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Abstract. GGAA motifs in the human TP53 and HELB gene 
promoters play a part in responding to trans‑resveratrol (Rsv) in 
HeLa S3 cells. This sequence is also present in the 5'‑upstream 
region of the human CDC45 gene, which encodes a component 
of CMG DNA helicase protein complex. The cells were treated 
with Rsv (20 µM), then transcripts and the translated protein 
were analyzed by quantitative RT‑PCR and western blotting, 
respectively. The results showed that the CDC45 gene and 
protein expression levels were induced after the treatment. To 
examine whether they were due to the activation of transcrip‑
tion, a 5'‑upstream 556‑bp of the CDC45 gene was cloned 
and inserted into a multi‑cloning site of the Luciferase (Luc) 
expression vector. In the present study, various deletion/point 
mutation‑introduced Luc expression plasmids were constructed 
and they were used for the transient transfection assay. The 
results showed that the GGAA motif, which is included in a 
putative RELB protein recognizing sequence, plays a part in the 
promoter activity with response to Rsv in HeLa S3 cells.

Introduction

Cell division cycle 45 (CDC45) is a component of the CMG 
complex, which contains MCM2‑7 and GINS and plays a 

role as an essential helicase in DNA replication in eukaryotic 
cells (1). The CDC45 protein, recruiting single‑stranded DNA 
binding protein replication protein A (RPA) (2), is required for 
restriction of excess processing of the replication fork (3‑5). In 
yeast, DNA damage induces Rad53, of which the homologue 
is CHCK2 in human cells and which causes phosphorylation 
of CDC45 to inhibit both initiation and elongation processes 
of the DNA replication (6). In addition, it has been shown 
that the human DNA helicase B (HDHB/HELB), which plays 
a part in DNA end resection (7), associates with RPA (8,9) 
and CDC45 (10). At the process of inter‑strand crosslinks, 
FANCM associates with the CDC45‑MCM complex while 
the GINS are released (11). Downregulation of GINS complex 
formation inhibits DNA replication, arresting the cell cycle at 
G1 phase (12). On the other hand, overexpression of the CDC45 
causes replication stress, including S‑phase arrest, replication 
fork stalling and eventually apoptosis (13). These observations 
suggest that well balanced expression of the CDC45, func‑
tioning together with HELB, RPA and CHEK2, is essential for 
the regulation of DNA replication initiation, which also affects 
the DNA repair system in eukaryotes. However, it is not fully 
understood how the CDC45 gene expression is controlled. To 
elucidate the gene expression regulatory mechanism, 556‑bp of 
the 5'‑upstream region of the CDC45 gene was cloned by PCR 
and it was ligated into a luciferase (Luc) expression plasmid, 
which was used for transfection and Luc reporter assay. 
The results showed that the 556‑bp functions as a promoter 
with response to trans‑resveratrol (Rsv) in HeLa S3 cells. 
Analysis of the sequence using the NCBI human genomic 
database revealed that the 556‑bp is a bidirectional promoter, 
containing not only the putative transcription start site (TSS) 
of the CDC45 gene, but also the oppositely transcribed ubiq‑
uitin recognition factor in the ER‑associated degradation 
1‑encoding UFD1 gene (14). Notably, the UFD1 protein is 
involved in the CMG helicase disassembly process (15). The 
556‑bp human CDC45 gene promoter contains duplicated 
GGAA and GC‑box elements (16,17), which are the target of 
the ETS family (18) and Sp1/Sp3 (19) transcription factor (TF) 
proteins, respectively. Previous studies showed that they coop‑
eratively regulate the transcription of the HELB and MCM4 
genes in response to Rsv in HeLa S3 cells (20,21).
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In the present study, various deletion/point mutations 
were made on the 556‑bp region to show which elements 
are essential for the promoter activity with the positive 
response to natural compound Rsv. Additionally, reverse 
transcription‑quantitative (RT‑q) PCR and western blotting 
were performed to examine whether the transcripts and the 
translates of the CDC45 gene accumulated following Rsv 
treatment of HeLa S3 cells. Collectively, the present study 
aimed to reveal molecular mechanisms that drive the CDC45 
gene promoter in accordance with induction of the HELB and 
MCM4 gene expression in Rsv treated HeLa S3 cells.

Materials and methods

Materials. trans‑Resveratrol (Rsv; cat. no. CAS501‑36‑0) was 
purchased from Cayman Chemical Company (20‑22).

Cells and cell culture. Human cervical carcinoma (HeLa S3) 
cells (Institute of Medical Science, Tokyo University) (23) 
were grown in Dulbecco's modified Eagle's medium (DMEM; 
Nacalai Tesque, Inc.) (20‑22) and supplemented with 10% fetal 
bovine serum (FBS; Biosera) and penicillin‑streptomycin at 
37˚C in a humidified atmosphere with 5% CO2.

Construction of Luc reporter plasmids. The Luc reporter plas‑
mids, carrying 556‑bp, which contains a TSS of the human 
CDC45 gene, was constructed by the slight modification of a 
previously described procedure (20‑22,24). Briefly, PCR was 
performed with the hCDC45‑9123/AhCDC45‑9679 primer 
pair (Table I) and genomic DNAs that were extracted from 

HeLa S3 cells. The amplified DNA fragment was treated 
with HindIII and then ligated into the multi‑cloning site of 
pGL4.10[luc2] (Promega Corporation). The resultant plas‑
mids, containing the 556‑bp fragment in a correct orientation, 
was named pGL4‑CDC45‑556. Similarly, other Luc reporter 
plasmids were constructed by ligating a PCR‑amplified DNA 
fragment into the HindIII site of pGL4.10[luc2]. The sense 
and anti‑sense primers used for the amplification of the 
DNA fragments are shown in Table II. Nucleotide sequences 
were confirmed by a DNA sequencing service (FASMAC, 
Greiner Japan Inc.) with Rv or GL primers (20‑22,24). The 
Luc reporter plasmids, pGL4‑HDHB and pGL4‑MCM4, were 
used as Rsv‑inducible positive control vectors (20,21).

Transcription factor binding sequence analysis. The nucleotide 
sequence of the cloned 556‑bp DNA fragment was subjected 
to analysis of human transcription factor binding elements by 
JASPAR 2020 (http://jaspar2020.genereg.net/).

Transient transfection and Luc assay. Luc reporter plasmids 
were transfected into HeLa S3  cells by a DEAE‑dextran 
method in 96‑well plates as previously described (25) and 
after 24 h of transfection, the culture medium was changed 
to Rsv (20 µM) containing DMEM with 10% FBS. After a 
further 24 h of incubation, cells were collected and lysed with 
100 µl of 1X cell culture lysis reagent, containing 25 mM 
Tris‑phosphate (pH 7.8), 2 mM DTT, 2 mM 1,2‑diaminocy‑
clohexane‑N,N,N',N',‑tetraacetic acid, 10% glycerol and 1% 
Triton X‑100 and then mixed and centrifuged at 12,000 x g for 
5 sec. The appropriate concentration and duration of treatment 

Table I. Sequences of the primers for amplifying 5' upstream regions of the human CDC45 gene.

Primer	 Sequence (5'→3')

hCDC45‑9123	CCCAA GCTTAATGCAACGAAGAAACCCCGC
hCDC45‑9184	 TTTAAGCTTAAGCCGGTACGCCCCAGAGGCTCACC
hCDC45‑9191	 TTTAAGCTTACGCCCCAGAGGCTCACCGGAAGTGC
hCDC45‑9191M	 TTTAAGCTTACGCCCCAGAGGCTCACCCCAAGTGC
hCDC45‑9234	 TTTAAGCTTAGGGGGGGTGCCCGGGACAAAGCGTC
hCDC45‑9234M	 GCTAAGCTTAGGTGCGCTGCCCGGGACAAAGCGTC
hCDC45‑9246	 TTTAAGCTTCGGGACAAAGCGTCGGCTGCA
hCDC45‑9285	 GCCAAGCTTGGCTCTAAAACACCCTCAGTAGAAGC
hCDC45‑9386	 GCCAAGCTTCGTGTTGACAGTATTCCCCTCCAGAC
hCDC45‑9386M1	 GCCAAGCTTCGTGTTGACAGTATTGGCCTCCAGAC
hCDC45‑9386M2	 GCCAAGCTTCGTGTTGACAGCATTCCCCTCCAGAC
hCDC45‑9477	 TTCAAGCTTCAGCCATCGAGGACTCGGGCGGAACT
AhCDC45‑9679	 TTTAAGCTTGCGACGCTGGGCGGACATCTT
AhCDC45‑9639	 GATAAGCTTACTGCCTCCCACTGGGAACCCTCAGG
AhCDC45‑9632	 GCCAAGCTTCCCACTGGGAACCCTCAGGGAAAGTA
AhCDC45‑9632MM	 GCCAAGCTTCCCACTGCCAACCCTCAGCCAAAGTA
AhCDC45‑9584	 GGCAAGCTTCTCAGTCACATACCCAATGGGGCAGC
AhCDC45‑9515	 GGTAAGCTTGTAGCTTAGTTCCGCCCGAGTCCTCG
AhCDC45‑9493	 GGTAAGCTTCCTCGATGGCTGAAGCAGAGGCAGTC
AhCDC45‑9426	CCCAA GCTTGGCCCTACTAAATTCGTCTGG

Shaded nucleotides indicate mutations that disrupt the c‑ETS and GC‑box consensus sequence motifs.
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with Rsv had been determined by MTS and Luc assay, respec‑
tively  (24). The supernatant was stored at ‑80˚C. The Luc 
assay was performed with a Luciferase assay system (Promega 
Corporation) and relative Luc activities were calculated as 
described previously (25).

Western blotting. Cells were collected after Rsv‑treatment 
and lysed in a RIPA buffer (20 mM Tris‑HCl (pH 7.4), 0.1% 
SDS, 1% TritonX100, and 1% sodium deoxychlate). Protein 
amount was analyzed with Bio‑Rad Protein Assay Dye 
Reagent Concentrate (Bio‑Rad Laboratories, Inc.) according 
to the manufactures protocol. After SDS‑PAGE (15% acryl‑
amide) (15‑25 µg proteins/lane) and blotting onto a PVDF 
(Immobilon‑P) membrane as previously described (20‑22), 

Blocking was carried out in a Blocking solution, which is a 
TBS containing 1% Skim milk (Megmilk Snow Brand), at 
4˚C for 15 h. Western blot analysis was carried out with anti‑
bodies against CDC45 (cat. no. 11881, Cell Signaling, Danvers, 
MA) (1:1,000), and β‑actin (cat. no. A5441; MilliporeSigma) 
(1:1,000) at 20˚C for 1 h, followed by the incubation with 
horseradish peroxidase‑conjugated anti‑rabbit (cat. no. A0545) 
(1:10,000) or anti‑mouse IgG (cat.  no. A 9917) secondary 
antibodies (Sigma‑Aldrich; Merck KGaA) (1:10,000) at 20˚C 
for 1 h in a TBS containing 1% TritonX100 and 2.5% Skim 
milk. Signal intensities were detected with ImmunoStar LD 
(FUJIFILM Wako Pure Chemical Corporation) and quantified 
with a ChemiDoc image analysis system and ImageLab 6.0 
software (Bio‑Rad Laboratories, Inc.).

Table II. Primer pairs used for amplifying 5' upstream regions of the human CDC45 gene. 

Plasmid	 Sense primer	A nti‑sense primer

pGL4‑CDC45‑556	 hCDC45‑9123	A hCDC45‑9679
pGL4‑CDC45‑D1	 hCDC45‑9184	A hCDC45‑9679
pGL4‑CDC45‑D2	 hCDC45‑9234	A hCDC45‑9679
pGL4‑CDC45‑D3	 hCDC45‑9246	A hCDC45‑9679
pGL4‑CDC45‑D4	 hCDC45‑9285	A hCDC45‑9679
pGL4‑CDC45‑D5	 hCDC45‑9386	A hCDC45‑9679
pGL4‑CDC45‑D6	 hCDC45‑9477	A hCDC45‑9679
pGL4‑CDC45‑D1	 hCDC45‑9124	A hCDC45‑9639
pGL4‑CDC45‑D2	 hCDC45‑9125	A hCDC45‑9584
pGL4‑CDC45‑D3	 hCDC45‑9126	A hCDC45‑9515
pGL4‑CDC45‑D4	 hCDC45‑9127	A hCDC45‑9493
pGL4‑CDC45‑D5	 hCDC45‑9128	A hCDC45‑9426
pGL4‑CDC45‑D11	 hCDC45‑9184	A hCDC45‑9639
pGL4‑CDC45‑D21	 hCDC45‑9234	A hCDC45‑9639
pGL4‑CDC45‑D31	 hCDC45‑9246	A hCDC45‑9639
pGL4‑CDC45‑D12	 hCDC45‑9184	A hCDC45‑9584
pGL4‑CDC45‑D22	 hCDC45‑9234	A hCDC45‑9584
pGL4‑CDC45‑D32	 hCDC45‑9246	A hCDC45‑9584
pGL4‑CDC45‑D33	 hCDC45‑9246	A hCDC45‑9515
pGL4‑CDC45‑D34	 hCDC45‑9246	A hCDC45‑9493
pGL4‑CDC45‑D42	 hCDC45‑9285	A hCDC45‑9584
pGL4‑CDC45‑D43	 hCDC45‑9285	A hCDC45‑9515
pGL4‑CDC45‑D44	 hCDC45‑9285	A hCDC45‑9493
pGL4‑CDC45‑D52	 hCDC45‑9386	A hCDC45‑9584
pGL4‑CDC45‑D53	 hCDC45‑9386	A hCDC45‑9515
pGL4‑CDC45‑D54	 hCDC45‑9386	A hCDC45‑9493
pGL4‑CDC45‑442	 hCDC45‑9191	A hCDC45‑9632
pGL4‑CDC45‑442_M1	 hCDC45‑9191M	A hCDC45‑9632
pGL4‑CDC45‑442_1M	 hCDC45‑9191	A hCDC45‑9632MM
pGL4‑CDC45‑442_M1M	 hCDC45‑9191M	A hCDC45‑9632MM
pGL4‑CDC45‑399	 hCDC45‑9234	A hCDC45‑9632
pGL4‑CDC45‑399_M2	 hCDC45‑9234M	A hCDC45‑9632
pGL4‑CDC45‑399_2M	 hCDC45‑9234	A hCDC45‑9632MM
pGL4‑CDC45‑399_M2M	 hCDC45‑9234M	A hCDC45‑9632MM
pGL4‑CDC45‑D54_M3	 hCDC45‑9386M1	A hCDC45‑9493
pGL4‑CDC45‑D54_M4	 hCDC45‑9386M2	A hCDC45‑9493
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RT‑qPCR. RNA extraction, cDNA synthesis, and qPCR 
were performed according to the manufacturer's protocol. 
First‑strand cDNAs were synthesized with ReverTra Ace 
(Toyobo Life Science), random primers (Takara Bio, Inc.) 
and total RNAs extracted from HeLa S3 cells, which were 
cultured 1 to 5x106  cells/φ 10  cm dish. PCR analysis was 
carried out using a Mx3000P Real‑Time qPCR System 
(Stratagene; Agilent Technologies, Inc.) (20‑22). cDNAs were 
added to the Thunderbird Realtime PCR Master Mix (Toyobo 
Life Science), containing 0.3 µM of each primer pair. The 
primer pairs for amplifying the human CDC45 and GAPDH 
transcripts were hCDC45‑820: GAC​TGC​ACA​CGG​ATC​TCC​

TT/AhCDC45‑949: TCT​GTC​CAT​GCA​CAG​ACC​AC and 
hGAPDH556/hGAPDH642 (20‑22), respectively. Amplification 
was carried out initially for 1 min at 95˚C, followed by 40 cycles 
at 95˚C (15 sec) and 58˚C (30 sec). Quantitative PCR analysis 
for each sample was carried out in triplicate. Relative gene 
expression values were obtained by normalizing threshold cycle 
(CT) values of target genes in comparison with CT values of the 
GAPDH gene using the 2‑ΔΔCq method (26).

Statistical analysis. Standard deviations (S.D.) for each data 
were calculated and results are shown as means ± S.D. from 
three independent experiments. Statistical analyses were 

Figure 1. Characterization of the human CDC45/UFD1 bidirectional promoter region. (A) The nucleotide sequence of the 556‑bp fragment that was obtained 
from PCR is shown. The most upstream 5' end of the human CDC45 (XM_011530416.1/XM_024452278.1 and XM_011530417.3/XM_011530418.3) and 
UFD1 (NM_001035247.3, NM_005659.7/NM_001362910.2zcDNAs are designated by red and blue arrows, respectively. The most upstream of the CDC45 
gene transcript variants X2/X3 is designated as nucleotide number +1 and that of the X4/X5 and the UFD1 transcript are shown by arrows on ‑188 and ‑267, 
respectively. Putative transcription factor‑binding sites were predicted by the JASPAR2020 database program and they (relative score >98%) are indicated 
by arrows on or under the sequence. The ‘ETS family’ includes ELK1, ELK3, ELK4, ERF, ERG, ETS1, ETS2, ETV1, ETV3, ETV4, ETV5, ETV6, FEV, 
FLI1, GABPA and SPI1. (B) Luc reporter plasmids, pGL4.10[luc2], pGL4‑MCM4‑309, pGL4‑CDC45‑556 and pGL4‑HDHB were transfected into HeLa 
S3 cells, which were treated with or without Rsv (20 µM) for 24 h. Results show relative Luc activities compared with that of pGL4‑PIF1‑transfected and 
Rsv‑non‑treated cells. Results are shown as means ± standard deviation from at least three independent experiments. Statistical analysis for the results between 
Rsv‑treated and DMSO‑treated control cells was performed with the Student's t‑test **P<0.01 vs. DMSO. Luc, luciferase; Rsv, trans‑resveratrol.
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performed with the Student's t‑test and asterisks indicate values 
of *P<0.05, **P<0.01 and ***P<0.005. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Characterization of the human CDC45 promoter region. 
Duplicated GGAA motifs in the HELB and MCM4 
promoters respond to Rsv  (20,21), which can up‑regulate 
the NAD+/NADPH ratio in HeLa S3 cells (27). The HELB 
is known to interact with CDC45 that associates with MCM 
helicase to develop the CDC45‑MCM‑GINS complex (1,12). 
To examine whether the CDC45 promoter responds to 
Rsv accompanied with the HELB and MCM4 promoter, 
the present study amplified and isolated the 556‑bp of the 
5'‑flanking sequence of the CDC45 gene by PCR. Sequence 
analysis revealed that the pGL4‑CDC45‑556 contained a 
nucleotide identical to NCBI Sequence ID NC_000022.11 
(nucleotide from 19419724‑19479679) and that it covers 
the sequence of the most upstream 5' end of the cDNA 
(Sequence IDs: XM_011530416.1 and XM_024452278.1, for 
CDC45 gene transcript variants X2 and X3, respectively and 
XM_011530417.3 and XM_011530418.3, for transcript vari‑
ants X4 and X5, respectively; GENE ID, CDC45: 8318). This 
556‑bp region also contains a 5' upstream end of the UFD1 
mRNAs (sequence ID: NM_001035247.3, NM_005659.7 and 
NM_001362910.2; GENE ID, UFD1: 7253) in a reverse orien‑
tation to that of the CDC45 gene. The TSS was tentatively set 
as +1 at the most upstream 5' end of the CDC45 transcript 
variants X2 and X3. The JASPAR2020 database program 
(jaspar.genereg.net/) indicated that the consensus recognition 
sequences of several known transcription factors are present 
within the 556‑bp (Fig.  1A). This DNA sequence has no 
obvious TATA box or CCAAT motif but contains putative 
binding sites of ZNF93 (‑321 to ‑307), ETS family (‑275 to 

‑266), ZNF28 (‑246 to ‑237), SOX10 (‑232 to ‑227, ‑55 to ‑50, 
‑30 to ‑25), ZNF143 (‑35 to ‑20), SOX18 (‑31 to ‑24), YY1 
(+2 to +7), FOXC1 (+125 to +132) and SPI1 (+166 to +171). 
To examine whether the 556‑bp DNA fragment functioned 
as a promoter, Luc reporter plasmids, pGL4‑HDHB  (20), 
pGL4‑MCM4 (21) and pGL4‑CDC45‑556, were transiently 
transfected into HeLa S3 cells. All the relative Luc activities 
of the plasmids‑transfected cells increased after the addition 
of Rsv to the cell culture (Fig. 1B). Based on this observation, 
it was decided to examine the CDC45 gene/protein expression 
and promoter activity.

Effects of Rsv on CDC45 gene expression and its protein 
amount in HeLa S3 cells. Next, total RNAs were extracted 
from cells after adding Rsv to the culture medium and 
RT‑qPCR was carried out (Fig. 2). The relative gene expression 
of CDC45 compared with that of the GAPDH gene increased 
approximately two‑fold at 2 to 4 h after Rsv treatment. western 
blotting showed that the amount of CDC45 protein accumu‑
lated from 16 to 48 h after the treatment (Fig. 3).

Determination of Rsv‑response element(s) in the CDC45 
promoter. To examine the Rsv‑responsive sequence, deletion 
from the 5' and 3' ends of the 556‑bp CDC45 promoter region 
was introduced into the pGL4‑CDC45‑556 (Fig. 4A and B). 
The positive response to Rsv was observed in the cells that 
were transfected with pGL4‑CDC45‑D5. On the other hand, no 
apparent Luc activity was detected in pGL4‑CDC45‑D6‑trans‑
fected cells (Fig. 4A), indicating that the region from ‑96 to ‑6 
functions as a CDC45 gene promoter that positively responds to 
Rsv. In addition, comparing the Luc activities of the cells trans‑
fected with pGL4‑CDC45‑D4 and ‑D5, it was suggested that 
the region from ‑55 to +12 is essentially required for CDC45 
promoter activity and its positive response to Rsv (Fig. 4B). 
Because the deletions from ‑358 to ‑299 or ‑248 (Fig. 4A) and 
from +198 to +159 (Fig. 4B) gave higher Luc activities, these 
regions may have negative regulatory element(s). The dele‑
tion from +158 to +104 from D11 and D12 constructs raised 
the basal promoter activity, suggesting that the 56 nucleotide 
contains negative elements) (Fig. 4C). Other deletions both from 
the 5'‑ and 3'‑ were examined in a similar transfection experi‑
ment (Fig. 4D). However, apparent Luc activities with positive 
response to Rsv were observed in cells that were transfected by 

Figure 2. Effects of Rsv on CDC45 gene expression. The culture medium of 
HeLa S3 cells was changed to DMEM (containing 10% FBS) with 20 µM 
of Rsv (orange columns). Blue columns represent control cells that were 
cultured without Rsv. Cells were harvested after 0, 2, 4, 8, 16 and 24 h of 
treatment. Total RNAs were extracted from cells and synthesized cDNAs 
were subjected to reverse transcription‑quantitative PCR with primer pairs 
to amplify CDC45 and GAPDH transcripts. The results show the relative 
CDC45/GAPDH gene expression ratio from four independent experiments. 
Statistical analysis for the results between Rsv‑treated and non‑treated cells 
was performed with the Student's t‑test. **P<0.01. Rsv, trans‑resveratrol; 
DMEM, Dulbecco's modified Eagle's medium.

Figure 3. Effects of Rsv on CDC45 protein amount in HeLa S3 cells. HeLa 
S3  cells were collected after 0 to 48 h of Rsv (20 µM) treatment. The 
extracted proteins were separated by a 15% SDS‑PAGE and western blot‑
ting was performed with primary antibodies against CDC45 and β‑actin 
(upper and lower rows, respectively). The signal of each band was quantified 
and the results show the relative CDC45/β‑actin expression ratio compared 
with that of the non‑treated control cells (0 h treatment). Results are shown 
as means ± standard deviation from three independent experiments. Rsv, 
trans‑resveratrol.
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these plasmids, including pGL4‑CDC45‑D54, which has the 
shortest 108‑bp sequence. The obtained results totally showed 
that the region from ‑96‑+12 functions as a minimum promoter 
that has Rsv response.

Introduction of point mutations on the CDC45 promoter. To 
indicate the Rsv‑responsive sequence more precisely, point 
mutations were introduced to the CDC45 promoter (Fig. 5). To 
examine the contribution of the GGAA (TTCC) motifs (ACC​
GGA​AGT; ‑275 to ‑267 and ATA​CTT​TCC​CTG​AGG​GTT​CCC​
AGT​G; +124 to +148) and the GC‑box (GGA​GGG​GGG​TGC​C; 
‑249 to ‑237) to the drug response, point mutations were intro‑
duced on pGL4‑CDC45‑442 and ‑399 (Fig. 5A). Transfection 
and Luc assay showed that most mutation‑introduced plasmids 
had a positive response to Rsv. However, the response was much 
reduced in pGL4‑CDC45‑399‑M2 and ‑M2M‑transfected cells 
(Fig. 5A), suggesting that the GC‑box, which was predicted as 
ZNF28 recognition sequence by JASPAR2020 program, plays a 
part in the regulation of CDC45 transcription.

Next, the minimum core Rsv‑responding 108‑bp from 
‑96 to +12 was examined to see whether it contained a 
Rsv response element(s) (Fig. 5B). Previous studies on the 
human HELB, MCM4 and TP53 gene promoters showed that 
a GGAA (TTCC) motif plays a primarily important role in 
the response to Rsv (20‑22). Therefore, it was hypothesized 
that the GGAA (TTCC) core motif also regulates the 
CDC45 promoter activity. However, no TF‑binding sites 
with GGAA (TTCC) were indicated by the JASPAR2020 

program when the threshold was set at 98% (Fig.  1A). 
Therefore, the present study examined setting the threshold 
at 95%. This time, the putative RELB binding sequence, 
which is located just 3'‑downstream of the MEIS1 binding 
motif was indicated (Fig. 5B). Compared with the wild type 
pGL4‑CDC45‑D54, mutation in the pGL4‑CDC45‑D54_M3 
reduced the Luc activity, but a positive response to Rsv was 
still observed (Fig. 5B). On the other hand, the response 
was completely abolished in the pGL4‑CDC45‑D54_M4. 
These results suggested that the sequence between putative 
MEIS1 and RELB recognition sites is of primary impor‑
tance for the CDC45 promoter activity and the positive 
response to Rsv.

Discussion

The present study showed that treatment with Rsv (20 µM) 
induced CDC45 gene and protein expression in HeLa S3 cells. 
Deletion and mutation analyses revealed that the putative 
RELB binding sequence was required for the CDC45 promoter 
activity to positively respond to Rsv. 

The CDC45‑UFD1 bidirectional promoter has been 
isolated and characterized to suggest a putative TATA‑box 
within the region (28). Although the TATA‑like sequence, 
TTTTATAGG (from ‑129 to ‑122) is contained in the 
pGL4‑CDC45‑D5 construct, it does not have promoter 
activity (Figs. 4 and 5B), indicating that the sequence is not 
essential for CDC45 promoter in HeLa S3 cells. The 556‑bp, 

Figure 4. Effect of Rsv on human CDC45 promoter activity. (Left panels) The 5' upstream end of the human CDC45 gene, which has been ligated upstream 
of the Luciferase gene of the pGL4.10[luc2], is shown. The 5'‑end of the cDNA of the X2 and X3 transcript variants is designated +1. The GGAA (TTCC) 
and GC‑box elements are schematically shown. (Right panels) Luc reporter plasmids were transiently transfected into HeLa S3 cells and treated with 
(closed bars) or without (open bars) Rsv (20 µM) for 24 h. (A) Transfection was performed with (A) pGL4‑CDC45‑556, pGL4‑CDC45‑D1, ‑D2, ‑D3, 
‑D4, ‑D5 and ‑D6, (B) pGL4‑CDC45‑556, pGL4‑CDC45‑D1, ‑D2, ‑D3, ‑D4, ‑D5 and ‑D6, (C) pGL4‑CDC45‑556, pGL4‑CDC45‑D11, ‑D21, ‑D31, ‑D12, 
‑D11 and ‑D32, (D) GL4‑CDC45‑556, pGL4‑CDC45‑D32, ‑D33, ‑D34, ‑D42, ‑D43, ‑D44, ‑D52, ‑D53 and ‑D54. Luc activities were normalized to that 
of the pGL4‑PIF1‑transfected cells. Histograms show relative Luc activities of deletion‑introduced plasmid‑transfected cells compared with that of the 
pGL4‑CDC45‑556‑transfected cells without Rsv treatment. Results are shown as means ± standard deviation from three independent experiments. Statistical 
analysis for the results between Rsv‑treated and non‑treated cells was performed with the Student's t‑test. *P<0.05, **P<0.01 and ***P<0.005. Rsv, trans‑
resveratrol; Luc, luciferase.
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containing TSSs of both genes, possesses a duplicated GGAA 
(TTCC) motif, which is contained in the promoter regions 
of many genes that encode DNA repair and genome main‑
tenance factors (16,29). The duplicated GGAA motif in the 
human TP53 promoter has been shown to have an essential 
role to respond to Rsv in HeLa S3 cells (22). However, the 
duplicated GGAA (TTCC) (from +124 to +148) in the 556‑bp 
of the human CDC45 promoter seems to be non‑essential 
(Fig. 5A). The GC‑box, which is a Sp1‑recognitionsequence 
that is commonly contained in the HELB and MCM4 promoter 
regions, serves a part in the response to Rsv (20,21). However, 

the Rsv‑responding sequence from ‑96 to +12 (Fig. 5B) does 
not contain any GC‑boxes or GC‑box like motifs. In the 
present study, the functional transcription promoter with the 
response to Rsv was shown to be present in the sequence 
5'‑CAGTATTCCCCTCC‑3' (‑88 to ‑75), which overlaps with 
the MEIS1 and RELB recognition motifs (Fig. 5B). MEIS1 
gene expression is prominently suppressed when THP‑1 cells 
are induced to differentiate into monocyte‑macrophage‑like 
cells by 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA) (30). In 
murine myeloid cells, MEIS1 acts as a suppressor of granu‑
locyte colony stimulation factor‑induced differentiation (31). 

Figure 5. Effect of point mutations on the CDC45 promoter. (A) Point mutations on the GGAA motifs or GC‑box were introduced in the 449‑bp and 406‑bp, 
which are contained in the pGL4‑CDC45‑W1 and ‑W2, respectively. Similar transfection experiments were carried out as described under the legend to Fig. 4. 
Histograms show relative Luc activities of deletion construct‑transfected cells compared with that of the pGL4‑CDC45‑W1‑transfected cells without Rsv treat‑
ment. (B) Nucleotide sequences from ‑96 to +12 that are contained in the Luc reporter plasmids pGL4‑CDC45‑D54 are shown. The JASPAR2020 database 
program was applied to the 108‑bp and the predicted TF‑binding sites are indicated by arrows (relative score >95%). Histograms show relative Luc activities of 
point mutation‑introduced construct‑transfected cells compared with that of the pGL4‑CDC45‑556‑transfected cells without Rsv treatment. (A and B) Results 
are shown as means ± standard deviation from three independent experiments. Statistical analysis for the results between Rsv‑treated and non‑treated cells 
was performed with the Student's t‑test. *P<0.05, **P<0.01 and ***P<0.005 vs. pGL4‑CDC45‑556‑transfected cells without Rsv treatment. Luc, luciferase; Rsv, 
trans‑resveratrol; TF, transcription factor;
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The amount of RELB protein increases in granulocyte 
macrophage colony stimulation factor‑induced macrophage 
cells only following stimulation by lipopolysaccharide (32). In 
addition, RELB is required for TNF‑induced differentiation 
of bone marrow cells into M1 macrophages in mice (33). Our 
previous studies indicated that the duplicated GGAA‑motif is 
responsible for the activation of the E2F4 and ZNFX1 genes 
during TPA‑induced macrophage‑like differentiation of 
HL‑60 cells (34,35). In HeLa S3 cells, the Sp1/PU.1 ratio is 
notably increased following the Rsv treatment (21). It should be 
determined whether the RELB/MEIS1 ratio in HeLa S3 cells 
is increased in response to Rsv and if they are competing to 
bind to the Rsv response element in the CDC45 promoter.

The natural compound Rsv has been shown to upregulate 
expression of the HELB and MCM4 genes and its encoded 
proteins in HeLa S3 cells (20,21). The human HELB (HDHB) 
gene encodes a DNA replication‑associated helicase  (36), 
which binds to DNA double‑strand breaks to inhibit DNA 
end resection (7). In addition, the HELB protein is known 
to interact with the CDC45 at initiation of DNA replica‑
tion (10,37). Notably, the MCM complex, whose structure was 
revealed by cryo‑electron microscopy (38), associates with 
CDC45 and GINS (1,39). The timing of CMG complex forma‑
tion at the origin of replication should be limited to initiate 
DNA replication at a suitable time (40). The duplicated GGAA 
(TTCC) motifs are not only present in the 5' upstream regions 
of the CDKN1A, RB1, TP53 and MCM4 genes (21,22), but also 
in that of the GINS1, GINS3 and GINS4 genes (41). Expression 
of genes encoding proteins that regulate entering the S‑phase 
could be accurately regulated by GGAA‑recognizing TFs.

The present study showed that human CDC45 gene 
promoter can be activated by Rsv in HeLa S3 cells. CDC45 is a 
component of CMG helicase which is essential for responses to 
replicative stress and stability of mammalian genomes (37,42). 
If, in some cancer cells, the CMG helicase play an important 
role as a tumor suppressor, maintaining required expression 
level would stop aberrant proliferation. By contrast, in other 
types of cancer, hyper expression of the CDC45 gene may be 
harmful, functioning as an oncogenic factor (43). In this case, 
the CDC45 might be one of the targets, inhibition of which can 
lead to apoptosis or programmed cell death. Rsv can prolong 
the life span of organisms (44,45) and has been revealed to have 
beneficial effects for health (46). Further investigations are 
required to elucidate the mechanisms by which Rsv‑induced 
signals regulate DNA replication/repair‑associated gene 
expression. The present study not only examine biological 
effect of the Rsv, but also suggested a molecular mechanism 
how Rsv affects transcription of CDC45 gene. Evaluation 
of the efficacies of other candidate drugs, gene expression 
vectors and nucleotides, including miRNAs, the multiple 
transfection assay would be useful to indicate which gene 
promoters are activated. The limitation of the present study 
is that it cannot be directly applied to diagnosis with tissue 
samples obtained by biopsy. However, it could be applied on 
iPS cells or patient‑derived cell lines. Another concern is that 
the experimental system to analyze multiple gene promoter 
activities is only applicable with the use of/verification in 
only one cell line at the same time. Although it needs to be 
improved, this multiple promoter analysis, an easy, reproduc‑
ible and cost‑effective method, which does not always need 

transfection‑efficiency estimation, can suggest which drugs or 
gene expression vectors should be used for the treatment.
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