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Abstract. Breast cancer arises from the malignant transfor‑
mation of mammary epithelial cells under the influence of 
various carcinogenic factors, leading to a gradual increase in 
its prevalence. This disease has become the leading cause of 
mortality among female malignancies, posing a significant 
threat to the health of women. The timely identification of 
breast cancer remains challenging, often resulting in diagnosis 
at the advanced stages of the disease. Conventional therapeutic 
approaches, such as surgical excision, chemotherapy and radio‑
therapy, exhibit limited efficacy in controlling the progression 
and metastasis of the disease. Regulated cell death (RCD), a 
process essential for physiological tissue cell renewal, occurs 
within the body independently of external influences. In the 
context of cancer, research on RCD primarily focuses on 
cuproptosis, ferroptosis and pyroptosis. Mounting evidence 
suggests a marked association between these specific forms 
of RCD, and the onset and progression of breast cancer. For 
example, a cuproptosis vector can effectively bind copper 
ions to induce cuproptosis in breast cancer cells, thereby 
hindering their proliferation. Additionally, the expression of 
ferroptosis‑related genes can enhance the sensitivity of breast 
cancer cells to chemotherapy. Likewise, pyroptosis‑related 
proteins not only participate in pyroptosis, but also regulate 
the tumor microenvironment, ultimately leading to the death 

of breast cancer cells. The present review discusses the unique 
regulatory mechanisms of cuproptosis, ferroptosis and pyrop‑
tosis in breast cancer, and the mechanisms through which they 
are affected by conventional cancer drugs. Furthermore, it 
provides a comprehensive overview of the significance of these 
forms of RCD in modulating the efficacy of chemotherapy 
and highlights their shared characteristics. This knowledge 
may provide novel avenues for both clinical interventions and 
fundamental research in the context of breast cancer.
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1. Introduction

Breast cancer, a malignancy arising from the epithelial cells 
of the breast, has witnessed a steady increase in incidence 
over the years (1). As per the 2020 Global Cancer Statistics 
Report published in CA: A Cancer Journal for Clinicians, 
breast cancer surpassed lung cancer to become the world's 
most prevalent type of cancer in 2020 (2). In that year, an 
estimated 2.3 million new breast cancer cases were diagnosed, 
representing 11.7% of all global cancer cases, and 685,000 
individuals succumbed to the disease, accounting for 6.9% of 
global cancer‑related deaths (2). Among the types of cancer 
affecting females, breast cancer stands out with a quarter of 
the incidence rate and a sixth of the mortality rate, ranking 
first in terms of incidence in 159 countries and mortality in 
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110 countries (2). The mainstay of treatment for breast cancer 
is surgical excision, radiotherapy and adjuvant targeted thera‑
pies; however, clinical studies have found that the long‑term 
use of this treatment does not improve patient survival (3). In 
light of these findings, regulated cell death (RCD) has emerged 
as a promising avenue for both breast cancer prevention and 
treatment strategies.

In 2018, the Cell Death Committee refined the definition 
of RCD by emphasizing its process mechanisms and updating 
the classification system (4). RCD encompasses a diverse array 
of developmental and immunological pathways that culminate 
in distinct modes of cell demise, resulting in varied morpho‑
logical transformations and immunological consequences (5). 
This type of cell death can occur intrinsically, without the 
interference of external factors, serving as an inherent compo‑
nent of physiological programs, such as development or tissue 
renewal (6,7). This entirely physiological form of RCD is often 
referred to as programmed cell death. However, RCD can 
also arise from disruptions in the intracellular or extracellular 
microenvironment when these disturbances are too severe or 
prolonged, exceeding the capacity of adaptive responses to 
maintain cellular homeostasis (8). Oxidative stress, character‑
ized by the generation of reactive oxygen species (ROS), has 
been implicated as a potential trigger for various forms of 
RCD. The production of ROS and the effectiveness of anti‑
oxidant defenses are reportedly influenced by the surrounding 
environment (5). In recent years, research on RCD in cancer 
has increasingly focused on modes, such as cuproptosis, 
ferroptosis, pyroptosis, immunogenic cell death and autosis. 
Therefore, the present review primarily discusses and summa‑
rizes the regulatory mechanisms, relevant genes and potential 
drugs associated with cuproptosis, ferroptosis, pyroptosis and 
other such modes of RCD in the context of breast cancer.

2. Cuproptosis and breast cancer

Copper (symbol, Cu) serves as an essential cofactor for all 
living organisms, with intracellular levels meticulously main‑
tained within a narrow range. It plays a pivotal role in various 
physiological processes, including mitochondrial respira‑
tion, antioxidant activity and macromolecular biosynthesis. 
However, exceeding the threshold of homeostatic mechanisms 
can induce detrimental effects, regardless of whether copper 
levels are deficient or excessive (9‑11). Cuproptosis, a recently 
discovered cell death pathway, arises specifically from copper 
overload and operates independently of other known death 
mechanisms. Copper ions directly bind to lipoproteins within 
the tricarboxylic acid cycle (TCA) metabolic pathway, causing 
anomalous aggregation and interfering with the iron‑sulfur 
cluster scaffold protein in the respiratory complex. This 
disruption culminates in a proteotoxic stress response, ulti‑
mately leading to cell death (12‑15).

Cuproptosis is distinguished from other types of RCD. 
Cuproptosis, a unique form of RCD, is specifically induced 
by copper ion carriers. Notably, inhibitors targeting known 
cell death pathways, including ferroptosis, necrosis, apop‑
tosis and oxidative stress, exhibit a limited ability to prevent 
copper ion carrier‑induced cell death. This distinct mecha‑
nism significantly differentiates cuproptosis from traditional 

modes of cell death, such as apoptosis and necroptosis. 
Mitochondrial respiration plays a crucial role in the regulation 
of cuproptosis. Treatment with mitochondrial antioxidants, 
fatty acids and inhibitors of mitochondrial function signifi‑
cantly influences copper ion carrier sensitivity, suggesting 
dependence on mitochondrial activity rather than adenosine 
triphosphate (ATP) production (16). Key genes contributing 
to copper‑induced death include FDX1 and six genes involved 
in protein S‑acylation, all essential for mitochondrial aerobic 
metabolism. The knockdown of FDX1 (encoding a protein 
converting divalent copper ions to toxic monovalent forms) 
and six lipoylated protein genes (LIPT1, DLD, LIAS, DLAT, 
PDHA1 and PDHB) has been shown to successfully rescue 
cells from copper ion‑mediated death (16). FDX1 acts as an 
upstream regulator of protein lipoylation, a conserved lysine 
post‑translational modification limited to four enzymes within 
metabolic complexes regulating carbon entry into the TCA 
cycle. It has been established that copper directly binds and 
induces the oligomerization of lipoylated DLAT. Notably, 
FDX1 deletion eliminates protein lipoylation, preventing 
copper binding by DLAT and DLST, indicating the critical 
role of the lipoyl moiety in copper binding. This unique death 
mechanism observed in cuproptosis aligns with observations 
in a genetic model of copper homeostasis dysregulation. 
Studies using a mouse model of Wilson's disease further 
suggest that copper overload induces cellular effects identical 
to those triggered by copper ion carriers, confirming the 
shared mechanism between copper homeostasis dysregulation 
and copper ion carrier‑induced cell death (17).

Mechanisms involved in cuproptosis. While cuproptosis 
holds promise, several aspects remain enigmatic. The specific 
roles of key factors, such as FDX1 require further investiga‑
tion. Additionally, the mechanisms underlying cuproptosis 
inhibition in healthy cells are unclear. Furthermore, previous 
studies suggest that hte various possible cuproptosis‑related 
mechanisms require better integration. Finally, characteristic 
morphological and molecular changes in cuproptosis‑affected 
cells have not been fully described (18‑20).

Copper, crucial for enzymes, necessitates meticulous 
control at low levels for normal physiological function. Studies 
highlight its role in cancer progression  (21‑25). Notably, 
patients with breast cancer exhibit significantly higher serum 
levels of copper compared to the controls, suggesting its 
potential in early detection and monitoring. In triple‑negative 
breast cancer (TNBC), inhibiting mitochondrial copper forces 
tumor cells to switch from respiration to glycolysis, reducing 
energy production and ultimately hindering tumor growth and 
improving prognosis (26‑30). The novel concept of cuproptosis 
sheds light on the copper‑cancer link. Elesclomol, a copper 
ion carrier, binds to environmental copper and delivers it into 
cells, triggering cell death. This approach may be most effec‑
tive in cancers highly expressing mitochondrial lipoylated 
proteins and relying heavily on respiration. Moreover, it could 
be particularly useful in apoptosis‑resistant cancers, providing 
a novel strategy with which to eliminate cancer cells by lever‑
aging the unique properties of copper (31,32). Building upon 
the anticancer properties of copper, chelators and carriers 
are currently undergoing preclinical and clinical evaluations 
in various tumor types. Copper chelation therapies, such as 
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tetrathiomolybdate and ATN‑224 have reached phase  II 
clinical trials in breast cancer. Disulfiram, a copper ion carrier, 
is under phase II investigation for malignant glioma, while 
elesclomol holds promise for the treatment of melanoma in 
phase II trials (33‑36).

Relevant targets for cuproptosis in breast cancer. 
Intracellular copper overload has recently been linked to a 
novel form of cell death known as cuproptosis. Independent of 
traditional pathways, cuproptosis does not activate caspase‑3 
and remains unaffected by apoptosis inhibitors (15). Genes 
associated with this process include FDX1, LIPT1, LIAS, 
DLD, DBT, GCSH, DLST, DLAT, PDHA1, PDHB, SLC31A1, 
ATP7A and ATP7B. These genes primarily regulate processes, 
such as glycolysis, the TCA cycle, and steroid and vitamin 
D metabolism. Notably, SLC31A1 facilitates copper uptake, 
while ATP7A and ATP7B are responsible for copper efflux, 
maintaining intracellular copper levels (37‑41). The overex‑
pression of SLC31A1 and the deletion of ATP7B can increase 
susceptibility to cuproptosis, whereas the knockdown of nine 
specific genes (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, 
PDHB, GCSH and DBT) confers resistance (15). While the 
role of copper in breast cancer, particularly its impact on the 
immune microenvironment and immunotherapy, has been 
well‑established (42), the association between seven key cupro‑
ptosis‑associated genes and breast cancer remains unexplored. 
These genes include PGK1 (mitochondrial metabolism and 
tumorigenesis), SLC family members SLC52A2 and SLC16A6 
(metabolic transport), SEC14L2 (vitamin E uptake), RAD23B 
(nucleotide excision repair and apoptosis), CCL5 (inflamma‑
tory cell migration) and MAL2 (transcytosis in hepatocellular 
carcinoma) (43‑58).

Song et al  (59) analyzed the protein expression of the 
cuproptosis‑related genes, FDX1, LIPT1, MTF1, DLD, DLAT, 
PDHA1 and PDHB, in breast cancer tissues and their mRNA 
expression in cuproposis‑inducible breast cancer cell models. 
Notably, RAD23B expression was found to be positively 
associated with breast cancer progression, drug resistance 
and a poor prognosis of patients with breast cancer. Notably, 
both PD1 and PDL1 expression exhibited a positive correla‑
tion with RAD23B expression, suggesting that patients with 
higher RAD23B levels may be more responsive to immune 
checkpoint blockade therapy targeting the programmed cell 
death 1 (PD‑1)/PD‑L1 axis (59).

Recent advances in cuproptosis‑related drugs. In addition, the 
crucial role of cuproptosis in tumor cells presents an oppor‑
tunity to develop novel anticancer drugs. One such example 
is the platelet vesicle (PV)‑coated cuprous oxide nanopar‑
ticle (Cu2O)/TBP‑2 cuproptosis sensitization system (PTC). 
Modified by AIE photosensitizer (TBP‑2), Cu2O and PV 
mimicry, PTC can enhance its long‑term blood circulation and 
tumor targeting ability. Subsequently, PTC is rapidly degraded 
to release copper ions under acidic conditions and hydrogen 
peroxide in tumor cells. Under light irradiation, TBP‑2 rapidly 
enters the cell membrane and generates hydroxyl radicals to 
consume glutathione and inhibit copper efflux. Accumulated 
copper can cause lipoylated protein aggregation and 
iron‑sulfur protein loss, which result in proteotoxic stress and 
ultimately, in cuproptosis. PTC inhibits tumor cell proliferation 

and invasion through cuproptosis. Notably, PTC research, 
primarily in patients with lung metastases from breast cancer, 
have shown the significant inhibition of metastatic tumor cell 
growth and multiplication in the lungs  (60). Furthermore, 
the hyaluronic acid‑dopamine (HD)/berberine hydrochloride 
(BER)/glucose oxidase (GOx)/Cu hydrogel reactor system 
provides a promising avenue for multiple breast cancer treat‑
ments. This system effectively inhibits tumor growth through 
a combination of approaches: GOx and copper sulfate convert 
accumulated glucose into hydroxyl radicals within tumor 
cells, enacting starvation/chemokinetic therapy. Additionally, 
Cu induces cuproptosis, further hindering tumor cell growth. 
BER, included as a chemotherapeutic agent, synergizes with 
the starvation/chemokinetic/cuproptosis modalities. This 
‘hydrogel multiplicity effect’ allows the system to potentially 
reduce the size of breast cancer pre‑operatively, facilitating 
surgical resection (61). While these novel drugs harness cupro‑
ptosis for therapeutic purposes, their clinical efficacy remains 
to be determined as they are currently limited to biological 
experiments. However, their potential offers hope for future 
advancements in breast cancer treatment.

3. Ferroptosis and breast cancer

Ferroptosis proposed by Dixon et al (62) in 2012, is a unique 
form of cell death distinct from apoptosis and necrosis, trig‑
gered by a compound known as RSL3 (62). It is characterized 
by the iron‑dependent accumulation of lipid peroxidation to 
lethal levels, affecting cellular structures and metabolism. 
This includes mitochondrial atrophy, increased membrane 
density, disrupted membrane integrity and the depletion of 
intracellular NADH (63). Three key mechanisms drive ferrop‑
tosis: i) Transferrin and L‑glutaminase regulation in cancer 
cells (64); ii) the depletion of glutathione, leading to glutathione 
peroxidase 4 (GPX4) inactivation (a core antioxidant enzyme) 
and the subsequent disruption of the antioxidant system in 
cancer cells (65); and iii) the peroxidation of unsaturated fatty 
acids in cell membranes by divalent iron or esterases in cancer 
cells (66).

Ferroptosis targets in breast cancer. The mammary gland 
specifically regulates ferroptosis, a type of RCD. Adipocytes, 
fat cells in the mammary gland, significantly influence breast 
cancer cell growth, and promote migration and invasion. 
In breast cancers expressing the ACSL3 gene, adipocytes 
protect cancer cells from ferroptosis by providing oleic 
acid, creating a unique tumor microenvironment  (67‑69). 
Hypercholesterolemia, high blood cholesterol, promotes 
breast cancer development and metastasis by resisting 
ferroptosis directly or through its metabolite, 27‑hydroxycho‑
lesterol (70,71). When treated with statins, cancer cells may 
increase their uptake of exogenous cholesterol or boost their 
cholesterol production, highlighting the need for real‑time 
tumor monitoring in patients with breast cancer taking 
statins (72). Ferroptosis holds significant relevance to breast 
cancer, offering potential for clinical screening and prognosis. 
Sha et al (73) identified the expression of ACSL4, a positive 
regulator of ferroptosis, as an independent predictor of the 
pathological complete response to neoadjuvant chemotherapy, 
with a higher expression suggesting a greater sensitivity. 



AI et al:  REGULATED CELL DEATH IN BREAST CANCER4

Studies have also shown that GPX4, an antioxidant enzyme, 
regulates mitochondria‑mediated apoptosis in cancer cells 
through the modulation of EGR1, functioning as a tumor 
suppressor in well‑differentiated breast cancers and potentially 
serving as a therapeutic target (74). Zhang et al (75) identified 
long non‑coding RNAs (lncRNAs) closely related to ferrop‑
tosis through Cox regression analysis, which can accurately 
predict the prognosis of patients with breast cancer. These 
lncRNAs, as characteristic molecules of pyroptosis (another 
form of RCD), may play a role in antitumor immune processes 
and hold potential as therapeutic targets (76). Current evidence 
suggests that MTHFD2, a mitochondrial enzyme involved in 
folate metabolism, is highly expressed in embryos and various 
tumors. As a potential regulator of ferroptosis in breast cancer, 
it may serve as a crucial molecular biomarker and a novel 
therapeutic target for predicting the prognosis of patients with 
TNBC (77,78). Furthermore, Yadav et al (79) found that breast 
cancer cells can evade cell death by overexpressing SLC7A11, 
which resists ferroptosis by influencing the tumor microen‑
vironment. Notably, miR‑5096 can target and downregulate 
SLC7A11, inducing ferroptosis in breast cancer cells and 
inhibiting tumor growth (79‑81). Zhang et al (82) constructed 
a nomogram based on nine ferroptosis‑related genes. These 
ferroptosis‑related genes were significantly associated with 
the level of immune cell infiltration in patients with breast 
cancer, suggesting their potential use as therapeutic targets or 
biomarkers (82‑90). Additionally, studies have shown that the 
deletion of CircRHOT1 inhibits breast cancer cell prolifera‑
tion and induces apoptosis, while the knockdown of CLCA2, 
REEP6, SPDEF and CRAT can predict breast cancer prog‑
nosis based on metabolic gene classification (91,92). Research 
on ferroptosis‑related regulatory mechanisms and genes is 
ongoing, holding promise for improved breast cancer screening 
and treatment. It can be expected that these research findings 
may translate into clinical applications in the near future.

Related drugs that can induce ferroptosis. Currently, prom‑
ising drug studies are investigating the potential of targeting 
ferroptosis, a form of cell death, in the treatment of breast 
cancer. Several novel drugs have been proposed that act on 
this pathway to enhance existing therapies. Zhang et al (93) 
constructed heparanase (HPSE)‑driven sequential release 
nanoparticles, which consisted of β‑cyclodextrin‑grafted 
heparin [NLC/H(D + F + S) NPs] co‑modified with doxo‑
rubicin (DOX), di‑ferric iron (Fe2+) and a TGF‑β receptor 
inhibitor (SB431542); co‑loading modification effectively 
enhanced intracellular ROS levels and activated the ferrop‑
tosis pathway. The increased production of ROS also triggered 
apoptosis, reduced an enzyme linked to tumor invasion 
(MMP‑9) and synergized with ferroptosis for the treatment 
of breast cancer (93). Similarly, polydopamine nanoparticles 
loaded with iron and DOX exhibit a wide range of anticancer 
effects (94). Cinnamaldehyde dimers formulated into lipid‑like 
materials deplete glutathione, a key antioxidant, and when 
combined with the anticancer drug, sorafenib, significantly 
enhance ferroptosis and trigger a potent immune response 
in mice, leading to complete tumor eradication  (95,96). 
Erastin@FA‑exo, a folic acid‑labeled exosome carrying the 
ferroptosis inducer, erastin, inhibits the expression of GPX4, 
depleting intracellular glutathione and upregulating cysteine 

dioxygenase, leading to excessive ROS production, both hall‑
marks of ferroptosis. This approach effectively reduces the 
survival of TNBC cells in vivo and exhibits high biocompat‑
ibility compared to conventional erastin, potentially reducing 
side‑effects and paving the way for improved clinical applica‑
tions (97). These novel drugs offer exciting new possibilities 
for the clinical treatment of breast cancer by harnessing the 
power of ferroptosis.

Several common clinical drugs have significant inhibitory 
effects on breast cancer cell growth. For example, metformin 
reduces the protein stability of SLC7A11 by inhibiting its 
UFMyation process, and SLC7A11 opposes ferroptosis by 
affecting the tumor microenvironment to resist the ferroptosis 
of tumor cells, thereby inhibiting the growth of breast cancer 
cells  (81,82,98). Siramesine and lapatinib initially induce 
ferroptosis during the death process in breast cancer cells, but 
this transforms into autophagy after 24 h (99). In this process, 
ROS production plays a key role, and cystine transport inhibi‑
tion, ferroportin‑1 and transferrin are involved in the induction 
of ferroptosis  (99,100). Everolimus, a targeted therapeutic 
agent for breast cancer, can also undergo ferroptosis by 
inducing the activation of the FKBP1A/SLC3A2 axis. The 
specific mechanism is that its related protein, FK506‑binding 
protein 1A (FKBP1A), binds to SLC3A2 and negatively 
regulates SLC3A2 expression during the everolimus‑induced 
ferroptosis of breast cancer cells and the promotion of antip‑
roliferative Th9 lymphocytes (101). This finding suggests that 
everolimus may be more effective in breast cancer patients 
who are more sensitive to it, potentially increasing the efficacy 
of chemotherapy and reducing the dose of chemotherapeutic 
agents needed  (101). Ketamine inhibits breast cancer cell 
proliferation by targeting the KAT5/GPX4 axis to induce 
ferroptosis (73). Additionally, targeting GPX4 cann enhance 
the anticancer effects of gefitinib, suggesting that the study of 
the two drugs together may provide a new direction for clinical 
treatment (102,103). Simvastatin has been reported to inhibit 
HMGCR expression and downregulate the mevalonic acid 
pathway and GPX4, thereby inducing ferroptosis in TNBC 
cells (104). Holo lactoferrin induces ferroptosis in cancer cells 
and sensitizes TNBC cells to radiotherapy (105). Holo lido‑
caine promotes ferroptosis in ovarian and breast cancer cells 
via the miR‑382‑5p/SLC7A11 axis (106).

Some common plant extracts have also been found to exert 
a promoting effect on ferroptosis. For example, curcumin has 
been shown to significantly downregulate GPX4 and upregulate 
HO‑1, and both HO‑1 and GPX4 enhance ferroptosis in breast 
cancer (71,72,107). Red ginseng polysaccharides, an effective 
extracted component of ginseng, also promote ferroptosis, 
inhibit GPX4 expression and exert antitumor effects (108). 
These findings suggest that ferroptosis may be a novel thera‑
peutic target for breast cancer. DMOCPTL, a derivative of the 
natural product, chamomile lactone, can directly bind to GPX4 
protein to induce GPX4 ubiquitination and induce ferroptosis. 
This substance effectively inhibits the growth of breast tumors 
without significant cytotoxicity, rendering it a potential treat‑
ment option for patients with TNBC (74). On the whole, the 
latest research findings on ferroptosis provide new hope for 
the development of more effective treatments for breast cancer. 
However, further research is required in order to develop a 
complete treatment plan that utilizes ferroptosis.
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4. Pyroptosis and breast cancer

Pyroptosis, a novel type of RCD distinct from apoptosis, was 
first proposed by Cookson and Brennan (109) in 2001, as a 
rapid death mechanism observed in Salmonella‑infected 
macrophages dependent on caspase‑1 activation. Gasdermin 
(GSDM) proteins, the key molecules in pyroptosis, induce 
cell membrane lysis (110). There are two main categories of 
pyroptosis mechanisms: Classical and non‑classical pathways. 
The classical pyroptosis pathway is triggered by exogenous or 
endogenous microbial infections that stimulate the production 
of inflammasomes. These inflammasomes activate caspase‑1 
proteins, which in turn disrupt the integrity of the cell 
membrane. Additionally, this pathway promotes the activation 
and release of the inflammatory cytokines, interleukin (IL)‑1β 
and IL‑18. The combined action of caspase‑1 proteins and 
inflammation leads to pyroptosis (111‑113). The non‑classical 
pyroptosis pathway, on the other hand, is mediated by lipo‑
polysaccharide‑activated caspase‑4/5/11 (114).

Mechanisms and genes involved in pyroptosis in breast 
cancer. Pyroptosis and its association with tumors have 
become a prominent research area in recent years, and the 
present review specifically summarizes the association 
between pyroptosis and breast cancer. Breast cancer exhibits 
a unique regulatory mechanism associated with pyroptosis. 
Mitochondrial uncoupling protein 1, linked to an produc‑
tion of body heat, has a high expression in breast cancer 
cells. This leads to mitochondrial swelling and autophagy, 
activating GSDME, stimulating antitumor immunity, and 
ultimately resulting in pyroptosis. This process inhibits breast 
cancer cell proliferation and holds potential as a prognostic 
marker (115‑117). PD‑L1, exhibiting nuclear transcriptional 
activity, participates in the pyroptosis pathway and modu‑
lates the tumor microenvironment. In breast cancer cells, 
this manifests as TNF‑α activating caspase‑8, which, in the 
presence of GSDMC and hypoxia‑activated nPD‑L1, converts 
apoptosis into pyroptosis, leading to tumor necrosis in hypoxic 
areas (118). As identified in the literature, the dysregulation 
of numerous pyroptosis genes is associated with breast cancer 
prognosis. The high expression of CASP6, CASP5, TIRAP, 
SCAF11, NLRP7, PLCG1, GSDMC, GSDMD and NLRC4 is 
associated with a poor prognosis, while the high expression 
of ELANE, CASP9, CASP8, GSDMB, CASP4, CASP1, TNF, 
NOD1, PYCARD, NLRP6, NLRP3, NLRP2, IL6, NLRP1, IL18 
and IL1B is associated with improved outcomes (27,119‑130). 
Furthermore, several genes emerged as potential therapeutic 
targets for breast cancer. DRD2, for instance, inhibits NF‑κB 
signaling activation by binding to β‑arrestin2, downregu‑
lating DDX5 and eEF1A2. This combined action suppresses 
the NF‑κB signaling pathway and p65 phosphorylation. 
Additionally, DRD2 modulates the tumor microenvironment 
and promotes macrophage M1 polarization, ultimately trig‑
gering pyroptosis in breast cancer cells (131). In a previous 
study, SCAF11 expression was found to be elevated in breast 
tumor cell lines, and its high levels were shown to be associated 
with a poor prognosis (120). Silencing SCAF11 using siRNA 
significantly reduced the proliferation and colony growth of 
BT549 and T47D breast cancer cell lines. GSEA analysis 
revealed that SCAF11 co‑expressed genes were primarily 

involved inflammatory and immune‑related pathways (131). 
Moreover, SCAF11 expression exhibited a positive correla‑
tion with immune checkpoints, such as PD‑L1, B7H3 and 
PDCD1LG2. Based on these findings, SCAF11, as a pyroptosis 
regulatory gene, warrants exploration as a potential therapeutic 
target for breast cancer patients (131).

Anti‑breast cancer drugs that can leverage pyroptosis. 
Research on pyroptosis in breast cancer has led to investiga‑
tions into the potential of existing drugs to induce this cell 
death process. DOX exhibits a three‑pronged approach: It 
dose‑dependently reduces the viability of MDA‑MB‑231 and 
T47D cells, activates caspase‑3 through GSDME, induces 
the accumulation of intracellular ROS, and subsequently 
stimulates the phosphorylation of JNK and the activation of 
caspase‑3, and culminates in pyroptosis, exerting its anti‑
cancer effects (132). Tetraarsenic arsenic hexaoxide exerts its 
anticancer effects by targeting a crucial factor in breast cancer 
cells, mitochondrial STAT3. Inhibiting its activation leads to 
mitochondrial ROS‑mediated pyroptosis (133,134). Nigericin, 
derived from Streptomyces hydrophobicus, triggers pyroptosis 
in TNBC cells by inducing potassium efflux and subsequent 
mitochondrial ROS production. This process activates the 
caspase‑1/GSDMD pathway. Moreover, combining nige‑
ricin with anti‑PD‑1 antibodies exhibits synergy in treating 
advanced triple‑negative breast cancer (135). Notably, trimeth‑
ylamine N‑oxide (TMAO), a metabolite produced by the 
Clostridium genus, induces pyroptosis in tumor cells by acti‑
vating the endoplasmic reticulum kinase, PERK. This, in turn, 
enhances CD8 T‑cell‑mediated antitumor immunity in TNBC 
models in vivo. As immunotherapy is a crucial option for these 
patients, the ability of TMAO to boost its efficacy suggests 
its potential application in the treatment of TNBC  (136). 
Azurocidin‑1, a protein originating from neutrophils and 
predominantly stored in azurophilic granules, exerts its effects 
on pyroptosis in TNBC cells through the regulation of the 
pNF‑κB/NLRP3/caspase‑1/GSDMD axis. The identification of 
Azurocidin‑1 holds promise in the development of novel immu‑
notherapeutic approaches for the treatment of TNBC (137). 
The treatment of breast cancer cells with docosahexaenoic 
acid has been found to increase the activation of caspase‑1 
and GSDMD, enhance the secretion of IL‑1β, promote the 
translocaton of high‑mobility group protein B1 (HMGB1) to 
the cytoplasm and to lead to the formation of membrane pores. 
These findings suggest that docosahexaenoic acid induces the 
pyroptosis‑programmed death of breast cancer cells and exerts 
an anti‑breast cancer effect (138). Xihuangwan, a traditional 
Chinese medicine, has been found to induce pyroptosis via the 
cyclic AMP‑activated protein kinase (cAMP)/protein kinase 
A signaling pathway, and inhibit the proliferation, migration 
and invasion of breast cancer cells (139). Dihydroartemisinin, 
a plant extract, promotes the AIM2/caspase‑3/DFNA5 axis in 
breast cancer cells and induces pyroptosis, inhibiting breast 
cancer growth (140). In addition, Ganoderma lucidum extract 
(GLE) activates cysteine 3 and further cleaves GSDME 
proteins to form membrane pores in cell membranes, thereby 
releasing large amounts of inflammatory factors in breast 
cancer cells, leading to pyroptosis and inhibiting the growth 
and multiplication of breast cancer cells. GLE also disrupts 
multiple steps of tumor metastasis, including adhesion, 
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migration, invasion, colonization and angiogenesis. Overall, 
GLE offers a potential approach for the treatment of breast 
cancer that could complement chemotherapy or immuno‑
therapy for cancer metastasis (141).

Current research has identified a novel therapeutic 
molecule, a bionic nanoparticle of indocyanine green and 
decitabine, which synergistically upregulates GSDME 
expression through DNA methylation inhibition and 
enhances caspase‑3‑mediated cleavage of GSDME, leading 
to cancer cell pyroptosis and inhibiting primary breast cancer 
and distant metastasis  (142). Co‑assembled carrier‑free 
chemo‑photodynamic nanoplatforms (A‑C/NPs) of cytara‑
bine (Ara‑C) and chlorine e6 (Ce6) can induce tumor cell 
pyroptosis and enhance the body's immune response to 
breast cancer. Their specific mechanisms are the following: 
A‑C/NPs trigger GSDME‑mediated pyroptosis in a controlled 
manner via ROS accumulation, and Ara‑C stimulates the 
maturation of cytotoxic T‑lymphocytes, synergizing with 
Ce6‑mediated immunogenic cell death to jointly enhance 
the anticancer effects of A‑C/NPs. In a previous study 
using a mouse model of breast cancer, A‑C/NPs were found 
to markedly inhibit in situ, metastatic and recurrent tumor 
growth (143). Current research on cellular focalization‑related 
drugs focuses on GSDME cleavage and the regulation of the 
caspase‑1/caspase‑3 pathway. Relevant experiments have 
demonstrated the effectiveness of this approach for breast 
cancer (74,109,112). However, further studies are warranted 
to investigate potential adverse effects on the organism 
and to establish clinical application guidelines, including 
dosing information. Therefore, advancing the use of pyrop‑
tosis‑related drugs in breast cancer should prioritize research 
on potential drawbacks associated with GSDME cleavage and 
caspase‑1/caspase‑3 pathway regulation.

5. Other forms of cell death and breast cancer

Current academic research on RCD in breast cancer 
extends beyond previously mentioned modes to include 
immunogenic cell death, autophagic cell death and others, 
all of which can both promote and inhibit the growth and 
metastasis of breast cancer cells. As regards immunogenic 
cell death, researchers have found that Trametes robiniophila 
Murr. (Huaier) increases the release of ATP and HMGB1 by 
promoting cell surface calreticulin exposure. Its therapeutic 
effects are linked to endoplasmic reticulum stress through the 
cAMP/PKR/eIF2α axis, both of which trigger immunogenic 
cell death in TNBC cells (144). Breast cancer cells produce 
angiopoietin‑like 7 (Angptl7), a tumor‑specific factor 
localized in the perineal regions, which contributes to the 
formation of necrotic apoptosis and the metastatic dissemi‑
nation of the tumor core. Functional studies have shown that 
Angptl7 deficiency allows central necrosis and autophagy, 
ultimately protecting the growth of breast cancer cells 
and promoting their metastasis. Mechanistically, Angptl7 
promotes vascular permeability and supports perineal posi‑
tioning vascular remodeling (145). Current research suggests 
that autophagy can serve as a form of nutritional support for 
cellular self‑repair. However, it may also contribute to tumor 
dormancy in breast cancer, potentially promoting chemore‑
sistance and relapse (146,147).

6. Co‑modulation of conventional chemotherapeutic agents 
by multiple types of RCD

Role of DOX in various types of RCD in breast cancer. In 
the present review, the summary of RCD in breast cancer 
reveals that DOX, a classic antitumor drug, interacts with 
various cell death pathways. In ferroptosis, DOX down‑
regulates GPX4 and triggers excessive lipid peroxidation 
through the DOX‑Fe2+ complex in the mitochondria, ulti‑
mately leading to ferroptosis‑mediated cell death. Of note, 
the combination of ferrostatin‑1 and zVAD‑FMK effectively 
regulates ferroptosis and prevents DOX‑induced cardio‑
myocyte death, offering potential therapeutic avenues (148). 
For pyroptosis, DOX accumulation leads to a cascade of 
events, beginning with ROS generation. ROS then stimulate 
the phosphorylation of JNK (specifically p‑JNK), which 
in turn activates caspase‑3, a key pyroptosis executioner. 
Additionally, DOX‑induced ROS production also affects 
the cleavage of caspase‑8, further promoting caspase‑3 
activation. Ultimately, activated caspase‑3 cleaves GSDME, 
triggering the characteristic membrane rupture and pyrop‑
totic cell death in breast cancer cells (132). Furthermore, 
DOX exhibits a direct interaction with the pyroptosis‑asso‑
ciated protein, GSDMD, mitigating the cardiotoxic effects 
associated with the drug, a finding with potential clinical 
implications (149,150). Based on these underlying mecha‑
nisms, novel technologies have been employed to develop 
targeted breast cancer drugs that focus on RCD. Several 
promising therapeutic modalities have emerged.

As previously demonstrated, DOX‑loaded hedgehog 
pathway inhibitor ellagic acid (EA) was combined with 
Cu2+ to develop nanoscale metal‑organic frameworks 
(EA‑Cu) modified by targeted chondroitin sulfate (151). This 
approach was shown to achieve the inhibition of stemness 
maintenance by inhibiting the hedgehog pathway through 
EA, while Cu2+ disrupted mitochondrial metabolism. This 
combination reduces the stemness characteristics of tumor 
cells and enhanced the effectiveness of DOX‑mediated 
chemotherapy. The co‑action of EA and Cu induces cupro‑
ptosis, thereby enhancing anticancer effects and preventing 
the development of DOX resistance  (151). In summary, 
CS/NPs demonstrate notable antitumor effects by inducing 
cuproptosis and significantly inhibiting cancer cell stemness, 
suggesting their potential to overcome resistance to cancer 
chemotherapy (151).

Emerging therapeutic modalities targeting ferroptosis 
utilize this interaction. One such modality utilizes degraded 
bimetallic nanoparticles‑7% Fe‑doped ZIF‑8 encapsulated 
with DOX, a classical drug used in the treatment of breast 
cancer. This approach inhibits the growth and metastasis 
of breast cancer cells by utilizing ferroptosis to induce 
the production of ROS in cancer cells  (152). Several 
studies have explored strategies with which to mitigate the 
side‑effects of DOX, while harnessing its antitumor effects. 
For example, isoliquiritin, a natural compound, inhibits 
the NF‑κB signaling pathway, which regulates ferroptosis 
in breast cancer and improves resistance to DOX (153). 
Additionally, decreasing the levels of GSDME protein, 
a key factor in pyroptosis, can minimize DOX‑induced 
cardiotoxicity and pyroptosis in breast cancer cells  (132). 
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While DOX itself can induce necroptosis, activating the 
NF‑κB/TNF‑α/TNFR/IRF axis further enhances this 
process, resulting in the SBP‑0636457/DOX‑induced necrosis 
of breast cancer cells (154) (Fig. 1).

Adjuvant drugs can also be utilized to modulate the 
anticancer effects of DOX through the regulation of RCD. It 
has been shown that plant extracts containing magnoflorine 
(Mag) significantly enhance the effects of DOX on the induc‑
tion of autophagy by increasing the expression of light chain 
3 (LC3)‑II. Notably, combined treatment with DOX and Mag 
significantly inhibits the activation of PI3K/AKT/mTOR 
signaling pathway (155). Conversely, it promotes the p38 
MAPK pathway, leading to the induction of both autophagy 
and apoptosis. These findings suggest that Mag may potentiate 
the anticancer effects of DOX and enhance the sensitivity of 
breast cancer cells to this chemotherapeutic agent (155). As a 
cornerstone of breast cancer chemotherapy, the diverse roles 
of DOX in regulating cell death remain under active inves‑
tigation. Future research within the academic community is 
expected to uncover additional functions of doxorubicin and 
targeted drugs in this context.

RCD and cisplatin. In addition to DOX, cisplatin also 
exhibits diverse interactions with RCD pathways in breast 
cancer. As a potent metallochemotherapeutic agent, cisplatin 
can overcome resistance through various mechanisms. 
One approach involves the induction of cuproptosis by 
constructing copper(II) bis(diethyldithiocarbamate) (CuET). 
This increases CuET distribution in the cytoplasm and 
cytoskeleton, effectively bypassing cisplatin resistance (156). 
Furthermore, cisplatin has been shown to induce ferroptosis, 
another form of RCD, to overcome resistance  (157). The 
overexpression of the ferroptosis driver, SOCS1, inhibits 

proliferation and promotes ferroptosis in TNBC cells, modu‑
lating cisplatin resistance (158). Additionally, inhibiting the 
ferroptosis‑related gene, GPX4, which eliminates ROS crucial 
for ferroptosis, sensitizes tumor cells to cisplatin. Research 
using nude mouse models has demonstrated that combining 
cisplatin with the GPX4 inhibitor, RSL3, significantly reduces 
tumor growth compared to either treatment alone  (159). 
These findings suggest that GPX4 inhibition suppresses 
ferroptosis and enhances the anticancer effects of cisplatin. 
Cisplatin can also promote pyroptosis, another RCD pathway. 
By upregulating MEG3, it activates the NLRP3 inflam‑
masome, leading to caspase‑1‑dependent pyroptosis. This 
activation cleaves GSDMD, releasing fragments that form 
membrane pores. Moreover, caspase‑1 promotes the matura‑
tion and secretion of IL‑18 and IL‑1β, ultimately inducing 
the focal death of breast cancer cells and exerting antitumor 
effects  (160) (Fig.  2). Notably, cisplatin can also induce 
autophagy, a cellular self‑degradation process. It upregulates 
several autophagy‑related genes, including AMBRA1, ATG3, 
ATG4C, ATG4D, ATG5, ATG7, ATG13, ATG14, ATG16L2, 
Beclin1, DRAM1, GABARAP, GABARAPL1, GABARAPL2, 
HDAC6, IRGM, MAP1LC3B and ULK1 involved in the induc‑
tion, vesicle nucleation and elongation phases of autophagy, 
suggesting that it inhibits cell proliferation and growth in 
breast cancer through multiple RCD mechanisms  (161). 
Overall, these findings suggest that inducing various forms of 
RCD can effectively reduce cisplatin resistance and enhance 
its anticancer effects in breast cancer.

7. Comparison and co‑action of multiple types of RCD

Specific features of RCD. RCD stands apart from accidental 
cell death, which results from uncontrolled damage exceeding 

Figure 1. Comparison of the bidirectional effects of doxorubicin in relation to multiple types of regulated cell death. DOX, doxorubicin; ROS, reactive oxygen 
species. The figure was prepared using Figdraw.
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the survival threshold of a cell. Unlike its chaotic counterpart, 
RCD is a genetically controlled and orderly process that main‑
tains internal stability (162). The present review showcases the 
ability of RCD to selectively target tumor cells, hindering their 
growth and spread. As such, RCD emerges as a promising 
avenue for cancer therapy.

Comparison of different types of mechanisms for RCD. 
Various forms of RCD exist, each with unique regulatory 
mechanisms. Cuproptosis is triggered by the direct interaction 
of copper with thiooctylated components of the TCA cycle. This 
interaction leads to the aggregation of these proteins and the 
depletion of iron‑sulfur cluster proteins, inducing proteotoxic 
stress and, ultimately, cell death (16). By contrast, ferroptosis 
is characterized by iron‑dependent lipid peroxidation damage 
within the mitochondria, primarily caused by the reduced 
activity of the GPX4 enzyme (163). Pyroptosis, on the other 
hand, is activated by external stimuli that induce the formation 
of inflammatory vesicles. These vesicles activate caspase‑1, 
which disrupts the cell membrane and leads to the release 
of IL‑1β and IL‑18 cytokines. The combined action of these 
cytokines then induces pyroptosis in the affected cell (164) 
(Fig. 3). Although the detailed mechanisms of each RCD type 
differ, they all share the characteristic of being initiated by 
the intrinsic regulatory processes of the cell. Cells that have 
not initiated these processes remain alive. This understanding 

highlights the potential of RCD as a novel approach to cancer 
therapy. Research in this area has already shown promise in 
improving the accuracy of treatment and patient outcomes.

Oxidative stress: A common mode of causing multiple types of 
RCD. Oxidative stress, characterized by the accumulation of 
ROS, plays a critical role in triggering various forms of RCD 
in cancer cells. Recent studies have shed light on the crucial 
role of MTF1, a gene associated with cuproptosis. Notably, its 
expression differs in tumor cells compared to normal cells, and 
reducing MTF1 levels can elevate ROS production and initiate 
cuproptosis (165). Similarly, the buildup of ROS is crucial for 
ferroptosis, another form of RCD. Polyunsaturated fatty acids, 
a hallmark of ferroptosis, are produced when ROS attack the 
double bonds in lipids (166). For pyroptosis, ROS trigger the 
activation of the NLRP3 inflammasome, which initiates and 
activates NLRP3 synthesis. This inflammasome acts as the 
key player in initiating pyroptosis (167). In summary, oxidative 
stress plays a pivotal role in triggering various forms of RCD 
in cancer cells. This understanding opens new avenues for 
developing synergistic cancer therapies that leverage multiple 
RCD modalities.

RCD and conventional chemotherapeutic agents. As 
aforementioned, the induction of cuproptosis, ferroptosis and 
pyroptosis can enhance the anticancer properties of drugs, 

Figure 2. Comparison of different types of regulated cell death modulating the conventional chemotherapeutic agent, cisplatin. GPX4, glutathione peroxidase 
4; GSH, glutathione; GSDMD, gasdermin D. The figure was prepared using Figdraw.
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such as DOX and cisplatin, while reducing their resistance 
and side‑effects. This research also suggests the potential 
to develop predictive models based on lncRNAs associated 
with cuproptosis. These models could help determine the 
sensitivity of patient with breast cancer to various chemo‑
therapeutic agents (such as lapatinib, phenelzine, vincristine 
and etanercept), aiding in the selection of personalized 
treatment regimens  (168). Furthermore, the protein, RelB, 
provides evidence for the influence of ferroptosis on chemo‑
therapeutic response. RelB promotes resistance to tamoxifen 
by upregulating GPX4, an enzyme that inhibits ferroptosis 
(169). Similarly, miR‑155‑5p supports the role of pyroptosis 
in response to therapy. In vivo research has demonstrated that 
decreasing miR‑155‑5p levels triggers pyroptosis and enhances 
the effectiveness of the drug, cetuximab, against TNBC cells 
(170). These findings suggest that RCD research can not only 
lead to the discovery of new drugs, but may also shed light on 
the anticancer potential and resistance mechanisms of existing 
drugs.

Interactions of forms of RCD. There is a potential association 
between various RCD modes. Cuproptosis and ferroptosis 
regulators exhibit the same mutation frequency in breast 
cancer. As previously demonstrated, the knockdown of the 
ferroptosis regulator, ATF2, in breast cancer cells (MCF7) 
resulted in marked changes in cuproptosis regulators (DLST, 

GCSH, PDHA1, LIPT1 and DLD)  (171). Furthermore, the 
unsupervised clustering of cuproptosis and ferroptosis regu‑
lators identified three distinct copper/ferroptosis regulator 
clusters named CuFecluster A, B and C. These three regulator 
clusters have different biological functions. The three regula‑
tory factor clusters have distinct biological functions, which 
strengthen the experimental basis for using RCD for tumor 
therapy. CuFecluster B is associated with the full activation 
of immunity, including the B‑cell receptor signaling pathway, 
natural killer cell‑mediated cytotoxicity, antigen processing 
and presentation, cytokine‑cytokine receptor interactions and 
chemokine signaling pathway. Additionally, CuFecluster B is 
enriched in various activated immune cells and is classified as 
an immunoinflammatory phenotype. CuFecluster A is associ‑
ated with various cellular proliferative processes, particularly 
mismatch repair, DNA replication and the cell cycle. Notably, 
CuFecluster A is more strongly associated with innate immune 
cells (including myeloid‑derived suppressor cells, eosinophils, 
natural killer cells, monocytes, mast cells and macrophages). 
Finally, CuFecluster C exhibits a limited association with 
immune cells and suppresses immune responses, consistent 
with the main features of the immune desert phenotype (171). 
Different clusters of regulatory factors can be harnessed, there‑
fore, to open new avenues for future breast cancer therapy. In 
conclusion, while this study has summarized the interactions 
and derived functions of cuproptosis and ferroptosis in breast 

Figure 3. Comparison of the mechanisms of cuproptosis, ferroptosis and cellular pyroptosis. GSH, glutathione; GPX4, glutathione peroxidase 4. The figure 
was prepared using Figdraw.
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cancer, associations with other RCDs are still under investiga‑
tion. Nevertheless, this work provides valuable insights for 
exploring the relationships between other regulatory death 
pathways in the future, potentially leading to new benefits for 
breast cancer patients.

Summarizing the role of various forms of RCD in tumor 
cells in breast cancer reveals that various RCD pathways can 
inhibit cancer cell proliferation and invasion. Additionally, 
they can reduce resistance to conventional chemotherapeutic 
drugs. Combining multiple RCD modalities in breast cancer 
therapy holds promise for synergistic effects and offers a 
promising new avenue for treatment.

8. Importance of multiple types of RCD for breast cancer

Importance of cuproptosis for breast cancer cells. It has been 
established that cuproptosis‑associated genes can predict the 
prognosis of patients with breast cancer and provide informa‑
tion about the immune microenvironment. Cox regression 
analyses identified high expression of the cuproptosis‑asso‑
ciated gene, SLC31A1, as an independent prognostic factor 
for a shorter overall survival. Additionally, a high SLC31A1 
expression has been shown to be associated with dysregulated 
immune responses; specifically, it has been shown to be nega‑
tively associated with the level of infiltration of CD8 T‑cells 

Table I. Utilization of scientifically and technologically constructed drugs related to regulated cell death.

		  Regulatory		
		  cell death		
Drug	 Target of action/mechanism	 involved	 Potency	 (Refs.)

Type‑I AIE photosensitizer	 Lipoylated protein aggregation	 Cuproptosis	 Inhibits lung metastasis of	 (61)
loaded biomimetic system	 and iron‑sulfur protein loss		  breast cancer and prevents	
			   tumor rechallenge	
HD/BER/GOx/Cu hydrogel	 Produces starvation/ chemodynamic	 Cuproptosis	 Preoperative reduction of	 (62)
system	 therapy and induces copper death		  breast cancer size to facilitate	
			   surgical excision	
Heparanase‑driven sequential	 Effectively enhances intracellular	 Ferroptosis	 New dosage regimens for the	 (93)
released nanoparticles	 ROS levels and activates the iron		  treatment of breast cancer by	
	 death pathway. Enhanced ROS also		  intracellular and	
	 induces the apoptotic pathway and		  extracellular mechanisms	
	 reduces the expression of MMP‑9 			 
Polydopamine nanoparticles	 Combination with DOX induces	 Ferroptosis	 Possesses anti‑tumor activity	 (94)
	 ferroptosis in breast cancer cells		  and selectivity, increasing the	
			   accuracy and effectiveness of	
			   targeted therapies	
Cinnamaldehyde dimers	 Depletion of glutathione, in	 Ferroptosis	 Increasing the anticancer	 (95)
	 combination with the anti‑		  effects of sorafenib	
	 breast cancer drug sorafenib			 
	 (sorafenib.SRF), resulted in a			 
	 significant enhancement of			 
	 iron death, and by promoting			 
	 dendritic cell maturation and			 
	 CD8+ T‑cell initiation			 
erastin@FA‑exo	 Inhibits the expression of GPX4	 Ferroptosis	 May reduce side effects in	 (96)
	 and upregulates the expression		  tumor therapy and may	
	 of CDO1		  replace traditional erastin in	
			   clinical practice	
Biomimetic nanoparticle	 Induced cleavage of GSDME	 Pyroptosis	 Controlled tumor growth and	 (139)
 (BNP) loaded with			   stimulated anticancer	
 indocyanine green (ICG)			   immune responses	
and decitabine (DCT) 				  
Carrier‑free chemo‑	 Triggering GSDME‑Mediated	 Pyroptosis	 Complement chemotherapy	 (140)
photodynamic nanoplatform	 ScorchDeath in a controlled		  or immunotherapy for cancer	
	 manner via ROS accumulation		  metastasis	

HD, hyaluronic acid‑dopamine; BER, berberine hydrochloride; GOx, glucose oxidase; ROS, reactive oxygen species; DOX, doxorubicin; 
GSDME, gasdermin E.
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and activated natural killer cells (53). Furthermore, targeting 
cuproptosis with existing drugs may provide new avenues 
for the treatment of breast cancer. Zinc pyrithione (ZnPT), 
typically used for fungal treatment, promotes the aggregation 
of DLAT both in vitro and in vivo. DLAT is a biomarker of 
cuproptosis and ZnPT disrupts copper homeostasis, eventually 
leading to cuproptosis in TNBC cells. This, in turn, inhibits 
their viability and proliferation (172). Overall, cuproptosis 
plays a crucial role in predicting and treating breast cancer, 
holding significant value for exploring genetic detection 
methods and repurposing existing drugs for anticancer effects.

Importance of ferroptosis for breast cancer cells. In ferrop‑
tosis, the activation status is of the pathway is significantly 
associated with clinical outcomes and intra‑tumor heteroge‑
neity in breast cancer. The detection of NDUFA13 expression 
levels provides a means with which to infer this activation 
status (173). Notably, ferroptosis‑related genes extend beyond 
predicting patient prognosis, also playing an immunologically 
active role in immunotherapy.

For example, compared with normal samples, tumor 
samples exhibit a significantly lower expression of the ferrop‑
tosis‑related gene, HIC1. Notably, HIC1 expression varies 
across different clinical stages of breast cancer. Furthermore, 
HIC1 significantly participates in immune‑related biological 
functions and signaling pathways, with its expression 
being directly associated with the response to PD‑1/PD‑L1 
inhibitors in cancer therapy  (174). Beyond enhancing the 
chemotherapeutic efficacy (as aforementioned), ferroptosis 
can also potentiate radiotherapy in breast cancer. Constructing 
tumor microenvironment‑degradable nanohybrids that 
incorporate ferroptosis in a dual radiosensitization mode 
markedly improves therapeutic efficacy and anti‑metastatic 
efficiency (175). Overall, ferroptosis is significantly associated 
with early breast cancer invasion and recurrence, highlighting 
its importance in treatment comprehensiveness and predic‑
tive accuracy. Not only are ferroptosis‑related genes used for 
patient prognosis, but also channel proteins are being explored 
to further enhance prediction accuracy. Consequently, ferrop‑
tosis provides a multifaceted approach for the treatment of 
breast cancer, capable of augmenting the efficacy of both 
chemotherapy and radiotherapy.

Importance of pyroptosis for breast cancer cells. In cellular 
pyroptosis, certain lncRNAs associated with the pathway 
can predict the prognosis of patients with breast cancer. 
For instance, a higher expression of RP11‑459E5.1 has 
been shown to be associated with a poorer overall survival, 
while high levels of RP11‑1070N10.3 and RP11‑817J15.3 are 
associated with an improved survival  (176). Additionally, 
pyroptosis‑related genes can even predict the potential target 
organs for breast cancer metastasis. The analysis of patients 
with TNBC and brain metastases has revealed significant 
differences in AIM2 and ZBP1 expression between primary 
tumors and metastases. Notably, a high AIM2 expression 
predictsa worse prognosis, while a high ZBP1 expression 
suggests improved outcomes, suggesting their potential as 
biomarkers for TNBC brain metastasis (177). Furthermore, 
chemotherapeutic agents capable of inducing pyroptosis have 
promising potential for use in the treatment of breast cancer. 

Derivatives, such as 3‑acyl isoquinoline‑1 (2H)‑ones can 
trigger GSDME‑mediated pyroptosis, leading to apoptosis 
and inhibiting the proliferation of breast cancer cells without 
harming normal breast cells (178). The unique advantage of 
pyroptosis lies in the ability of related genes to predict meta‑
static organs and the relative lack of toxicity of its associated 
drugs towards normal cells, both contributing to improved 
patient prognosis.

Across cuproptosis, ferroptosis and pyroptosis, various 
molecules can be used to predict the prognosis of patients 
with breast cancer. Additionally, targeting these pathways or 
their mechanisms through drug development presents oppor‑
tunities to enhance treatment efficacy. All three types of 
RCD hold immense potential for future research and breast 
cancer treatment. While ferroptosis research currently 
boasts more applied and comprehensive studies, including 
prognostic prediction encompassing developmental stages, it 
is important to acknowledge the ongoing investigation and 
promise of cuproptosis and pyroptosis as well. Moreover, 
ferroptosis‑related drugs may enhance not only chemotherapy, 
but also radiotherapy, potentially rendering it the first form of 
RCD to reach clinical application.

9. Conclusion and future perspectives

Breast cancer poses a significant threat to human life and 
health. Its growth, development and metastasis are intricately 
linked to the body's own gene regulation and immune defense 
mechanisms. RCD, an intrinsic component of these physi‑
ological programs, plays a crucial role in tumor regulation and 
defense. The academic community is steadily uncovering and 
proposing the regulatory mechanisms of cuproptosis, ferrop‑
tosis, pyroptosis and other forms of RCD in breast cancer. 
The development of novel drugs and ongoing clinical trials 
(presented in Table I) highlight the strong association between 
these pathways and breast cancer, offering a promising new 
direction for research. Several emerging drugs and clinical 
agents have demonstrated the ability to induce RCD in breast 
cancer cells. However, ongoing research is necessary to fully 
understand the potential mechanisms of RCD and further 
explore and test related drugs in clinical trials. By harnessing 
the power of RCD, it is hoped that future advancements in 
treatment can improve treatment efficacy, enhance the quality 
of life, and increase the survival rate of patients with breast 
cancer.
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