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Heterogeneity of primary and metastatic CAFs: From differential
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Abstract. Compared with primary tumor sites, metastatic sites
appear more resistant to treatments and respond differently to
the treatment regimen. It may be due to the heterogeneity in
the microenvironment between metastatic sites and primary
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tumors. Cancer-associated fibroblasts (CAFs) are widely
present in the tumor stroma as key components of the tumor
microenvironment. Primary tumor CAFs (pCAFs) and
metastatic CAFs (mCAFs) are heterogeneous in terms of
source, activation mode, markers and functional phenotypes.
They can shape the tumor microenvironment according to
organ, showing heterogeneity between primary tumors and
metastases, which may affect the sensitivity of these sites to
treatment. It was hypothesized that understanding the hetero-
geneity between pCAFs and mCAFs can provide a glimpse
into the difference in treatment outcomes, providing new ideas
for improving the rate of metastasis control in various cancers.
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1. Introduction

The simultaneous treatment of both primary and metastatic
tumors is the main treatment option following tumor metas-
tasis. However, the treatment for the primary tumor often has
limited efficacy on the metastasis (1), resulting in different
responses. Metastatic and primary tumors show varying
degrees of resistance after several treatments (2,3). Compared
with the metastatic sites of the primary tumors, they often
exhibit a more malignant progression state (4). Accompanying
this is the rapid loss of patient symptom management and
the failure of antitumor treatment. The differential response
of primary tumors and metastases to the treatment may be
related to the heterogeneity in their tumor microenvironments
(TMEj5) (5,6).
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The TMEs are the internal and external micro-landscape
of tumor cells formed by the response of normal organs to
evolving cancer cells, mainly composed of tumor cells, infil-
trating immune cells, cancer-associated stromal cells, such
as cancer-associated fibroblasts (CAFs), endothelial cells and
lipocytes, along with the extracellular matrix (ECM) and
multiple signaling molecules (7). These environmental factors
play a key role in both the development of tumors and their
response to therapy (5). CAFs, as key components of the tumor
microenvironment, have been found to be closely associated
with the heterogeneity between primary tumors and metas-
tases. This heterogeneity may affect the drug resistance of
primary and metastatic sites (8).

CAFs promote tumor proliferation, therapeutic resistance
and immune rejection by secreting growth factors, inflam-
matory ligands and ECM proteins (9-11). Previously, CAFs
were considered cell populations that were not single but
complex subclusters with different functions (9). Significant
heterogeneity in the subsets of CAFs associated with primary
tumors and metastases (pCAFs and mCAFs, respectively) have
been shown to exhibit different sensitivities to treatment (8).
The heterogeneity of pCAFs and mCAFs may be the key to
the different treatment responses of primary tumors and
metastases.

Compared with pCAFs, mCAFs generally have a stronger
ability to shape the ECM, and in immunosuppression and
angiogenesis (12-16). The results of preclinical studies suggest
that targeting mCAFs can alleviate the progression of meta-
static cancer and mitigate therapeutic resistance, indicating
that mCAFs are a promising target for metastatic cancer (17).
Therefore, comparing the heterogeneity between mCAFs and
pCAFs from the biological characteristics is necessary to find
opportunities to target mCAFs. Among them, the identifica-
tion of the cells of origin in CAF subtypes is a central question,
as it may partially determine the functions of distinct CAF
populations (18) (Fig. 1A). Furthermore, fibroblasts heteroge-
neity can be partly explained by variable activation levels of
the resident fibroblasts (RFs) with organ-specific features (19).
The phenotypic heterogeneity of activated CAFs can be
manifested by a wide range of biological markers with selec-
tive expression patterns in the context of specific TMEs (10)
(Fig. 1B). Moreover, the biological heterogeneity of CAFs is
also reflected in secreted molecules, exosomes, transcriptional
features and matreotypes (20,21) (Fig. 1C). The present study
attempted to make sense of the different treatment outcomes
between primary tumors and metastases from the perspec-
tive of heterogeneity and treatment resistance of pCAFs and
mCAFs, identifying treatment opportunities for metastases.

2. Heterogeneity of mCAFs and pCAFs

Lineage-dependent heterogeneity of CAFs. Any cell with prop-
erties associated with ‘activated’ fibroblasts, myofibroblasts
and mesenchymal stem cells (MSCs) can be defined as fibro-
blasts (21). In several experimental models of human tumors,
validation at the transcriptional and protein levels revealed
that differences in the spatial separation of CAF subclasses
could be attributed to their respective sources (22,23),
which is called lineage-dependent heterogeneity (18). In
tumors, various cells, such as RFs, MSCs, including bone

marrow-derived MSCs (BM-MSCs), pancreatic stellate cells
(PSCs), hepatic stellate cells (HSCs), smooth muscle cells,
pericytes, adipocytes, monocytes, mesothelial cells, epithelial
cells and endothelial cells, are activated into CAFs through
different mechanisms (24-31).

The present study summarized the functional convergence
of CAFs from the perspective of their sources and CAFs from
different sources may also have functional synergy (Table I).
HSCs and PSCs share homology and have similar morpholo-
gies and functions (32), CAFs derived from HSCs and PSCs are
prone to stromal deposition (33-35), similar to their function
in mediating tissue fibrosis in non-malignant diseases (36,37).
Tumor-resident MSCs also function in ECM production and
remodeling after activation as CAFs and could partially
promote angiogenesis (38-40). CAFs derived from BM-MSCs
may be involved in angiogenesis and the maintenance of an
inflammatory environment in tumors (41,42). Pericytes are
cells embedded between the capillary basement membrane and
endothelial cells that physiologically regulate vasoconstriction
and source of neovascular walls (43), CAFs from this source
may be predominantly involved in tumor angiogenesis (44).
CAFs undergoing mesenchymal transformation change their
adhesion properties, which is closely related to the enhance-
ment of tumor aggressiveness (45); due to differences in organ
anatomy and physiology, RFs activate CAFs in different ways
via different pathways, differentiating into elusive functional
phenotypes (46-49).

Pancreatic cancer (PDAC), colorectal cancer (CRC), breast
cancer (BC) and lung cancer are malignant tumors character-
ized by high enrichment of CAFs and stromal hyperplasia and
they have received a great deal of attention in the field of CAF
research (50). Here, we take these several types of cancer as
examples to compare the heterogeneity of pCAFs (Fig. 2A)
and mCAFs (Fig. 2B) sources. It is of great significance
in describing the overall picture of CAF composition and
understanding the microenvironment heterogeneity between
primary and metastatic tumors. The screening and ablation of
CAF precursor cells of specific origins may be an effective
means of improving the sensitivity of secondary tumors to
drugs (17).

Main sources of pCAFs and liver mCAFs in PDAC and
CRC. CRC: The main sources of pCAFs in CRC include
RFs and intestinal MSCs (51). CRC cells secrete transforming
growth factor-p (TGF-P) to activate RFs, which are then
converted into smooth muscle actin-a (a-SMA)+ CAFs (52).
Different mouse lineage traces show that most proliferating
a-SMA+ CAFs originate from leptin receptor+ resident cells
during the development of CRC (53). Shinagawa et al (54)
injected PKH-labeled MSC:s into the tail vein of CRC-bearing
mice and detected MSCs in the stroma of both primary
tumor and liver metastases (LMs). By contrast, MSCs were
not detected in non-cancerous tissues, such as normal colon
mucosa and liver, which proves that MSCs are specifically
recruited into the CRC stroma and play an important role in
tumor growth and metastasis (54). In addition, some studies
have shown that epithelial cells, smooth muscle cells and
pericytes are also part of the pCAFs pool in CRC (44,51,55).

PDAC: PSCs produce most of the ECM in PDAC (56) and
were previously considered the main source of myofibroblasts
in PDAC (57). Ohlund et al (58) identified myofibroblastic CAFs
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Figure 1. Heterogeneity of mCAFs and pCAFs. (A) mCAFs and pCAFs come from different sources. (B) mCAFs and pCAFs are activated in different ways.
For example, in PDAC, the precursor of pCAFs are activated by the tumor-secreted TGF-f3 and in LMs, mCAFs are activated by macrophage-secreted granulin.
(C) mCAFs and pCAFs differ in terms of exosomes, transcriptomes, biomarkers, matreotype and soluble molecules. CAFs, cancer-associated fibroblasts;
mCAFs, metastatic CAFs; pCAFs, primary CAFs; TGF-f, transforming growth factor-f; TGF-fR, TGF-f receptor; MicRNA, microRNA.

(myCAFs) as responsible for ECM deposition close to tumors
and inflammatory CAFs (iCAFs) responsible for secreting
inflammatory and chemokines factors far from tumors in KPC
mouse models and human PDAC tissue. Subsequently, through
a three-dimensional co-culture platform of mouse-derived
PSCs and PDAC cells, they found that PSCs can differentiate
into myCAFs and iCAFs in vitro. Moreover, Elyada et al (59)
then corroborated the gene signatures of these two cell types
via single-cell RNA sequencing (scRNA-seq). They identified
antigen-presenting tumor-associated fibroblasts (apCAFs) in
addition to these two cell subtypes, which were specifically
labeled with serum amyloid A3 (Saa3) and expressed MHC-II
class molecules but not co-stimulatory molecules (59). It has
been proposed that apCAFs act as a direct positive regu-
lator of the adaptive immune system to activate T cells (60).
Dominguez et al (61) analyzed apCAFs derived from mesothe-
lial cells by mouse PDAC RNA-seq data, which Huang et al
confirmed via lineage tracing (62).

LMs: Mouse experiments have shown that 95% of liver
myCAFs originate from HSCs and portal fibroblasts (PFs) (63).
In some benign liver diseases, HSCs and PFs are the main
sources of myofibroblasts (64). HSCs play a critical role in
hepatic fibrosis (65), while PFs are the first responders in biliary
fibrosis (66). Through gene tracking, scRNA-seq and Cre-lox
mediated gene deletion methods, Bhattacharjee et al (35)

showed that the CAFs of PDAC LMs mainly originate from
HSCs. Xie et al (67) found the exosomal CD44v6/C1QBP
complex is delivered to the plasma membrane of HSCs,
resulting in the phosphorylation of insulin-like growth factor
1 (IGF-1), leading to HSC activation and liver fibrosis. In
another RNA-Seq analysis of CRC LMs mCAFs, comparing
ECM-CAFs subtypes functioning in ECM remodeling and
collagen (COL) production with fibroblast gene features in the
normal or cirrhotic liver, found that ECM-CAFs significantly
overlap with scar-associated MSCs (SAMes), which express
PFs markers. The Ctr-CAF-I subtype (with contractile func-
tion), which expresses PLN and variants of actin gamma 2,
may originate from vascular smooth muscle cells (VSMCs);
while the Ctr-CAF-II subtype (the average CAF phenotype)
may originate from HSCs (68).

The most common metastatic site for PDAC and CRC is the
liver and some studies have found that the fate of this directed
metastasis appears to be mediated by fibroblasts before the
metastatic event occurs (34,69-71). When genome-wide
transcription data on the heterogeneity of human fibroblasts
between organs were acquired through cDNA microarray
analysis of human skin fibroblast cultures from different
ages and anatomical locations, the fibroblasts were clustered
next to other fibroblasts from the same site rather than cells
from the same individual, which indicates that fibroblasts
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Table I. Continued.

Activation/
recruitment factors

(Refs.)

Function

Markers

Model/Method

Cancer species

Source cells

First author/s, year

Chemotherapy resistance, (225)

a-SMA, EpCAM-/

CD45-

TGF-/ZEB2

IFS

ovarian cancer
(ascites)

Kan et al, 2020

promotes tumor metastasis and

invasion

(226)

Changes cell morphology to
promote tumor proliferation

Whnt/B-catenin vimentin
and invasion

CDX/IHC

CRC (primary)

Yoshimura et al,

2018
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PSC, pancreatic stellate cells; HSC, hepatic stellate cells; MSC, mesenchymal stem cells; AD-MSCs, adipose-derived MSCs; BM-MSCs, bone marrow-derived MSCs; PDAC, pancreatic cancer; CRC,
colorectal cancer; LM, liver metastasis; BC, breast cancer; FN, fibronectin; CAFs, cancer-associated fibroblasts; myCAFs, myofibroblastic CAFs; iCAFs, inflammatory CAFs; IHC, immunohistochem-

istry; IFS, Immunofluorescence staining; CDX, cell derived xenograft; GFP, green fluorescence protein; scRNA-seq, single cell RNA sequencing; RFP, red fluorescence protein; PDGF, platelet-derived

growth factor; PDGFR, PDGF receptor; FGF, fibroblast growth factors; FGFR, FGF receptor; TGF-f, transforming growth factor-g; TGF-BR, TGF-f receptor; SDF-1, stromal cell-derived factor 1; CCL,

chemokine (c-¢ motif) ligand; CCR, C-C chemokine receptor; VEGF, vascular endothelial growth factor; OPN, osteopontin; CXCL, CXC chemokine ligand; mTORC2, mammalian target of rapamycin
complex 2; a-SMA, o smooth muscle actin; PDPN, podoplanin; FAP, fibroblast activation protein; FSP1, fibroblast-specific protein 1; COL-1/3, collagen1/3; ECM, extracellular matrix; HA, hyaluronan;

HGEF, hepatocyte growth factor; MMP, matrix metalloproteinases; IL, interleukin; EGF, epidermal growth factor.

have positional memory characterized by gene expression
patterns (72). LMs have unique and similar morphological
characteristics in PDAC and CRC (35). This may be largely
attributed to liver RFs, including HSCs (73), which have
conserved transcriptional programs in different tumors and
upon tumor progression (18). These persistent TMEs builders
ultimately construct microenvironments that differ from the
primary tumor in LMs.

Lineage-dependent heterogeneity of CRC pCAFs and
LMs mCAFs is easily observable, however, in PDAC; PSCs
and HSCs are known to be homologous and the primary
tumors are characterized by abundant desmoplasia, consti-
tuting up to 90% of the total tumor volume (58), exceeding
the proportion of stroma in LMs (74). One explanation for
this is the presence of other stroma-producing cells in the
pancreas (32). Helms et al (75). conducted fluorescence tracing
on PSCs and found that they only produced a small portion of
myCAFs and PSC ablation still generated a high abundance of
a-S-adenosylmethionine (SAM) + CAFs, suggesting that PSCs
are not the only source of myCAFs They speculated that other
myCAFs in PDAC may originate from other RFs or the bone
marrow (75). Through lineage tracing, Garcia et al (76) found
that resident Glil+ fibroblasts, which are distinct from PSCs
in healthy pancreas, may a source of myCAF populations,
providing clues for this hypothesis.

Main sources of pCAFs and mCAFs in lung cancer.
The lung cancer pCAFs mainly originate from lung RFs
and MSCs. Enhancing the expression of hypoxia inducible
factor-1 in fibroblasts via hypoxia induced the conversion of
normal fibroblasts into CAFs (77). Research indicates that
fibroblasts activated by lung cancer cell conditioned media
lead to an increase in interleukin (IL)-6 production, inducing
epithelial-mesenchymal transition and cisplatin resistance in
non-small cell lung cancer (NSCLC) cells (78). Treatment
with NSCLC-derived factors induce a CAF phenotype in
both normal lung resident MSCs and lung cancer-associated
MSCs (79). One of the most common sites of metastasis in
lung cancer is intrapulmonary metastasis to the ipsilateral or
contralateral lung (80). A study showed that CAF extracellular
vesicles (EVs) can activate lung fibroblasts and induce the
formation of pre-metastatic niches in the lungs (81). Another
study shows that the metastatic cells can bring stromal
components from the primary site to the lungs (82).

Main sources of pCAFs and mCAFs in BC. BC CAFs
have a wide range of sources, primarily including RFs,
BM-fibroblasts, MSCs (including BM-MSCs) and adipo-
cytes (83,84). RFs and BM-MSCs are two more important
sources of CAFs in BC. RNA-seq of pCAFs extracted from
a mouse orthotopic transplantation model showed that podo-
planin+ CAFs had a transcription pattern similar to normal
mammary fat pad fibroblasts, while fibroblast-specific protein
1 (FSP1) was not expressed in normal fibroblasts. Therefore,
FPS1+ CAFs may have been recruited from the periphery (85).
A previous study on adoptive bone marrow transplantation
confirmed that BC recruits large numbers of MSCs that do
not express platelet-derived growth factor (PDGFRa) from the
bone marrow into the primary tumor and lung metastases and
found that CAFs derived from resident CAFs and BM-MSCs
had different abilities in inducing angiogenesis and recruiting
macrophages (41).
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BC bone metastasis mCAFs are mainly derived from
BM-MSCs and primary tumor pCAFs. Specifically, pCAFs
from triple-negative BC (TNBC) produce stromal cell-derived
factor 1 (SDF-1) and IGF-1 to induce bone metastasis of cancer
cells with high Src activity (86), where pCAFs are transferred

to bone marrow together with BC cells under the mediation of
osteopontin (OPN) (87). Tumor cells continue to evolve after
metastasis, but they no longer depend on the primary tumor.
They maintain a state of reduced information exchange due
to physical and chemical barriers, especially in organs such
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as the brain and bone (88). The influence of the bone marrow
microenvironment on bone metastasis is undoubtedly great.
BM-MCSs, as the most important stromal cells in the bone
marrow, differentiate into different cell subsets such as osteo-
blasts, adipocytes, fibroblasts and pericytes (89), playing a
key role in tumor cell homing, bone marrow colonization and
tumor cell dormancy (90). The deleting of Rictor gene reduces
the secretion of IL-6, receptor activator of nuclear factor-kappa
B ligand (RANKL) and TGF-f and inhibits the transition
from BM-MCSs to CAFs, resulting in lower chemotaxis and
less proliferation in TM40D cells (42).

CAFs in BC lung metastases are mainly derived from
lung RFs and BM-MSCs. One study found that the expres-
sion patterns of specific genes in the lung CAFs of mice with
transgenic BC dynamically changed at different metastatic
stages (91). Houthuijzen et al (71) reported that a RF popu-
lation only found in the lungs was transformed into CAFs,
promoting the lung metastasis of BC cells. Raz er al (41) used
B-actin-GFP-PyMT double transgenic mice generated via
adoptive bone marrow transplantation as donors, transplanted
their bone marrow into non-transgenic control mice and found
that GFP-labeled CAFs were specifically recruited in the
primary BC tumors and lung metastases.

Lymph nodes are transit stations for tumor metastasis, but
there have been few reports on the source of CAFs during
lymph node metastasis (Met-LNs). Immunohistochemistry
(IHC) assays showed that pCAFs in BC has similar biomarkers
with mCAFs in matching Met-LNs (92) and only small differ-
ences were found in their transcription profiles (93,94). Such
results suggest that Met-LN mCAFs were derived directly
from pCAFs.

The experiments of Helms ez al (75) revealed that different
CAF precursor cells can differentiate into CAF cell lines of
the same functional type under the action of multiple activa-
tion pathways. Notably, Han et al (95) had the opposite view,
reporting that Tomato-labeled ISL1+ mesenchymal cells in
mouse models of PDAC gradually expanded as the tumor
progressed and eventually developed into a vast majority of
CAFs. They hypothesized that CAFs in the PDAC stroma
are more likely to have a single origin and their diversity
comes from acquired stimulation from their complex micro-
environment (95). This may pose a great challenge to the
lineage-dependent heterogeneity of CAFs. Nonetheless, meta-
static heterogeneity can still be explained by organ-specific
microenvironments.

Differential activation patterns of pCAFs and mCAFs. CAFs
exist in the TEMs as quiescent precursor cells and are abnor-
mally activated to serve tumor proliferation, migration and
drug resistance (Table II). In addition to lineage-dependent
heterogeneity, the heterogeneity between pCAFs and mCAFs
is also reflected in their mode of activation. First, fibroblasts
in metastatic sites can be activated differently from CAFs
in primary tumors (18). For example, macrophages promote
the activation of HSCs into aSMA+ myCAFs which secrete
high levels of periosteal proteins in the LMs of PDAC by
producing granulin (96). CRC exosomal HSPCI111 regulates
the lipid metabolism of HSCs and promotes the formation of
pre-metastatic liver niches (97). Furthermore, even identical
CAF subtypes may exhibit different activation levels in

primary and secondary sites. For example, the liver coloni-
zation of tumors is extremely dependent on TGF-f3 signaling
in the liver stroma (98), which is compatible with the high
ECM stress of the liver. This is because TGF-f is present
in the ECM and binds to latent TGF binding proteins; its
activation and release require mechanical forces acting on
integrin-specific domains (99). TGF-p released under the high
ECM stress in LMs participates in ECM remodeling and EMT
through classical and non-classical pathways and plays a deci-
sive role in cancer cell migration and invasion (100,101). The
positive feedback loop of TGF-f secretion is established by
TGF-f-activated CAFs through the SDF-1/C-X-C chemokine
receptor 4 (CXCR4) signaling pathway (69,102). Some studies
have shown that LMs express more CXCR4 than the primary
tumor (103,104), which confirms the differential activation of
pCAFs and mCAFs.

Notably, while the differences in activation modes between
primary and metastatic CAFs are constantly being discovered,
different CAF activation methods within the same site are also
found in the complex microenvironment. In PDAC,IL-1 induces
leukemia inhibitory factor expression and activates the down-
stream JAK/STAT pathway to transform PSCs into iCAFs,
while TGF-f3 antagonizes this process by downregulating
IL-1R1 expression and promoting myCAF generation (105).
This indicates that there may be mutual antagonistic between
different activation modes for CAFs, which may be the reason
for the differential spatial distribution of these CAF subtypes
in PDAC. The ability to dynamically change with different
environmental stimuli reflects the extremely strong plasticity
of CAFs, which may be one of the reasons why the source of
CAFs so far remains elusive (106).

Differential expression levels of biomarkers in pCAFs and
mCAFs. In most cases, CAF markers used are not considered
to be representative of their functional heterogeneity and
this is because CAFs lack unique markers, as most of them
are also expressed in other cells (107). The classification of
CAFs with known markers only compensates for the current
lack of understanding on this topic, although combinatorial
labeling improves the sorting accuracy of CAFs in complex
environments (20). It should be noted that the classification
of functional CAF subsets using markers is not as clear as
that of immune cells. Additionally, due to the presence of
different functional subtypes of CAFs, a single marker is not
sufficient to distinguish them effectively. When attempting to
generalize the prognostic value of the complete CAF popula-
tion without distinguishing the effects of the heterogeneous
CAF subgroups, contradictory results may be obtained (106).
Nevertheless, a number of studies have investigated the prog-
nostic value of commonly used CAF biomarkers in various
types of cancer (108). Similarly, the differential expression
of common markers in mCAFs and pCAFs has also been
reported (8,109,110).

Different in fibroblast activation protein (FAP). FAP is a
type II transmembrane serine protease with both dipeptidyl
peptidase and endopeptidase activity. It is expressed in ~90%
of CAFs and is a hallmark of CAF activation (111). Studies
have shown that FAP+ CAFs promote tumor progression,
ECM degradation, tumor invasion, angiogenesis and immune
suppression (112,113). Brain metastases from multiple types of
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primary tumors uniformly show high levels of FAP expression
and no association of histological type (114), therefore, FAP
may serve as a broad therapeutic target for brain metastasis.

As the most promising therapeutic target and radiotracer,
FAP has become the focus of CAFs research in recent
years (115,116). FAP inhibitors (FAPi) based on quinoline
have been used as tracers for positron emission tomography
and computerized tomography (PET-CT) diagnosis. FAPi
can specifically bind to FAP and be internalized by CAFs.
68Ga, 177LU or 18F can chelate it and be fed back as image
information through imaging systems for the diagnosis
and identification of tumors (111). FAPi is characterized
by high intratumoral uptake and rapid in vivo clearance.
Various types of FAPi have since been developed and
compared head-to-head with fluorodeoxyglucose (FDG)
PET-CT, showing that FAPi tracers are more advantageous
in discovering some primary, lymph node, or metastatic
tumors (112,115,117). However, the sample sizes of these
studies are very limited and there is still no convincing
evidence of which tumor types or which metastatic organs
are more appropriate to FAPi. However, it is important to
improve the detection rate of early tumors and accurately
determine the tumor stage to positively influence clinical
decisions. Serfling et al (118) established a positive corre-
lation and significance between FAP targeted expression
and FAPi PET standardized uptake values (SUVs). In their
study, 15 patients underwent 68Ga-FAPi-46 PET-CT scans
to determine the biodistribution of 68Ga-FAPi-46 in various
tissues (117). After subsequent surgical treatment, FAP
expression was scored on the excised samples and the results
showed a positive correlation between FAP IHC scores and
the 68Ga-FAPi-46 SUVmax and SUVmean (119). In addition,
Serfling et al (118) suggested that FAPa Met-LNs expression
was correlated with lesion size. Sollini et al (120) reasoned
that the relatively low performance of 68Ga-FAPi in
detecting Met-LNs reported in some studies may be related
to the low enrichment of CAFs within the lymph nodes.
The SUVs of FAPi PET/CT reflects the expression of FAP
in CAFs to a certain extent. This is an important means to
compare marker heterogeneity between pCAFs and mCAFs.
Data on the SUVs of primary tumors and metastatic tumors
regarding FAPi PET-CT were collected and compared in
order to find partial correlations. Disappointingly, research
on FAPi tracers is still in its infancy. Moreover, factors
such as their wide variety, insufficient sample size and the
majority of studies being pan-cancer samples prevent the
comparison of the data comprehensively. Although some
meta-analyses have demonstrated the diagnostic advantages
of FAPi tracers (120), this is not the focus of the present
study. However, the present study still showed some results
suggesting the possibility of differential expression of FAP
between pCAFs and mCAFs (Table III).

Differences in a-SMA. a-SMA is a marker used to distin-
guish activated fibroblasts (95). Fibroblasts are activated to
express a-SMA under inflammatory conditions, exhibit a
hypercontractile phenotype and play a central role in wound
healing (121). CAFs express high levels of a-SMA and are
considered to be ‘wounds that do not heal’. In tumors, a-SM A+
CAFs have been proven to be the main players in ECM
modification, which is closely related to the integrin signaling

cascade (9). Although previous studies have reported a-SMA+
CAFs secretion as a key regulator of cancer progression,
therapeutic resistance and immunosuppression (83,122,123),
the deletion of a-SMA-related genes and the targeted pharma-
cological inhibition can lead to a low reduction in survival and
tumor differentiation and to an increase in angiogenesis and
cachexia in mouse model of PDAC (18). Gui et al (8) found
that BC metastases have a high expression of a-SMA. This is
consistent with the results reported by Kwak et al (124), who
found that patients with a high expression of CAF markers in
their primary tumors also showed an tendency of higher of it in
metastases, suggesting the possibility that mCAFs came from
pCAFs. Notably, similar to the report of Serfling ez al (118) on
FAP, Itou ef al (125) found that the distribution of a-SMA is
also related to the size of LNs in Met-LN samples of intra-
hepatic cholangiocarcinoma, which is rare in micro-Met-LNs
a-SMA, conversely, abundant a-SMA+ cells were found in
macro-Met-LNs (118).

Differences in FPSI, PDPN and PDGFR. FPSI,
PDPN and PDGFR are also commonly used as markers of
CAFs (84). FSP1, also known as S100A4, is a common CAF
marker. aFAP+ FSP1+ CAFs in human neuroblastoma were
associated with M2-type macrophage, which enhances the
proliferation and survival of neuroblastoma cells in vitro and
stimulates implantation and growth of neuroblastoma tumor
in vivo (126). FSP1+ fibroblasts accumulate around the carcin-
ogen where they produce COLs, encapsulating carcinogen
methylcholanthrene and protecting epithelial cells from DNA
damage (127). Compared with FSP1, the expression of PDPN
in various tumors is more consistent, as PDPN+ CAFs predict
unfavorable prognosis in patients with various types of solid
tumors, including stage IV lung cancer, bladder cancer and
PDAC (128-130). PDGFRa/B+CAFs are able to induce polar-
ization of M2 macrophages (29) and a PDGFR inhibitor called
crenolanib has been shown to inhibit the growth of lung cancer
cells in vivo (131). Research on PDGFR as a possible target for
cancer therapy continues.

Among 64 patients with lung squamous cell carcinoma,
47 had a high level of PDPN expression in the primary
stroma but 27 patients had a high level of PDPN in Met-LNs;
univariate analysis found that only high PDPN expression in
Met-LNs was significantly associated with prognosis (132).
Koo et al performed immunohistochemical staining on
different metastatic sites of BC and observed that FSP1
expression was significantly elevated in bone metastases
while it was significantly reduced in LMs. The expression
of PDPN was significantly elevated in bone metastasis and
PDGFR expression was elevated in bone and lung metas-
tases, but significantly reduced in LMs (109). These results
prove that markers are expressed in different proportions in
different metastatic sites. In one study, TNBC 4T1 cells were
injected in situ into the breast fat pad of immunocompetent
BALB/c mice, at week 4, it was observed that the proportion
of PDPN+ CAFs, which originally accounted for 70% of the
total CAFs, was reduced to 23% in the primary tumor, while
FSP1+ CAFs, which originally accounted for 30%, increased
to 77%. Notably, two FSP1+ CAF subtypes that were not
observed in the primary tumor appeared in lung metastases
and were shown to express IL6 and CXC chemokine ligand 1
(CXCL1), respectively (85).
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Table III. Continued.

Metastatic tumors

Primary tumor

SUVmean/max (Refs )

Sample size

Metastatic organ

Sample size SUV..can

Cancer type

Tracer type

First author/s, year

KOU et al: HETEROGENEITY BETWEEN METASTATIC AND PRIMARY CAFs

44(29,8.5)

Liver

6.0 (3.6, 8.6)
114 (74,192)

58(29,11.4)

10

Peritoneum

Subcutaneous

Bone

10

SUVs, standardized uptake values; FAPI, fibroblast activation protein inhibitor; FDG, fluorodeoxyglucose; SUV, standard uptake value.

The heterogeneity of CAFs from the perspective of scRNA-seq
CAFs subtypes distinguished by transcriptional charac-
teristics. Recent advances in scRNA-seq have allowed for a
comprehensive profiling of the complexity and heterogeneity
within the CAF subpopulations across various tumor entities
(Table IV). Some reviews have examined the organ-specific
features of CAFs and summarized the transcriptomic infor-
mation of CAFs in different organs with ECM-remodeling,
inflammation and immunity and antigen presentation (133,134).
However, CAF subtypes do not exhibit universality across
different tumor types, even though the classical myCAF and
iCAF subtypes have been described in PDAC, BC and cervical
cancer (59,135,136). scRNA-seq technology has the drawback
of losing spatial information, resulting in incomplete informa-
tion on the correlation between different CAF subtypes and
the anatomical location of tumors. At the same time, the
loss of temporal information makes it difficult to present the
evolutionary trajectory of CAF subtypes. The integration of
scRNA-seq and microarray-based spatial transcriptomics
methods and pseudotime inference might be able to partially
solve these issues (137,138). It is hypothesized that a more
comprehensive understanding of the heterogeneity of CAFs
will provide innovative solutions for cancer treatment and
enable clinical applications.

Heterogeneity in the transcriptional features between
pCAFs and mCAFs. The differences in transcriptional levels
between mCAFs and pCAFs are being described as RNA-seq
technology matures (23,139). The transcription profiles of
MSCs obtained from bone metastases in BC are significantly
different from those of CAFs obtained from the primary
site (93). RNA-Seq for BC primary tumors and paired brain
metastases yielded 48 differential gene expression signatures,
most of which were those of immunity and fibroblasts (139).
Similarly, another study noted the differential upregulation of
genes associated with ECM remodeling and BM-derived cell
recruitment in lung mCAFs compared with BC pCAFs (41).
Within PDAC samples, Liu ef al (140) found large changes in
fibroblast subclasses at succeeding stages of PDAC progres-
sion, with the emergence of specific subclasses when cancer
trespasses stroma to metastasize to proximal lymph nodes
(stage IIA to IIB) and gene expression analysis showed
increased expression of cytoskeletal protein and inflammatory
cytokines when transition to IIB, indicating that tumor growth
and metastasis are strictly regulated by genes.

Heterogeneity in microRNA profiles between pCAFs and
mCAFs. MicroRNAs (miRNAs or miRs) are non-coding
RNAs which can disrupt mRNA expression (141). Tumor cells
can deliver miRNAs to CAFs through exosomes, promoting
the malignant phenotype of CAFs (142). As expected, there
are also differences between the miRNA profiles of pCAFs
and mCAFs. Upon exposure to estrogen, the number of
miRNAs upregulated or downregulated in skin mCAFs
in BC is three times that in pCAFs (143), but the biological
effects of these differentially expressed miRNAs need further
verification. In advanced CRC, the differential expression of
miR-21 between the center of the primary tumor and distant
metastases is common (144). There were five upregulated
and six downregulated miRNAs in the exosomes of mCAFs
with peritoneal metastasis in ovarian cancer, among which
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miR-29¢c-3p downregulation was the most significant and
positively correlated with patient overall survival (OS) (145).

Different secretomes of pCAFs and mCAFs. CAFs continu-
ously release soluble molecules into the ECM to provide
information feedback and functionally regulate the microen-
vironment (18,20). The biological characteristics of primary
tumors and metastases are inseparable from cytokines secreted
by pCAFs and mCAFs. CXCR4 is a G-protein-coupled
receptor, which is little expressed if at all in normal cells,
but dysregulated and aberrant in a number of tumors (146).
The best characterized ligand that binds and activates
CXCR4 is stromal SDF-1 (147). SDF-1/CXCR4 signaling has
serious consequences on cancer cell differentiation, prolif-
eration, invasion, metastasis and angiogenesis (148). Several
studies have found that high expression of SDF-1/CXCR4
signaling is associated with high density of CAFs in tumor
stroma (103,149). Tan et al (69) observed that there were more
CXCR4+ cells at the LMs tissues Compared with the CRC
primary sites. Maintenance of the SDF-1 gradient by the BC
primary tumor is independently controlled by both miR-126
and miR-126*, which show a significantly lower expression in
metastatic tissue compared with primary tumor tissue (150).
Dai er al (149) detected a higher CAFs density in metastatic
lesions than those in primary tumor site from human ovarian
cancer tissues, however, no significant difference of SDF-1a
production from CAFs was found between primary and
metastatic lesions. This may require further validation of
CXCR4 expression and regulation through methylation and
acetylation (146). CAFs secrete leucine-rich a-2-glycoprotein
1 (LRG1) through the IL-6/Janus tyrosine kinase 2/signal
transducer and activator of transcription 3 (IL-6/JAK2/STAT?3)
pathway (151). The expression of LRGI1 is significantly
upregulated in CRC LMs, making LMs more aggressive (151).
In another study, increased aggressiveness was also found to
be associated with high phosphoribosyltransferase expression
in LMs (152). The secretome of mCAFs in peritoneal metas-
tases of CRC mainly comprises insulin-like growth factor
binding protein 2, CXCL2 and SDF-1, while pCAFs secrete
higher levels of matrix metalloproteinases (MMP), chemokine
(c-c¢ motif) ligand 8 (CCL8) and CCLI11 (153). Proteomic
analysis showed that, compared with primary ovarian cancer
tumors, 62 proteins in omentum metastases were signifi-
cantly up- or downregulated, among which the expression of
N-methyltransferase (NNMT) was significantly altered (104).
NNMT transfers an active methyl group from SAM to nico-
tinamide to produce S-adenosylhomocysteine, the loss of
which leads to decreased histone methylation, which affects
gene expression (104). In another experiment, the difference
between ovarian cancer primary tumors and metastases was
also validated, where mCAFs were hypothesized to express
higher levels of Jaggedl and cause peritoneal metastases to
produce more vascular endothelial growth factor (VEGFA) and
cyclin-dependent kinase inhibitor p21 (CDKNI1A) (154). The
methylation of metabolic genes NQOI and ALDH1a3 induced
in LMs downregulate the mRNA expression of metabolic
genes in CAFs, however, compared with normal lung fibro-
blasts, the gene methylation levels of NQO-1 and ALDH1a3 in
fibroblasts isolated from lung metastases remained at baseline
levels (155).

Heterogeneity in the matreotype of pCAFs and mCAFs. In a
cross-comparison analysis conducted via RNA-seq, the differ-
ential expression of ECM-related genes is the main feature of
transcriptome heterogeneity in inter-organ fibroblasts (156).
Different types of COL and glycoproteins crosslink with each
other to form a stable ECM network. The post-translational
modification of matrix components in various organs via
hydroxylation, glycosylation, transglutamination, sulfation,
crosslinking, cleavage and degradation further modulates
these features (14), such changes happen dynamically on a
time scale from seconds to minutes. In this way, the various
matrix components expressed through time and space are
called the matreotype of the tissue (157). In the PDAC
mouse model, after the fibrogenic gene Sonic hedgehog was
deleted, the tumor stroma was significantly reduced, but the
tumor acquired enhanced angiogenesis and invasive capabili-
ties (158). This suggests that in early stages of tumorigenesis,
fibroblastic reactions orchestrated by CAFs within the TMEs
envelop the tumor cells, inhibiting their growth and spread.
However, as tumor stromal components continue to evolve
during the course of tumorigenesis, the further modification
of the behavior of CAFs helps their tumor-promoting proper-
ties (159). Notably, the tumor-promoting and tumor-restraining
abilities of CAF at different stages of tumor progression can
both be induced by TGF-f3 (9). In the early stages of tumors,
TGF-f primarily promotes fibroblast proliferation to inhibit
metastasis and as CAFs evolve, TGF-f can also induce CAFs
to promote metastatic events such as EMT (160).

CAFs modify ECM differently in different metastatic
organs (161), For example, pyruvate has previously been
shown to promote hydroxylation in the ECM by enhancing the
activity of the enzyme COL prolyl-4-hydroxylase, promoting
the stability of the matrix in lung metastases of BC (162).
Peptidylarginine deiminase 4 (PAD4) can modify arginine
residues into citrulline in the presence of Ca*" and proteomic
analysis shows that PAD4 is more abundant in the LMs matrix,
enhancing the colonization of CRC cells in the liver (163). In
addition, tumor ECM drives the positive feedback of matrix
deposition and hardening through TGF-f-mediated COL
enrichment, lysine oxidase (LOX)-mediated COL hyper-cross-
linking and the CAFs contraction-induced activation of the
Yes-associated protein/WW domain containing transcription
regulator 1 (YAP/TAZ) and myocardin-related transcription
factor A (MRTF-A) pathways to transform the compliance,
stiffness, porosity, viscoelasticity and biochemical properties
of the ECM (14,164,165). Shen et al (12) used atomic force
microscopy and observed that the tissue hardness of LMs was
higher than that of CRC primary lesions. Large RNA-seq data
show that CAFs were more abundant in primary CRC tumors
than in LMs, but contractile cluster 3 was only expressed in
LMs (166). Furthermore, some independent laboratories have
obtained significantly different results in the determination of
hyaluronic acid (HA) content in PDAC primary tumors and
metastases (167,168).

However, several experiments by Ueno et al (169) and
Ao et al (170,171) revealed similarities in the desmoplastic
reaction of CRC primary tumors, LMs and Met-LNs and
they are equivalent in prognostic evaluation. These studies
yielded different results, possibly due to differences in the
sample size, staining methods and the selection of different
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metastatic sites. A technique called in situ tissue decellulariza-
tion of tissues may help eliminate systematic errors and more
objectively evaluate the ECM in various biological contexts.
This method preserves the structural ECM of tissues while
efficiently removing cells, preventing tissue collapse and using
natural tissue and organ vasculature (172). Furthermore, the
authors verify that the ECM obtained using this technique
does not differ from that of fresh tissue in terms of distribution
and orientation, fiber gaps, fiber integrity and fiber diam-
eter (172). Using this technology, Mayorca-Guiliani et al (172)
constructed a natural lung metastasis ECM structure map
and reproduced the whole process of lung metastasis ECM
remodeling in a mouse model.

The heterogeneity between pCAFs and mCAFs in the
plasma membrane, cytoplasm, exosomes and the nucleus has
been extensively characterized, deepening our understanding
of the differences in the microenvironments of primary
tumors and metastases. However, most of the data collected
focused on the differences between NFs and CAFs or CAFs
in metastatic and nonmetastatic primary tumors (85,173-175),
which is conducive to highlighting metastasis-inducing
factors. Pseudo-time RNA-seq analysis using matched normal
tissue around the tumor, primary tumor and metastatic
tumor to simulate pre-tumorigenesis, early-stage tumors and
advanced-stage tumors, respectively, has shortcomings in
effectively simulating the dynamic changes of CAFs during
tumor evolution (18). However, it is an excellent model to
describe the spatial heterogeneity of pCAFs and mCAFs after
metastasis occurs, which helps to explore more about this in
the future.

3. Differential therapeutic response mediated by pCAFs
and mCAFs

Molecular mechanisms underlying the differential treatment
outcomes. We have previously discussed the differences
between pCAFs and mCAFs from multiple aspects of their
biological characteristics and their abilities in shaping the
microenvironment of primary and metastatic tumors. When
facing treatment pressure, the microenvironment of metastatic
tumors provides more efficient protection for the survival
of tumor cells (8). mCAFs may make metastatic tumors
relatively more drug-resistant through EMT or sustaining
cancer stemness (Fig. 3B). Gui ef al (8) isolated eight CAFs
from normal tissues, primary tumors and multiple metastatic
tumors of patients with BC Co-culture in vitro has shown that
mCAFs can enhance the proliferation, migration and inva-
sion of BC cell lines. The team further verified the resistance
of mCAFs to treatment and their results showed that tumor
cells co-cultured with mCAFs exhibited stronger doxorubicin
resistance than pCAFs and observed that mCAFs induced
tumor cells to undergo EMT and express more tumor stem
cell markers (8), which may be one of the mechanisms under-
lying the stronger drug resistance in metastases (176,177).
Comparison of the gene expression profiles of pCAFs and
mCAFs revealed multiple significantly differentially expressed
genes, of which IGF2 was the most significantly enriched (8).
The overexpression of IGF2 was shown to play a key role in
chemotherapy resistance (178). Mukherjee et al (154) discov-
ered that when CAFs differentially overexpressing Jaggedl

were co-cultured with ovarian cancer cells, the Notch3 signal
increased with the increase in the expression level of Jaggedl.
Peritoneal metastasis mCAFs obtained from ascites have been
shown to express higher levels of Jaggedl than the primary
tumor (154). Further experiments show that CAFs affect the
expression of VEGFA and CDKNIA through Jagged1/Notch3,
increasing the proportion of tumor stem cells and resistance to
cisplatin (154).

In addition, CAFs and immune cells are the main
supporting cell populations in solid tumors and there is exten-
sive functional interaction between them (7). Although pCAFs
and mCAFs can crosstalk with immune cells in various ways,
affecting their chemotaxis and polarization, and regulating the
immune response in the TMEs (60,179), mCAFs may achieve
protective effects against metastases through stronger immu-
nosuppressive effects (Fig. 3C). A RF population that highly
expresses cyclooxygenase-2 has been shown to exist only in
the lung, where it promotes the lung metastasis of BC cells
and inhibits the antigen presentation function of BM dendritic
cells (71). CRC peritoneal metastasis mCAFs have a different
secretome from pCAFs as the macrophages displayed expres-
sion profiles associated with T cell biology with a pronounced
shift to a type 2 immune response and T cell tolerance (153).
Similarly, peritoneal metastases mCAFs have been found in
mouse models of gastric cancer to induce macrophage M2
polarization, resulting in low infiltration of CD8+ T cells (16).

Heterogeneity of matreotype affects the drug response. Most
anti-tumor resistance studies focus on exploring the underlying
molecular mechanisms. However, the limited distribution of
drugs in tumors is often ignored. Drug penetration efficiency
directly can affect drug efficacy and its influencing factors
involve the ECM, vascular structure and hemodynamics (180).
It is well known that the ECM forms a physical barrier that
greatly impedes drug delivery (180). Some studies have
described the heterogeneity in physical properties between
the primary and metastatic stroma and the difference in the
matreotype may be the key to the differences in the response of
different metastatic organs to anti-tumor treatment (12,74,181)
(Fig. 3A).

Studies have proven that stromal mechanical stress can
guide the directed differentiation of naive MSCs (182). For
example, vascular progenitor cells with low and high stiff-
ness differentiate into endothelial and smooth muscle cells,
respectively, under the mediation of integrin (181). In another
study, the effects of load initiation time, magnitude and mode of
mechanical force on the formation of microvascular networks
were also simulated (183). This means that primary tumors
and metastases produce different the microvascular system in
different matreotypes. For example, despite tumor vasculariza-
tion, irregular vascular networks enhance blood fluid resistance
in mouse models of LMs, leading to capillary collapse within
metastases and limiting the tumor perfusion of drugs (13).
Furthermore, stromal hyperplasia and a lack of blood supply
have been shown to lead to a series of malignant events, such as
hypoxia, in the deep tumor (182). Hypoxia has been previously
found to be an important cause of treatment resistance (184).

In addition, the deposition of ECM traps immune cells in
the tumor stroma and increases their resistance to infiltration
into the tumor parenchyma (14). Gertych et al (15) observed
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Figure 3. mCAFs provide an efficient protective environment for metastases. (A) The thickened ECM of metastases forms a physical barrier for drug penetra-
tion and immune cell infiltration. (B) mCAFs highly express IGF2 and Jagged], activate downstream pathways, promote the secretion of IFN, VEGFA,
CDKNIA and collagen and upregulate the expression of stem cell and mesenchymal markers in metastatic cells. (C) mCAFs secrete soluble factors to inhibit
the polarization and chemotactic functions of immune cells. CAFs, cancer-associated fibroblasts; mCAFs, metastatic CAFs; pCAFs, primary CAFs; ECM,
extracellular matrix; IGF, insulin like growth factor; CDKNIA, cyclin-dependent kinase; IGFR, IGF receptor; RAF, mitogen-activated protein kinase; MEK,
mitogen-activated protein kinase kinase; ERK, extracellular regulated kinase; NICD, Notch intracellular domain; CSL, DNA-binding transcription factor;
VEGFA, vascular endothelial growth factor A; IFN, interferon; SNAI, snail family transcriptional repressor.

that there was a difference in the proportion of CAFs in
primary tumors and metastases and the differences in the
matreotypes between the two were determined by COL11A1+
CAFs, although there is high CD8+ T cell infiltration in metas-
tases, they are excluded by the proliferating ECM, resulting in
a lower survival rate.

Notably, some studies have found that high intratumoral
drug concentrations do not improve anti-tumor effi-
ciency (185,186). Hence, the role of the TMEs as a physical
barrier for drug delivery becomes worth re-examining.
Hessmann et al (74) observed that KPC tumors had more
CAFs and stromal hyperplasia than LMs and they found
that CAFs captured 2',2'-difluorodeoxycytidine-5'-tri-
phosphate (dFACTP), an active metabolic component of
gemcitabine, thereby reducing the chance of gemcitabine
contact with tumors, resulting in PDAC primary tumors
with lower sensitivity to chemotherapy than matched LMs.
This demonstrates that the response of CAFs to the highly
selective pressure exerted by chemotherapy is pluralistic,

which may explain why successful treatments targeting the
ECM are difficult.

4. Potential therapeutic opportunities targeting mCAFs

Metastases are almost incurable and are the underlying cause
of mortality in most patients with cancer (10). The fact that
mCAFs cause metastasis treatment resistance makes it a
promising therapeutic target (17). Eliminating or balancing
the differences between mCAFs and pCAFs may be an
effective treatment method (8,154). As aforementioned, most
of the differences between primary tumors and metastases
are ‘more and less’ rather than ‘presence or absence’, which
means that treatments targeting the differences between them
not only improve the sensitivity of metastases also benefit
primary tumors. Although targeting mCAFs in mouse models
or cell experiments is emphasized, when these drugs are used
in human trials, there is more hope of achieving simulta-
neous remission of both the primary and metastatic tumors.
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Therefore, the present study did not emphasize whether the
new therapeutic agents of clinical trials are mCAFs or pCAFs.

Restoration quiescence or apoptosis induction of mCAF
precursor. Different metastatic organs have specific sources of
CAF precursor cells; therefore, directly killing these precursor
cells or restoration of their quiescence in the target organ can
eliminate or attenuate their malignant effect on the metastatic
microenvironment (10,187) (Fig. 4B). Bhattacharjee et al (35)
depleted HSCs in triple transgenic mice through the injection
of diphtheria toxin (DT) and the TdTomato reporter gene
showed that 97% of the HSCs were depleted. In the PDAC and
CRC mouse models, the depletion of HSCs led to a significant
reduction in the area of LMs. The natural compound curcumin
induces HSC senescence by activating peroxisome prolifer-
ator-activated receptor y and promoting P53 expression (188).
In a recent study, the targeted biomimetic nanoparticle-based
delivery of all-trans-retinoic acid in resting HSCs improved
artificially induced liver fibrosis in mice (189). Although
numerous chemicals, herbs and their bioactive extracts have
been proven to promote the apoptosis of HSCs, at present,
no recognized HSC-depletion drugs have been approved for
clinical use (187). Hence, there is still a long way to go in
developing mCAF-derived treatments for metastases.

Targeting differentially expressed markers in mCAFs.
Identifying the proportional expression of markers in
primary tumors and metastases is a prerequisite for
accurately targeting metastases. However, sufficient
epidemiological evidence or clear molecular mechanisms
regarding independent prognostic markers are necessary.
FAP is probably the most reliable marker, as large studies
have shown that the high expression of FAP is an indepen-
dent prognostic marker for poor prognosis in ovarian cancer,
lung cancer, PDAC, hepatocarcinoma and CRC (113,190).
Therapeutic strategies for FAP, including FAP-activating
drugs, DNA vaccines, anti-FAP chimeric antigen receptor
redirected T cells, radionuclide-based approaches and FAP
antibodies conjugated with toxins, have been reported to be
effective in clinical and preclinical studies (111,113,115,191)
(Fig. 4A). FAP-4-1BBL has bispecific antibody activity
that can act on both FAP and the co-stimulatory molecule
4-1BBL and has been designed to provide costimulatory
signals to immune effector cells selectively within the
tumor (192). FAP-4-1BBL co-stimulates T cells in ex vitro
in patient-derived tumor tissues, additionally the combina-
tion of carcinoembryonic antigen-targeted T cell bispecific
antibody and FAP-4-1BBL in mouse models can induce
the infiltration of CD8+ T cells and tumor regression (192).
Subsequently, the first-in-human study of the FAP-4-1BB
agonist RO7122290 was initiated in patients with advanced
solid tumors, however, the study was not designed to demon-
strate differences between single-agent and combination
therapy (193). A case report described a patient with BC
and brain metastases who experienced a decrease in the
intensity of headaches after 4 weeks of FAPi targeted radio-
therapy (194). In other studies, radiotherapy strategies based
on the high expression of FAP and FAPi may create a new
integrated tumor diagnosis/treatment model in the future.
High FAPi expression on FAPi-46 PET-CT was a criterion

of consideration for peptide-targeted radionuclide therapy
following two cycles of "Lu-FAPi-46 targeted therapy. In
the selected patients, 12 of the 18 advanced patients were
stable disease with no significant change in clinical condi-
tion but the remaining six progressed (195). Another group
conducted a similar study (196). Unfortunately, these studies
did not provide the information on local response status in
each patient, so it is unknown whether the therapeutic benefit
was correlated to the SUVs and whether low FAP expression
implies resistance to FAP-targeting therapy.

Targeting the matrix of metastases. The penetration
efficiency of drugs in tumors directly affects the drug
concentration in contact with tumors. The means of targeting
the ECM mainly include adjusting the modification state to
inhibit ECM deposition, reducing the production of COL to
soften tumors and directly shearing the ECM (Fig. 4C). For
example, inhibiting citrullination can reduce LMs growth
in CRC (163). As an important active enzyme for ECM
crosslinking, LOX can also achieve tumor anti-fibrosis by
inhibiting it (197). Hepatic fibroblasts express angiotensin 11
(Angll), a component of the RAS system. AnglI activates
the AngllI type I receptor (AT1R) to undergo liver fibrosis
through downstream JAK?2 signaling (198). Using patient
samples and atomic force microscopy, Shen er al (12) found
that tissue stiffness is higher in LMs than in primary CRC.
Highly activated mCAFs increase tissue stiffness, which
enhances angiogenesis and anti-angiogenic therapy resis-
tance. Drugs targeting the LMs mCAFs RAS system inhibit
fibroblast contraction and ECM deposition, thereby reducing
LMs stiffening and increasing the anti-angiogenic effects of
bevacizumab (12). The use of valsartan in the treatment of
spontaneous lung metastases of BC in mouse models inhibits
the production of fibronectin and vimentin and reduces
the occurrence of lung metastases (199). Another phase II
clinical trial of FOLFIRINOX in combination with losartan
has also achieved promising results as a neoadjuvant therapy
for locally advanced unresectable PDAC (200). These studies
demonstrate the anti-tumor efficacy of reduction of ECM
stiffness, however, there seems to be little therapeutic break-
through in clinical trials involving the direct degradation
of the ECM. PEGPH?20, is a polyethylene glycol hyaluroni-
dase and early research has found that it can increase the
distribution concentration of antitumor drugs in primary
and metastatic tumors by degrading HA in the ECM (201).
However, PEGPH20 combined with standard regimens for
advanced PDAC has failed in multiple clinical trials. Some
hypothesize that using only one ECM-degrading enzyme
may be the reason for not meeting the expected clinical
outcomes (202). However, this does not explain the negative
results of the phase IB/II trial of PEGPH20 in combination
with FOLFIRINOX in patients with metastatic PDAC (203).
This is more likely due to the fact that ECM degradation
products have a similar structure to some growth factors and
they can bind to the corresponding receptors and activate
downstream signaling pathways (14). Another clinical trial
investigated AG in combination with PEGPH20 in the treat-
ment of advanced PDAC. Although the combination group
showed an increased objective response rate, it did not show
improved OS or progression-free survival (204). Meanwhile,



22 KOU et al: HETEROGENEITY BETWEEN METASTATIC AND PRIMARY CAFs

Metastatic tumor cells

A |
IGF2R SDF-1
IL-1B ———
/.' ° \..0 6 ...
o ° ' e
FAPi o o BI836845 o ° AMDﬁWOO\. ° anakinra—___
00 ©

o
L]
FAP\? IGF2 T CXCR4\0%° SiRNA silencing LR —9

COoL
MMP

HA

LOX

N I » [ LOX
Apoptosis curcumin  precursor ATRA N
CAF

inhibitor

PEGPH20

RS h! integrin

- IL-1
D ’ | IL-1R

99 :
=& =& T - RO LN
Tranilast ——— 9 s

. L./ SDF-‘I\. l, Ptgs2 :L

(] PGE2 )
) AMD3100 o © EP2/4 o © Neutrophils
9 © \' ° inhibitor 0.
————————— CXCR4 —— Y o /\r ’
EP2/4
(- -
P Macrophage T cell Dendritic cell T cell

Macrophage

Figure 4. Potential therapeutic opportunities by targeting mCAFs. (A) Blockage of highly expressed signaling molecules or receptors in mCAFs. FAPi can
directly target the FAP on the surface of CAFs and exert cytotoxic effects on CAFs by chelating radioactive isotopes and toxins. Using inhibitors such as
BI836845, AMD3100 and anakinra to block the corresponding receptors can cut off the signaling communication between metastatic tumors and mCAFs;
Similarly, silencing key genes such as LTBP2 can also achieve the objective. (B) Depletion or reversal of mCAFs; curcumin can induce HSC apoptosis and
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crosslinking for antifibrotic and antitumor effects or degradation of hyaluronan components by the PEGPH20 is able to reduce the interstitial fluid pressure
of the tumor, leading to an increase in drug delivery. Although MMP is an endogenous collagenolytic enzyme, a number of studies have demonstrated its
involvement in the degradation of the ECM, which provides a migratory path for tumor metastasis. (D) Relieving the immunosuppression effect of mCAFs
and increasing T cell infiltration. Tranilast reduces M2 macrophage polarization by inhibiting SDF-1 secretion. The use of AMD3100 to competitively inhibit
the SDF-1 receptor can increase the infiltration of CD8+ T cells into the ECM. IL-1b secretion from neutrophils can enhance Ptgs2 expression and PGE2
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reverses the immunosuppressive phenotype in BMDCs. mCAFs, metastatic cancer-associated fibroblasts; FAPi, FAP inhibitor; FAP, fibroblast activation
protein; CAFs, cancer-associated fibroblasts; IGF2, insulin like growth factor 2; IGF2R, IGF2 receptor; SDF-1, stromal cell-derived factor 1; CXCR, C-X-C
chemokine receptor; TGF-f, transforming growth factor-f; TGF-pR, TGF-f receptor; LTBP2, Latent TGF-f binding protein-2; CCL, chemokine (c-c motif)
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it was shown to increase the risk of thromboembolism, which Therapies targeting the matrix can also enhance the inva-
requires prophylaxis with heparin. Hence, from a number of  sion of immune cells in metastases, which can be achieved by
perspectives, PEGPH?20 is not an optimum treatment choice.  blocking the SDF-1/CXCR4 signaling axis in the case of BC
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metastasis (103) (Fig. 4D). Through modifications, some drugs
with direct tissue penetration have also been developed (205),
including lipophilic liposomes, albumin preparations,
water-soluble prodrug preparations and nanocrystals (206).
These modifications have been shown to enhance the precise
delivery of drugs in the complex ECM environment of
metastases.

Other treatment strategies. Directly targeting the up- or
downstream pathways of mCAFs is another method to
relieve the drug tolerance of metastases, which is related
to the crosstalk between mCAFs and metastatic tumor cells
(Fig. 4A). Gene silencing or receptor blocking of IGF2
can effectively inhibit the promoting effect of mCAFs
on the growth of metastatic tumors (8). CXCR4 is highly
expressed in LMs from BC and CRC and the CXCR4 inhib-
itor AMD3100 has been shown to alleviate desmoplasia
in metastases (69,103). CXCR4 blocking has also been
observed to sensitize the mBC tumors to immune checkpoint
blockers (103). Similarly, silencing LRG1, which is highly
expressed in LMs, can significantly reduce tumor migration
and invasion (151). IL-1R knockout mice have demonstrated
that IL-1f secreted by tumors can induce bone mCAFs to
secrete SDF-1, promoting bone metastasis and this effect
can be blocked by the IL-1 inhibitor anakinra (207).
ECM-CAFs make up a high proportion in LMs, especially
at the center of LMs, and promote vascular growth and
tumor proliferation by secreting LTBP2; siRNA-mediated
silencing of LTBP2 expression can regulate the phenotype
of ECM-CAFs (68). Tranilast inhibits the production of
SDF-1 in the myCAF cell line LmcMF in a mouse peritoneal
metastasis model of gastric cancer, reducing the infiltration
of M2 macrophages and leading to apoptosis of cancer cells
by an immune response (208). However, the LmcMF cell
line used in that study completed peritoneal implantation
via intraperitoneal injection and may not represent the true
source of mCAFs in peritoneal metastases. Although a large
number of positive results have been obtained in laboratory
studies, large-scale clinical trials are needed to provide
direct evidence for blocking the upstream and downstream
signals of mCAFs to improve the control rate of metastases
and reveal a new avenue for advanced treatment in various
tumors.

5. Conclusion

The reason why the present study emphasized the heterogeneity
of pCAF and mCAF is because CAFs are the main cellular
components in ECM and the frequent information exchange
between different ‘personalities’. CAFs with tumor cells result
in great differences between metastasic and primary TMEs,
ultimately showing different resistance in treatment. The
present study described these differences in terms of origin,
activation patterns, markers, matreotype, cytokines and
transcriptome profiles.

In fact, there are a number of differences between pCAFs
and mCAFs that may explain the low treatment responsiveness
of metastases and some studies eliminated these differ-
ences to enhance the sensitivity of metastases to treatment
options (8,12). However, one should pay attention to the fact

that differences in the distribution of various CAF subsets
exist even within the primary tumor, the best examples being
the tumor center and the invasion front (124). Furthermore,
CAFs have a very clear stage-dependent heterogeneity and
the identity and prevalence of the various CAF subtypes
present in a tumor or metastatic site change in response to
normal, inflammatory, precancerous and malignant states,
including anticancer treatment (18). These characteristics
of CAFs also change as tumor growth progresses (85). The
heterogeneity of pCAFs and mCAFs presented in the present
review is only a cross-section at a certain point in time.
Therefore, it is necessary to rely on new culture methods and
observation methods to comprehensively and clearly describe
the succession process and role of CAFs in the progression of
the entire tumor.

Therapies targeting CAFs are currently being developed,
including methods such as blocking ECM deposition and
remodeling, directly targeting tumor-promoting CAFs, or using
the plasticity of CAFs to engineer them into tumor-suppressing
phenotypes (10). Most of these treatment strategies have failed
because the heterogeneity of CAFs in different cancer types,
tumor stages and metastasis sites makes these treatment
methods one-sided (106), requiring a more comprehensive
understanding of the role of CAFs within tumors. Future treat-
ment options for advanced tumors may not only consider the
molecular type of the tumor but also comprise more elaborate
individualized treatment strategies which consider the hetero-
geneity of pCAFs and mCAFs. Some challenging questions
lie ahead, such as the criteria for identifying the heteroge-
neity between mCAFs and pCAFs. Additional treatment for
metastases will inevitably increase patient intolerance, so that
screening for highly effective, low-toxicity sensitizers becomes
particularly important. In addition, the timing of metastasis
treatment and the choice of local or systemic treatment still
needs to be solved urgently.

In conclusion, considering the biological heterogeneity of
pCAFs and mCAFs, the present study provided a new perspec-
tive on the differential outcomes of primary and metastasis
tumor treatment, revealing their key role in shaping different
TME:s. It also explored possible means to improve the clinical
treatment of metastases, providing new ideas for advanced
anti-tumor treatments.
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