAMs) are specialized regions that regulate 
endoplasmic reticulum (ER) contact and transmit Ca2+ into 
mitochondria. These contact sites facilitate the exchange of 
various molecules, including lipids and signaling molecules, 
between the ER and mitochondria (72). Dysregulation of MAMs 
can therefore affect calcium signaling and disrupt communi‑
cation between the ER and mitochondria, contributing to the 
activation of glial cells and the release of pro‑inflammatory 

molecules (73,74). MAMs have also been found to regulate 
autophagy and mitochondrial dynamics (75). Dysregulation 
of MAMs has been observed in numerous neuroinflammatory 
disorders, such as AD and PD (76). These finding imply that 
targeting MAMs may hold promise as a therapeutic approach 
for the treatment of neuroinflammatory diseases.

3. Crosstalk of mitochondria in chronic neuroinflammation

AD. AD is a gradually advancing neurodegenerative condition 
characterized by the presence of Aβ and τ protein tangles, 
which are considered distinctive pathological markers. Aβ 
accumulation has also been observed within the mitochondria 
in the brains of patients with AD and transgenic AD mouse 
models (77,78). Aβ can directly disrupt the ETC and interfere 
with various mitochondrial matrix proteins and putative 
components of the mPTP, ultimately resulting in mitochondrial 
dysfunction (77‑80).

In the early stages of AD, another often observed mito‑
chondrial abnormality is the excessive generation of ROS, 
culminating in an upsurge of oxidative stress (81). Oxidative 
stress causes neuronal cell death, which contributes to the 
progressive cognitive decline seen in AD  (82). Normally, 
mitochondria serve as pivotal guardians of the cellular redox 
equilibrium, orchestrating this balance via their antioxidant 
defense systems. However, malfunctioning mitochondria 
compromise these protective mechanisms, resulting in dimin‑
ished scavenging of ROS and an escalation in oxidative 
harm (83). Furthermore, surplus ROS within mitochondria 
harms lipids and proteins. For instance, lipid peroxidation 
engenders the production of harmful byproducts such as malo‑
ndialdehyde and 4‑hydroxynonenal, intensifying the oxidative 
stress milieu  (84). Concomitantly, protein oxidation can 
induce structural and functional impairments in mitochon‑
drial proteins, thereby impacting energy synthesis and overall 
integrity. It is also worth noting that the heightened oxidative 
stress observed in AD can precipitate mutations, deletions and 
impairments in mtDNA repair mechanisms (85). These events 
further compound mitochondrial dysfunction, instigating a 
cycle of oxidative stress and neuronal damage.

Furthermore, DAMPs released from compromised mito‑
chondria, coupled with elevated ROS levels, serve to intensify 
immune responses, with microglia playing a pivotal regulatory 
role in this process (86). On the one hand, activated microglia 
contribute to reducing neuroinflammation by phagocytosing 
and eliminating Aβ, while on the other hand, these microglia 
release pro‑inflammatory cytokines and other inflammatory 
molecules, thus promoting inflammation (86,87). Notably, 
emerging research suggests that there is a bidirectional 
communication between mitochondria and microglia (88,89). 
Damaged mitochondria release mtDNA fragments into the 
cytoplasm, which can activate immune responses through 
Toll‑like receptor 9, NLRP3 and stimulator of interferon 
genes (STING) signaling pathways. Microglia recognize these 
mtDNA fragments as danger signals and respond by releasing 
inflammatory mediators that further amplify the inflammatory 
microenvironment, inducing mitochondrial damage and subse‑
quent cell death (89). This communication may also perpetuate 
neuroinflammation and contribute to the progression of AD. In 
addition, activation of the NLRP3 inflammasome is also an 
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important factor in the pathogenesis of AD (90,91), leading to 
the release of potent pro‑inflammatory cytokines such as its 
effector molecule, IL‑1β (92). Elevated IL‑1β levels have been 
detected in the serum, cerebrospinal fluid and brain tissues of 
patients with AD (93). IL‑1β can enhance the neuronal produc‑
tion of Aβ and induce τ protein phosphorylation, the blocking 
of which can alleviate neuroinflammation by reducing Aβ 
levels and τ activation (94,95). IL‑18, another proinflamma‑
tory cytokine released when the NLRP3 inflammasome is 
activated, has been demonstrated to be correlated with suscep‑
tibility to sporadic late‑onset AD (92,96). In conclusion, the 
neuroinflammatory process plays a crucial role in AD devel‑
opment, and understanding the intricate relationship between 
mitochondria and neuroinflammation in AD offers potential 
therapeutic avenues (Fig. 2). 

PD. PD is the second most prevalent neurodegenerative 
disorder, succeeding AD, with a primary impact on the elderly 
population (97). PD is characterized by the subclinical pres‑
ence of cytoplasmic proteinaceous aggregates, specifically 
α‑synuclein, which congregate to form Lewy bodies (LBs) 
within the substantia nigra. This process is coupled with a 
decline in dopaminergic (DA) neurons. The extensive degen‑
eration of these DA neurons results in diminished dopamine 
levels within the brain, which gives rise to a spectrum of clin‑
ical manifestations, encompassing challenges in maintaining 
posture, the emergence of stationary tremors, a decrease in 

movement speed (bradykinesia) and the onset of joint stiff‑
ness reminiscent of ankylosing arthritis (49). Following the 
loss of dopamine‑producing neurons, there is a subsequent 
degeneration of other neuronal subtypes, giving rise to symp‑
toms unresponsive to dopamine modulation. These symptoms 
encompass a spectrum of manifestations, including insomnia, 
compromised olfactory perception, dysregulation of the 
autonomic system, pain perception alterations and sensory 
dysfunction  (98). However, the precise pathophysiological 
mechanisms driving PD have remained elusive. In addition 
to α‑synuclein, there is mounting evidence implicating other 
genetic mutations such as in Parkin, leucine‑rich repeat 
kinase 2 (LRRK2) and DJ‑1, alongside environmental factors 
(including exogenous neurotoxins, age and diet) as potential 
contributors to the etiology of PD  (99,100). These factors 
intricately contribute to the processes of neurodegeneration 
and neuroinflammation stemming from oxidative stress, 
α‑synuclein oligomerization and mitochondrial dysfunction. 
Notably, it has been observed that α‑synuclein is also present 
on the mitochondrial surface, exerting an impact on mito‑
chondrial structural integrity and functional dynamics (101). 
Impaired complex I has been found in samples from patients 
with PD and the introduction of toxins inhibiting complex I 
has been shown to lead to the loss of dopaminergic cells and 
the manifestation of Parkinson's disease symptoms  (102). 
Furthermore, the presence of mutations in mtDNA has been 
identified within neurons of individuals with PD (103). As 

Figure 2. Mitochondrial dysfunction in Alzheimer's disease. ROS, reactive oxygen species; mPTP, mitochondrial permeability transition pore; ETC, 
electron transport chain; DAMPs, damage‑associated molecular patterns; mtDNA, mitochondrial DNA; NLRP3, NLR family pyrin domain containing 3; 
Aβ, amyloid‑β; IL, interleukin; TCA, tricarboxylic acid (cycle).
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a result, mitochondrial dysfunction emerges as a recurring 
determinant in the context of PD.

The PTEN‑induced kinase 1 (PINK1)/Parkin pathway 
serves a pivotal role in the context of mitochondrial dysfunc‑
tion and its association with PD. In the current understanding 
of PD, mutations within the PINK1 (PARK6) and Parkin 
(PARK2) genes are thought to be associated with the manifes‑
tation of autosomal recessive early‑onset PD (104). Research 
has demonstrated that the PINK1/Parkin pathway partici‑
pates in the progression of PD by influencing mitochondrial 
autophagy  (102,103,105). While mice lacking PINK1 or 
Parkin do not exhibit significant PD‑related phenotypes, a 
study has demonstrated that these mice accumulate mtDNA 
mutations, which consequently promotes inflammation in 
aged Parkin−/− (also termed ‘Mutator’) mice. This pathological 
progression appears to be modulated by STING signaling (106). 
Furthermore, elevated levels of phosphorylated serine 65 of 
ubiquitin and PRKN have been observed, which are associ‑
ated with the phosphorylation of ubiquitin by PINK1 at the 
outer mitochondrial membrane (OMM), have been identified 
in postmortem PD brains (107). These investigations substan‑
tiate a notable association between neuroinflammation and 
the activation of the PINK1/Parkin pathway in PD, indicating 
that mitochondrial autophagy has a pivotal role in averting 
neuroinflammation within this pathological framework.

The involvement of α‑synuclein in perturbing mitochon‑
drial function has been previously substantiated (108). It has 
been documented that α‑synuclein possesses a mitochondrial 
targeting sequence at its N‑terminal region, allowing its localiza‑
tion to the OMM. This localization facilitates interactions with 
components of the outer membrane receptors, thereby leading 
to compromised cellular respiration (109). This phenomenon 
has been observed in models of PD and in post‑mortem brain 
tissue from individuals with PD (108,110). Certain α‑synuclein 
species have the capability to intricately bind with the translo‑
case of outer mitochondrial membrane 20 receptor, contributing 
to mitochondrial dysfunction and an elevated generation of 
ROS (108). Notably, a study employed a seeding‑based model 
of α‑synuclein fibrillization to validate that the progression of 
LB formation, beyond mere fibril assembly, is a key catalyst 
in neurodegeneration, additionally exacerbating mitochondrial 
impairment and synaptic dysfunction (111). This suggests an 
intrinsic link between mitochondrial dysfunction, α‑synuclein 
aggregation and the formation of LBs.

LRRK2 is another pivotal gene implicated in mitochon‑
drial dysfunction within the context of PD. This gene exerts its 
influence by modulating the OMM adaptor protein responsible 
for orchestrating mitophagy, a critical process in maintaining 
mitochondrial quality. Consequently, this regulatory role of 
LRRK2 leads to diminished mitochondrial transport along 
the intricate cytoskeletal network (112). Consistent findings 
were observed in neurons from LRRK2 mutant rats  (113). 
Mutant LRRK2 inhibits the recruitment of Parkin to the 
OMM and its interaction with Drp1, thereby suppressing 
PINK1/Parkin‑mediated autophagy, which leads to impaired 
segregation and degradation of damaged mitochondria (114).

The NLRP3 inflammasome assumes a pivotal role in 
instigating the neuroinflammatory cascade observed in 
PD. Heightened levels of inflammasome constituents and 
inflammation‑associated factors have been discerned within 

blood samples sourced from individuals with PD (105,115). 
Mitochondrial impairment within microglia, coupled with the 
activation of the NLRP3 inflammasome, has been reported 
in both in vitro and in vivo models of PD (116). In addition, 
activation of NLRP3 has been observed in PINK1−/− or 
Parkin−/− microglia, while inhibitors of the inflammasome can 
effectively suppress this activation process (117). Furthermore, 
the attenuation of NLRP3 inflammasome activation not only 
mitigates neuroinflammation and ameliorates motor impair‑
ments but also safeguards against the depletion of DA neurons 
in both a mPTP‑induced PD model and a human α‑synuclein 
overexpression PD model (118).

Collectively, the convergence of α‑synuclein oligomeriza‑
tion, genetic mutations, impaired mitochondrial autophagy 
and NLRP3 activation constitutes a synergistic interplay 
contributing to mitochondria‑associated neuroinflammation 
during the progression of PD (Fig. 3).

MS. MS is a chronic inflammatory disease of the CNS 
characterized by demyelination and axonal degeneration (119). 
The inflammation observed in MS arises from elements of 
both the innate and adaptive immune systems, encompassing 
the proliferation and dysregulation of pro‑inflammatory 
T lymphocytes, activation of B cells and secretion of inflam‑
matory cytokines  (120). At the onset of MS, pathogenic 
inflammatory T lymphocytes infiltrate the CNS, triggering 
an immune response that activates microglia and astrocytes, 
leading to acute inflammation. Subsequently, B cells are further 
activated, initiating a cascade that sustains chronic inflamma‑
tion (121). While anti‑inflammatory and immunomodulatory 
therapies have become mainstream in the treatment of acute 
demyelinating episodes, options remain limited for addressing 
the progressive stages of MS (122). Further exploration of the 
pathogenesis of MS is therefore still required.

A recent study has substantiated that mitochondrial 
dysfunction contributes to CNS damage in MS  (123). 
Mitochondria function as the principal energy supply units 
within neurons. Neurons facilitate signal transmission through 
membrane depolarization, which is facilitated by the electro‑
chemical gradient of Na+/K+‑ATPase. In the context of MS, the 
interplay of chronic inflammation and myelin disruption leads 
to a redistribution of ion channels. The heightened presence 
of Na+/K+‑ATPase intensifies ATP consumption (123). At this 
critical juncture, mitochondria can compensate by augmenting 
both their quantity and volume, thereby inducing alterations in 
neuron positioning and morphology (123). Persistent inflam‑
mation triggers the activation of macrophages and microglial 
cells, thereby instigating the release of ROS and inducing 
oxidative stress (124). This exacerbates the release of glutamate, 
ultimately culminating in neuronal damage (120). Oxidative 
stress imposes secondary damage on both mitochondria and 
macromolecules (such as mtDNA, ETC proteins and lipids), 
thereby significantly impairing energy generation (120). While 
nuclear factor erythroid 2‑related factor 2 and antioxidant 
enzymes such as heme oxygenase‑1, are activated during 
periods of hypoxic stress to compensate for mitochondrial 
dysfunction, once a critical threshold of reduced ATP produc‑
tion is reached, ion homeostasis becomes compromised (125). 
This disruption results in chronic inflammation and triggers 
Ca2+‑dependent proteases, ultimately leading to apoptosis 
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within demyelinated axons (126). The presence of oxidized 
DNA and lipids has been observed in apoptotic oligodendro‑
cytes and dystrophic axons within active MS lesions (127). 
Furthermore, the inflammatory factor, TNF‑α, exacerbates the 
impairment of OXPHOS through Ca2+ modulation (128). The 
resultant reduction in ATP production hampers the ability of the 
Na+/K+‑ATPase to maintain gradients after action potentials, 
leading to an accumulation of sodium within the neuronal cyto‑
plasm. This phenomenon, in turn, compels Na+/Ca2+channels 
to facilitate intracellular calcium transfer, initiating a cascade 
of Ca2+‑dependent apoptosis that ultimately culminates in 
neuronal death. This intricate process significantly contributes 
to Wallerian degeneration and irreversible neurofunctional 
impairment  (120). In MS animal models, double‑strand 
breaks in mtDNA lead to chronic demyelination and axonal 
degeneration, which are exacerbated over time (129). It is note‑
worthy that mitochondrial dysfunction and oligodendrocyte 
myelin formation are inherently interconnected. The level 
of the mitochondrial metabolite, N‑acetylaspartate (NAA), 
is reduced in the normal‑appearing white matter of patients 
with MS (130,131). In vitro experiments have confirmed that 
extracellular NAA improves Oli‑neuM cell differentiation and 
axonal connectivity (132). Furthermore, the NLRP3 inflam‑
masome and cyclic GMP‑AMP synthase‑STING pathway, 
which are associated with increased mitochondrial damage 
and respiratory stress, are activated in MS (133,134). These 

findings highlight the pivotal role of mitochondrial function in 
the progression of MS (Fig. 4).

Epilepsy. Epilepsy is a persistent neurological condition 
distinguished by the recurrence of seizures intertwined with 
an underlying neurodegenerative process (135). The intricate 
diversity of epilepsy presents a significant challenge for its 
treatment (136). Moreover, the success rate of antiepileptic drug 
therapy remains limited, ranging from 30 to 50% (137). Lately, 
there has been growing interest in the role of oxidative stress 
and redox dysregulation in epilepsy. Elevated levels of diverse 
biomarkers associated with oxidative stress and neuroinflam‑
mation have been reported in the brains and peripheral tissues 
of both human patients and animal epilepsy models (138,139). 
Therefore, anti‑inflammatory and antioxidant therapies hold 
promising therapeutic potential. Administering these treat‑
ments shortly before or after the symptomatic onset of epilepsy 
could effectively hinder the advancement of spontaneous 
seizures and potentially delay their onset  (140). Moreover, 
it has been demonstrated that IL‑4 exerts a neuroprotective 
effect during epileptogenesis by lowering TNF‑α levels and 
mitigating mitochondrial swelling in a mouse model induced 
by kaliotoxin (141). 

Mitochondrial dysfunction has a pivotal role in the 
connection between epilepsy and oxidative stress (136). In 
total, ~40% of individuals with epilepsy exhibit concomitant 

Figure 3. Mitochondrial dysfunction in Parkinson's disease. ROS, reactive oxygen species; mtDNA, mitochondrial DNA; NLRP3, NLR family pyrin domain 
containing 3; LRRK2, leucine‑rich repeat kinase 2; PINK1, PTEN‑induced kinase 1; ETC, electron transport chain; TOM20, translocase of outer mitochon‑
drial membrane 20; LBs, Lewy bodies.
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mitochondrial disorders  (142). Mitochondrial dysfunction 
disrupts the balance of RNS and ROS, resulting in height‑
ened ROS generation, oxidative harm and diminished ATP 
production. This cascade ultimately culminates in mtDNA 
mutations and compromised mitochondrial respiration, estab‑
lishing a detrimental cycle (1,136). Furthermore, there was a 
notable rise in the occurrence of spontaneous motor seizures 
within mitochondrial SOD2−/− mice (143). Conditional dele‑
tion of SOD2 specifically in the forebrain led to reduced 
mitochondrial oxygen consumption and the subsequent 
development of epilepsy in mice (42). An additional study 
demonstrated that the targeted removal of neuron‑specific 
mitochondrial SOD2 results in a severe and intricate epileptic 
phenotype  (144). Collectively, these findings indicate that 
mitochondrial oxidative stress is not solely a result of epilepsy 
but also contributes to its onset.

Additionally, ROS can directly regulate pro‑inflammatory 
molecules, including IL‑1β, high mobility group box‑1 
(HMGB1) and matrix metalloproteinase 9 (136). Pathways 
related to HMGB1, toll‑like receptor 4 (TLR4) and IL‑1β/inter‑
leukin‑1 receptor 1 have therefore emerged as potential targets 
for epilepsy therapy (145). HMGB1 interacts with TLR4 and 
functions as a proinflammatory cytokine in the extracellular 

environment. Research has demonstrated that the translocation 
of nuclear HMGB1 and active caspase‑3 to the mitochondria 
enhances programmed necrotic cell death in parvalbumin 
cells and CA1 neurons during status epilepticus (146‑148). 
Furthermore, another study discovered that the levels of gluta‑
thione, an essential antioxidant for maintaining mitochondrial 
integrity, significantly increased following the administration 
of antioxidant drugs [N‑acetylcysteine (NAC) and sulfora‑
phane]. Concurrently, this intervention led to a reduction in 
HMGB1 production within an acquired epilepsy rat model 
induced by status epilepticus (149,150). The NLRP3 inflam‑
masome is a molecule associated with epilepsy, which can be 
triggered by ROS (151,152). Furthermore, it has been empiri‑
cally shown that mtROS function as a secondary messenger, 
triggering the activation of NLRP3 and its translocation to 
the mitochondria, thereby facilitating the activation of IL‑1β. 
Consequently, this process elicits a proinflammatory signal in 
reaction to mitochondrial dysfunction (153,154). The available 
evidence suggests that activation of the NLRP3 inflammasome 
can be inhibited by anti‑inflammatory and antioxidant therapy, 
thereby potentially influencing epileptogenesis  (155). A 
previous study also observed upregulated levels of NLRP3 and 
IL‑1β in children diagnosed with febrile seizures (156). It has 

Figure 4. Mitochondrial dysfunction in multiple sclerosis. ROS, reactive oxygen species; ETC, electron transport chain; mtDNA, mitochondrial DNA; TCA, 
tricarboxylic acid (cycle); NLRP3, NLR family pyrin domain containing 3; cGAS, cyclic GMP‑AMP synthase; STING, stimulator of interferon genes; TNF‑α, 
tumor necrosis factor‑α.
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also been suggested that NLRP1 and NLRP4 may have roles 
in the development of epilepsy. Specifically, NLRP1 has been 
found to be upregulated in patients with temporal lobe epilepsy 
(TLE) (157). In a TLE rat model, reducing the expression of 
NLRP1 was shown to decrease the frequency and severity of 
seizures (158). The sensitivity of domain‑containing protein 4 
(NLRC4) to mtROS in astrocytes and its association with 
mitochondrial oxidative stress in neurodegenerative diseases 
provide insights into the potential mechanism of NLRC4 
in epilepsy (159). This highlights the intricate relationship 
between epilepsy and mitochondrial dysfunction, emphasizing 
the need to unravel the multifaceted impact of mitochondrial 
function on brain activity as a potential avenue for epilepsy 
treatment.

4. Therapies targeting mitochondria

Mitochondrial therapy for neuroinflammation is an emerging 
field with potential for the treatment of chronic neuroinflam‑
matory diseases (160). Currently, the overall treatment strategy 
includes restoring normal mitochondrial physiological func‑
tions (ATP production) and antioxidant therapy, clearing 
mitochondria with abnormal functions through mitochondrial 
autophagy or other mitochondrial stress responses, gene 
therapy, restoring mitochondrial dynamics and addressing 
mitochondrial calcium ion balance disorders (55,149,160‑162). 

Cytokines such as IL‑1‑β and TNF‑α, as well as their 
receptors, serve a significant role in the development and 
progression of AD (55). Inhibiting the interaction of these 
pro‑inflammatory factors may therefore be a more effective 
therapeutic option for AD. For instance, the anti‑inflammatory 
molecule, minocycline, reduces Aβ and τ pathological lesions 
in an AD rat model by inhibiting pro‑inflammatory cytokines 
in glial cells through the NF‑κB signaling pathway  (55). 
Inhibiting inducible NO synthase and cyclooxygenase‑2 is 
also considered to effectively improve neuroinflammation in 
patients with AD (163). Excessive activation of microglial cells 
and reduced phagocytic ability leads to increased accumula‑
tion of Aβ plaques and τ hyperphosphorylation, exacerbating 
neuroinflammation (164). Microglial polarization from an M1 
state to a neuroprotective M2 state is also a potential target 
for treatment. GV‑971, a sodium oligomannate, modulates gut 
microbiota amino acid metabolism to reduce the activation of 
T helper 1 cells, thereby inhibiting M1‑type microglia activa‑
tion, ultimately alleviating neuroinflammation and enhancing 
cognitive function in AD mice (165). The second‑generation 
tetracycline, minocycline, selectively inhibits the M1 state of 
microglial cells and exerts anti‑neuroinflammatory effects 
in patients with AD (166). Antioxidants are also extensively 
researched in drug development. For instance, vitamin E 
reduces the production of TNF‑α and NO, lowering the 
levels of ROS and IL‑6 induced by lipopolysaccharides in 
microglial cells, thereby providing neuroprotection  (167). 
Polyphenolic compounds such as flavonoids and vitamin C, 
may help prevent age‑related neurodegenerative diseases 
based on a clinical study (168). Flavonoids, which are found 
in daily dietary products, promote the survival of neurons in 
patients with AD by reducing protein oxidation, inhibiting the 
JNK and p38 pathways and preventing the production of free 
radicals (168).

Mitochondrial dysfunction is a well‑established feature 
of PD, with defects in mitochondrial complex I activity 
and increased oxidative stress  (169). In response to the 
characteristics of this disease, the application of the mito‑
chondria‑targeted antioxidant, mitoquinone (MitoQ), has been 
gradually gaining attention. Cell experiments have confirmed 
that MitoQ can reduce membrane leakage, oxidative stress 
and apoptosis induced by α‑synuclein (170). In fruit flies with 
PINK1 knockout, vitamin K2, structurally similar to coen‑
zyme Q10 and also serving as an electron carrier in the ETC, 
was found to alleviate oxidative stress in PD (162). However, 
in a double‑blind clinical study assessing untreated patients 
with PD using the Unified Parkinson Disease Rating Scale, 
it was discovered that PD did not improve after 12 months 
of MitoQ administration (171). Further research is therefore 
needed to determine the effectiveness of MitoQ. Niacinamide 
(Vitamin B3 and NAM) and its derivatives are currently under 
investigation, with the aim to normalize redox levels (172). 
NAC has also been reported to have demonstrated antioxidant 
properties in a clinical trial (173). Additionally, a promising 
candidate in recent clinical trials is ursodeoxycholic acid 
(UDCA), known for its broad safety profile and its ability to 
prevent mitochondrial membrane depolarization and stabilize 
cytochrome c in mitochondria  (174,175). The therapeutic 
potential of UDCA in treating mitochondrial damage has 
been demonstrated in LRRK2G2019S mutant PD patients and 
LRRK2G2019S transgenic flies (161). Mitochondrial autophagy 
is also a crucial target for PD treatment. In PD cell and mouse 
models, celastrol plays a neuroprotective role by activating 
mitochondrial autophagy and inhibiting DA neuron loss (176). 
Furthermore, mitochondrial dynamics may represent a poten‑
tial target for PD treatment. A study has confirmed that the 
mitochondrial fission GTPase Drp1 inhibitor, mdivi‑1, can be 
used to inhibit mitochondrial fragmentation in α‑synuclein rat 
PD models, reducing neurodegeneration and mitochondrial 
oxidative stress (177). Notably, it has been observed in both 
animal models and patients with PD that physical exercise can 
enhance mitochondrial biogenesis, providing new avenues for 
the treatment of PD (178,179).

The treatment of MS is inherently complex due to the 
varying subtypes of MS, each requiring distinct therapeutic 
approaches. While significant progress has been made in the 
treatment of MS, such as the effectiveness of the anti‑CD20 
antibody, ocrelizumab, and the sphingosine‑1‑phosphate 
receptor (S1PR) modulator, siponimod, in patients with 
primary progressive MS and relapsing‑remitting MS (180,181), 
the management of other progressive forms of MS remains 
challenging. For instance, in phase III clinical trials, the S1PR 
modulator, fingolimod, did not demonstrate a reduction in 
disability progression in patients with primary progressive 
MS (182). Immune‑modulating compounds, such as sipon‑
imod and ocrelizumab, targeting degenerative mechanisms 
may therefore not comprehensively address neurodegenerative 
processes. Furthermore, the development of new drugs is 
hindered by the incomplete understanding of the pathogenesis 
of progressive MS and the absence of suitable animal models. 
The onset of MS is often associated with the activation of 
microglia and the continued involvement of T cells and B 
cells, which release high levels of ROS and RNS, leading to 
mitochondrial and axonal damage, and ultimately resulting 
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in neurodegeneration. Therefore, targeting mitochondria has 
emerged as a focal point in the elucidation of methods to 
combat MS. Currently, mitochondrial protective strategies, 
such as minocycline, iron (Fe2+) chelating compounds and 
antioxidants that reduce oxidative stress, have shown a certain 
degree of efficacy in MS treatment  (119). Recent research 
has elucidated that mitochondrial dysfunction impairs 
Na+/K+‑ATPase, leading to Na+/Ca2+ exchanger reversal and 
calcium overload, thereby mediating axonal degeneration (183). 
Notably, mitochondrial transplantation into the medial fore‑
brain bundle has been shown to ameliorate motor deficits in 
6‑hydroxydopamine‑induced PD rats, enhancing mitochon‑
drial functionality (184). It has also been demonstrated that 
neural stem cells effectively deliver functional mitochondria 
to target cells via extracellular vesicles, thereby remedying 
mitochondrial functional deficits in mice with experimental 
autoimmune encephalomyelitis (184). These studies therefore 
provide evidence supporting the potential use of mitochondrial 
transplantation as a therapeutic strategy for MS in the future.

Mitochondrial dysfunction is one of the most promi‑
nent features of epilepsy, affecting 35‑60% of patients with 
epilepsy (185). Previous research has found that cannabidiol 
(CBD) can reduce the frequency of epileptic seizures (186). This 
may be related to its ability to induce the formation of mito‑
chondrial‑derived vesicles through the PINK1/Parkin pathway, 
which participates in mitochondrial repair  (187). Recent 
evidence suggests that CBD engages in mitochondrial‑related 
anti‑inflammatory and antioxidant activities, where it reverses 
iron‑induced mitochondrial dysfunction by rescuing mito‑
chondrial ferritin and modulating mtDNA epigenetics, and 
participates in neurodegenerative mechanisms via the NF‑κB, 
phosphorylated p38 MAPK and peroxisome proliferation‑acti‑
vated receptor γ pathways (188). Currently, the Food and Drug 
Administration has approved the drug compound, Epidiolex, 
which contains CBD, for the treatment of seizures  (189). 
Furthermore, a study has also found that the IL‑1 receptor 
antagonist, anakinra, can reduce seizure frequency  (190). 
The antiepileptic drug, levetiracetam, can reduce neuronal 
excitability by restoring the resting membrane potentials of 
IL‑1β‑induced neurotoxic astrocytes and promoting the secre‑
tion of TGF‑β1 (191). Additionally, levetiracetam modulates the 
opening of the mPTP via synaptic vesicle protein 2A, reducing 
neural hyperexcitability in patients with AD and AD animal 
models (192). Other antioxidants targeting mitochondria, such 
as polyphenols, vitamins and thiols, have been shown to help 
reduce epileptic seizures (193). Therefore, targeting mitochon‑
dria may be a key approach to treating epilepsy.

In general, the treatment strategies for chronic neuroin‑
flammatory diseases remain focused on combating oxidative 
stress and ameliorating mitochondrial functional impairments, 
which constitute shared pathophysiological features of such 
conditions. Mitochondrially‑targeted therapy stands out among 
emerging therapeutic modalities due to its ability to selectively 
target mitochondria, neutralizing reactive ROS and restoring 
their functionality. Currently, research on agents such as 
MitoQ is the most extensive. However, despite demonstrating 
significant therapeutic effects in animal models, MitoQ has 
not yielded the anticipated substantial benefits in clinical trials 
for PD or AD (194,195). Moreover, effectively penetrating the 
blood‑brain barrier and achieving optimal concentrations within 

target brain tissues remain pressing challenges. Additionally, 
mitochondrial‑targeted therapies fail to selectively recognize 
damaged mitochondria and cannot directly modulate mito‑
chondrial dynamics and mitophagy processes, which may 
contribute to their suboptimal clinical efficacy (194). In addi‑
tion to mitochondrial‑targeted therapy, mitochondrial gene 
therapy is emerging as a novel research domain. Treatment 
strategies encompass restoring normal mitochondrial func‑
tion, repairing or eliminating mutated mtDNA and delivering 
wild‑type mtDNA (196). Despite the development of various 
delivery systems, including mitochondria‑targeting peptides 
and liposomes, as well as physical methods such as electro‑
poration and hydrodynamic injection, effectively delivering 
therapeutic macromolecules to mitochondria remains a chal‑
lenge due to the presence of the blood‑brain barrier  (196). 
Furthermore, delivery systems may induce cytotoxicity or 
interact with endogenous biomolecules, leading to aggregation 
and reduced efficacy (197). The development of mitochondrial 
genome editing technology is still in its nascent stages, neces‑
sitating further understanding of how RNA and editing tools 
penetrate mammalian mitochondria (198). Efforts to develop 
more precise and safer mitochondrial‑targeted drugs may 
therefore be a future research focus.

5. Conclusions and future directions

Mitochondrial dysfunction is a common feature of chronic 
neuroinflammatory diseases and exploring its pathological 
mechanisms may provide new avenues for future treatments. 
Various drugs have been developed that target mitochondria, 
focusing on aspects such as antioxidation, mitochondrial 
autophagy regulation, calcium ion balance and gene repair. 
However, clinical application of these drugs remains a signifi‑
cant challenge. Exploring new therapeutic targets, selectively 
targeting dysfunctional mitochondria, ensuring delivery of 
drugs across the blood‑brain barrier into the brain and mini‑
mizing adverse reactions may be the focus of future research. 
Additionally, advancements in mitochondrial genome editing 
technology offer hope for the precise manipulation of mito‑
chondrial function and addressing genetic abnormalities in 
neuroinflammatory diseases.

Future treatment strategies may not be limited to a single 
approach; combining anti‑inflammatory and antioxidative 
therapy with mitochondrial‑targeted treatment may enhance 
overall treatment safety and efficacy. In conclusion, while 
mitochondrial‑targeted therapy holds promise for the treat‑
ment of chronic neuroinflammatory diseases, addressing 
current limitations is crucial. By overcoming delivery chal‑
lenges, enhancing treatment specificity and exploring new 
therapeutic targets, mitochondrial‑targeted therapy holds 
promise for treating chronic neuroinflammatory diseases and 
other neurological disorders.
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