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Abstract. Obesity reaches up to epidemic proportions globally
and increases the risk for a wide spectrum of co-morbidities,
including type-2 diabetes mellitus (T2DM), hypertension,
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dyslipidemia, cardiovascular diseases, non-alcoholic fatty
liver disease, kidney diseases, respiratory disorders, sleep
apnea, musculoskeletal disorders and osteoarthritis, subfer-
tility, psychosocial problems and certain types of cancers. The
underlying inflammatory mechanisms interconnecting obesity
with metabolic dysfunction are not completely understood.
Increased adiposity promotes pro-inflammatory polarization
of macrophages toward the M1 phenotype, in adipose tissue
(AT), with subsequent increased production of pro-inflam-
matory cytokines and adipokines, inducing therefore an
overall, systemic, low-grade inflammation, which contributes
to metabolic syndrome (MetS), insulin resistance (IR) and
T2DM. Targeting inflammatory mediators could be alterna-
tive therapies to treat obesity, but their safety and efficacy
remains to be studied further and confirmed in future clinical
trials. The present review highlights the molecular and patho-
physiological mechanisms by which the chronic low-grade
inflammation in AT and the production of reactive oxygen
species lead to MetS, IR and T2DM. In addition, focus is given
on the role of anti-inflammatory agents, in the resolution of
chronic inflammation, through the blockade of chemotactic
factors, such as monocytes chemotractant protein-1, and/or
the blockade of pro-inflammatory mediators, such as IL-1§,
TNF-a, visfatin, and plasminogen activator inhibitor-1, and/or
the increased synthesis of adipokines, such as adiponectin and
apelin, in obesity-associated metabolic dysfunction.
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1. Introduction

Adipose tissue (AT) is the main energy store derived from food
intake in the form of triglycerides (TGs) and controls lipid
mobilization (1,2). Furthermore, AT is an active endocrine
organ, since it synthesizes and secretes several hormones,
cytokines and other bioactive factors, signaling to other
metabolic organs, such as the liver, pancreas and brain modu-
lating systemic metabolism, whilst also maintaining body
temperature (1,2). AT contains multiple cell types, including
adipocytes, adipocytes progenitors, endothelial cells, macro-
phages, fibroblasts and leucocytes (1-3). Adipocytes, also
called adipose cells or fat cells, are the predominant cell type
in AT. There are three types of adipocytes including white,
brown and beige (brite). They differ in structure, location,
abundance of mitochondria, thermogenic gene expression and
function (2,4). White adipocytes are unilocular with a low
number of mitochondria and low oxidative rate (2). The cells
have a high capacity of energy storage in the form of TGs. In
addition, white adipocytes can prevent ectopic lipid deposition
and therefore protect organs such as skeletal muscle and the
liver from lipotoxicity (2). Brown adipocytes are specialized
cells with multilocular lipid droplets, high numbers of mito-
chondria and enrichment of uncoupling protein 1 (UCP1), a
high oxidative capacity and actively participate in energy
consumption via thermogenesis (2). In newborn humans,
brown AT plays an important role in thermogenesis mediated
by the expression of UCP1 (5). In adult humans, it has been
found that the amount of brown AT is inversely associated to
body mass index (BMI), especially in older individuals indi-
cating the importance of brown AT in energy metabolism (5).
Beige adipocytes are a distinct type of adipocyte with multi-
locular morphology within white AT (WAT) and extremely
low UCPI expression and are capable of thermogenesis (2).
Beige adipocytes exist mainly in subcutaneous white fat, but a
small portion in visceral fat can be found as well. Acute cold
exposure markedly triggers the recruitment and activation of
beige adipocytes (2). Based on its location in the body, WAT
can be further divided into two types of specific regional
depots, the subcutaneous depots and the visceral depots (6).
Subcutaneous fat is located under the skin in areas such as
the abdomen, thighs, hips and buttocks, however, visceral fat
surrounds the intrathoraci organs, the intraperitoneal organs,
such as the greater and lesser omentum, mesentery, mesocolon
and peritoneum, and the retroperitoneal organs, such as the
pancreas, duodenum, ascending and descending colon and
kidneys (7). AT responds to stimulation by extra nutrients via
hyperplasia (proliferation) and hypertrophy of adipocytes (8).
Excessive calories are efficiently stored in the form of neutral
TGs in AT, which results in adipose hypertrophy and subse-
quent obesity (2,9). When adipocytes cannot uptake the excess
of TGs, the body synthesizes new adipocytes (hyperplasia),
which creates space for fat storage through the lipogenic
pathway (9,10). In circumstances of reduction of food intake
or an increase in energy expenditure, TGs from adipocytes are

broken down into glycerol and fatty acids through the lipo-
lytic pathway to provide energy. Subsequently, fatty acids and
glycerol can be transported with the blood to other organs (11).
Then, the lipids infiltrate into multiple ectopic organs such
as the skeletal muscle, heart and liver and into the visceral
adipose depots, leading to systemic low-grade chronic inflam-
mation (12). Moreover, with progressive adipocyte expansion
and obesity, the blood supply to adipocytes may be reduced,
leading to hypoxia, adipocyte necrosis and macrophage infil-
tration into AT (13,14). During this process, AT produces and
releases a variety of pro-inflammatory and anti-inflammatory
factors as well, including adipokines such as leptin, adipo-
nectin and resistin, as well as cytokines and chemokines, such
as TNF-a, IL-6 and monocyte chemoattractant protein (MCP)
-1 (11,14-16). The biological action of adipokine is mainly
mediated by binding to their cell surface receptors on the cell
membrane of target cells activating appropriate intracellular
signaling pathways (2).

Obesity is defined by the National Institute of Health based
on the BMI, calculated as the weight of a patient in kilograms
divided by the square of height in meters, with BMI values
>30 causing concern (17). Subcutaneous AT depots seem to be
negatively associated with cardiovascular risk factors, while
higher levels of visceral AT have been highly associated with
cardio-metabolic disease (18,19). Unhealthy expansion of
adipocytes is associated with abdominal obesity, promotion of
the obesity-associated metabolic complications, recruitment of
macrophages and other immune cells, promotion of systemic
inflammation and accumulation of visceral fat (20,21). Indeed,
fat accumulation intra-abdominally in men is associated
with higher risk for cardiometabolic diseases, independent
of BMI (22-24). In addition, abdominal visceral fat is also a
strong predictor of mortality in obese women (25). A number
of human studies have shown that omental adipocyte size posi-
tively associates with insulin resistance (IR) (26,27). Notably,
individuals of certain ethnic backgrounds, regardless of the
present country of residence and citizenship, show predisposi-
tion to central obesity and significant obesity-related medical
complications (28-30). Indeed, several studies demonstrated
that South Asian, Japanese and Chinese obese populations
have a greater risk for IR, type 2 diabetes mellitus (T2DM)
and cardiovascular diseases (CVDs) than Caucasians (31,32).
Depending on the degree and duration of weight gain, obesity
can progressively cause and/or exacerbate a wide spectrum of
co-morbidities, including T2DM, hypertension, dyslipidemia,
CVDs, non-alcoholic fatty liver disease (NAFLD), kidney
diseases, respiratory disorders, sleep apnea, musculoskeletal
disorders, osteoarthritis, sub-fertility, psychosocial problems
and certain types of cancers (33,34) (Table I).

2. Obesity-related inflammation and oxidative stress (OS)

Obesity is associated with chronic low-grade inflammation in
AT (35). Obesity-related inflammation is associated with the
increased release of chemotactic factors, anti-inflammatory
adipokines, pro-inflammatory adipokines and pro-inflamma-
tory cytokines (Fig. 1). Inflammation of the AT in obesity is
linked to a shift of the anti-inflammatory M2 macrophages
in adipocytes from lean individuals to the pro-inflammatory
M1 macrophages (35). In AT of lean individuals, most resident
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Table I. Comorbidities caused or aggravated by obesity.

T2DM

Hypertension

Dyslipidemia

NAFLD

Cancer

Reproductive problems

CVDs

Mental disorders

Myosceletal problems-osteoarthritis
Psoriasis

Respiratory problems-sleep apnea
Neurogenerative problems

T2DM, type-2 diabetes mellitus; CVDs, cardiovascular diseases;
NAFLD, non-alcoholic fatty liver disease.
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Figure 1. Schematic illustration of molecules released in obesity related
inflammation and oxidative stress. MCP, monocytes chemoattractant protein;
PAI-1, plasminogen activator inhibitor-1; CCL, chemokine CC motif ligand;
CXCL, chemokine CXC motif ligand.

macrophages are the anti-inflammatory M2 macrophages that
contribute to insulin sensitivity by secreting anti-inflammatory
cytokines, such as IL-10, IL-4, IL-11, IL-13, IL-1 receptor
antagonist (IL-1Ra), arginase-1 and transforming growth
factor-p and anti-inflammatory adipokines, such as adiponectin
and apelin (Fig. 2).

It has become evident that the presence of excessive
AT enhances lipogenesis and activates the innate immune
system (17,34,36-50). Compiling evidence suggests that
AT, during the course of excessive fat accumulation, in
obese patients, and the expansion of the fat mass, produces
several chemotactic factors, such as MCP-1, -2, -3 and -4,
RANTES [or chemokine CC motif ligand 5 (CCL5)], eotaxin
[chemokine CC motif ligand 11 (CCL11)] and interferon
v-induced protein 10 [chemokine CXC motif ligand
(CXCL10)] (17,34,36-50). In response to such stimuli, mono-
cytes are recruited from the blood, transmigrate and infiltrate
into AT depots, through adhesion processes to endothelial
cells, increasing the number of activated pro-inflammatory M1
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Figure 2. Schematic illustration of the permanent residency of M2 macro-
phages in the adipose tissue of lean subjects and their secretion. In the
adipose tissue of lean subjects, most resident macrophages are polarized to
the M2 anti-inflammatory phenotype, contributing to insulin sensitivity, with
the secretion of (a) anti-inflammatory cytokines, such as IL-4, IL-10, IL-11,
IL-13 and IL-1Ra, and (b) anti-inflammatory adipokines, such as adiponectin
and apelin. IL-1Ra, IL-1 receptor antagonist.
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macrophages. In turn, the growing population of pro-inflam-
matory M1 macrophages enhances the inflammatory changes
and secretes pro-inflammatory cytokines (such as TNF-a,
IL-1pB, IL-6, IL-8, IL-12 and IL-23), pro-inflammatory
adipokines [such as leptin, plasminogen activator inhibitor
type 1 (PAI-1), visfatin and resistin] and inducible nitric oxide
synthase (iNOS) (17,34,36-50). The initiation of a low-grade
inflammation in AT of obese individuals contributes to an
increase of leptin, visfatin, resistin and PAI-1 and to a decrease
of adiponectin (17,34,36-50). This status leads to IR in adipo-
cytes, which generates free fatty acids (FFAs) in serum,
impairs glucose metabolism and favors hepatic, muscular and
AT accumulation of fats and glucose (17,34,36-50). These
events promote higher mitochondrial and peroxisomal oxida-
tion, which results in the production of free radicals (FRs), OS,
mitochondrial DNA injury, depletion of adenosine triphosphate
(ATP) and finally, lipotoxicity (17,34,36-50). Cellular damage
leads to high production of pro-inflammatory cytokines, such
as TNF-a, which generates further reactive oxygen species
(ROS) in tissues and increases the lipid peroxidation rate. An
imbalance between the antioxidant capacity and the produc-
tion of FR induces OS and promotes a systemic low-grade
inflammation (17,34,36-50) (Fig. 3).

Chemotactic factor, MCP-1. MCP-1 or CCL2 is a 13-kDa
pro-inflammatory chemokine. MCP-1 is a member of the
MCP family consisting of at least four members (MCP-1,
-2, -3, -4) and it exerts its action by binding to its chemokine
receptor, C-C motif chemokine receptor 2 (CCR2), which is a
CC motif receptor (51). The CCR2A isoform is expressed by
mononuclear cells and vascular smooth muscle cells (VSMCs),
while CCR2B is expressed by monocytes and natural killer
cells (52). MCP-1 plays a role in the recruitment, migration and
infiltration of monocytes, microglia and memory T lympho-
cytes to sites of infection and injury (53-56). MCP-1 is secreted
predominately by macrophages and endothelial cells (52).
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Figure 3. Schematic illustration of M1 macrophage migration and adipose
tissue infiltration, in obesity, and their involvement in the pathogenesis of
MetS. Overeating and lack of exercise in obese individuals causes adipo-
cyte hypertrophy, which induces MCP-1 secretion into the bloodstream,
leading to the recruitment of blood monocytes. The latter become activated
M1 pro-inflammatory macrophages. M1 pro-inflammatory macrophages
migrate and infiltrate adipose tissue and secrete potent pro-inflammatory
cytokines, such as TNF-a, IL-6, IL-1f and IL-12, and induce iNOS produc-
tion. Furthermore, M1 macrophages secrete pro-inflammatory adipokines,
such as leptin, resistin and visfatin. The interplay of all these secreted
pro-inflammatory cytokines and adipokines contributes to chronic low-grade
inflammation in adipose tissue and to decreased secretion of adiponectin.
At the same time the secreted pro-inflammatory cytokines and adipokines
lead to IR in the liver and skeletal muscles, resulting in the deterioration
of MetS and its chronic complications. MetS, metabolic syndrome; iNOS,
inducible nitric oxide synthase; IR, insulin resistance; MCP-1, monocytes
chemoattractant protein-1; PAI-1, plasminogen activator inhibitor-1.
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Also, MCP-1 is produced from adipocytes and its expression is
higher in visceral AT (VAT) than in subcutaneous AT (STAT).
The release of MCP-1 is inhibited by adiponectin (57). There is
a close relationship between MCP-1 and the number of resident
macrophages in adipocytes (57-59). Plasma levels of MCP-1
are markedly elevated in obesity and T2DM (52,58,60-63).
In obesity, the production of MCP-1 by adipocytes results
in recruitment of monocytes and activation of macrophages,
which causes AT inflammation (56,64). It has been suggested
that obesity-associated inflammation in WAT is the causal
factor of systemic IR (65). In addition, serum MCP-1 levels
are higher in patients with atherosclerosis and the expres-
sion of mRNA MPC-1 is increased in atherosclerotic lesions
as well (66-68). Also, inhibition of MPC-1 expression or its
receptor (CCR2) reduces the extent of atheroma formation in
hypercholesterolemic mice (55,66,69-71).

Anti-inflammatory adipokines-adiponectin as a biomarker
of AT. Adiponectin belongs to adipokines and is a 30-kDa
peptide secreted only by AT and in particular in large amounts
by adipocytes of white AT (2,72-74). It acts via two recep-
tors (ADIPOR1 and ADIPOR?2) that elicit AMPK signaling
and may be modulated by T-cadherin (75). Adiponectin has
been described as a main anti-inflammatory adipokine (76).
Its anti-inflammatory actions are partly due to its ability to
reduce TNF-a activity, via suppression of adiponectin-induced
NF«B (77). Also, adiponectin was shown to directly decrease
production of pro-inflammatory cytokines TNF-o and IL-6
by macrophages (78). Additionally, adiponectin inhibits

generation of ROS induced by high glucose and oxidized
low-density lipoprotein (LDL) via a cAMP/PK A-dependent
pathway (48,79,80). High ROS levels in adipocytes suppress
adiponectin expression and secretion (81,82). Accordingly,
there is an inverse association between human serum adipo-
nectin levels and systemic OS (83). Adiponectin increases
insulin sensitivity in multiple tissues via up-regulation in
insulin signaling. This insulin-sensitizing effect of adipo-
nectin seems to be mediated by increased fatty acid oxidation
through AMP-activated protein kinase and peroxisome
proliferator-activating receptor-a (PPARa) activation (84,85).
In addition, adiponectin reduces glucose content in tissues,
by trasfering cytoplasmic glucose trasporter type 4 (GLUT4)
toward the surface of the cytoplasmic membrane (73). Also,
adiponectin inhibits gluconeogenesis within the liver (86).
Adiponectin exhibits cardiovascular protection by suppressing
inflammatory processes occurring in the early phases of
atherosclerosis and microangiopathy through inhibition
of the adhesion of monocytes to blood vessel endothelial
cells, as a result of down-regulated expression of adhesion
proteins, decreasing of the transformation of macrophages
into foam cells and down-regulating intimal smooth muscle
cell proliferation (2,48,77,87-91). It also enhances nitrogen
oxide (NO) synthesis in endothelial cells and stimulates
angiogenesis (73,80,92,93).

Adiponectin synthesis is regulated by insulin and
insulin-like growth factor-1, which leads to increased concen-
tration of this adipokine (73,94). However, its synthesis is
inhibited by pro-inflammatory cytokines, such as TNF-a
and IL-6. This suggests that obesity and IR are important
factors contributing to low levels of serum adiponectin (95).
Also, low serum levels of adiponectin are found in obese,
insulin-resistant individuals with related pathologies including
T2DM, dyslipidemia and CVDs (89,93,96-99). On the other
hand, weight loss increases adiponectin concentrations (73).
Hence, elevated levels of adiponectin may lead to the decrease
in the risk of T2DM (100).

Apelin as a biomarker of AT. Apelin is a short peptide
hormone, which belongs to adipokines and is produced by
adipocytes in proportion to the present amount of fat; it plays
an important role in energy metabolism and is considered
to be linked with obesity and diabetes (39,101,102). Apelin
exerts its effects by binding with angiotensin II protein J (APJ)
receptor (101,103). Apelin promotes brown adipocyte develop-
ment through the phosphatidylinositol 3-kinase (PI3K)/Akt
and AMPK signaling pathways (102). Also, apelin is able
to increase the browning in white adipocytes (102,104). In
addition, it has been found that apelin relieves the TNF-a
suppression on brown adipogenesis (102). Apelin stimulates
glucose uptake, increases insulin sensitivity and regulates
lipolysis and fatty acid oxidation (101). It has been found that
serum apelin levels are increased in obesity. This may be
due either to potential resistance to apelin or to its attempt to
delay or reduce tissue IR (105). Nevertheless, current literature
suggests that apelin administration protects diabetic and/or
obese mice (101) by lowering glucose levels and hence, it may
have a therapeutic role against obesity and related metabolic
diseases (104). Apelin with its activity on enthothelial APJ
receptors may additionally improve nitric oxide (NO) release
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and endothelium-dependent vasodilation (39,106). Apelin has
antioxidant effects because it suppresses ROS production and
release in AT and improves the antioxidant state in OS-related
conditions (107). Apelin promotes the synthesis of antioxi-
dant enzymes via Ras/Raf/mitogen-activated protein kinase
(MAPK)/ERK and AMP-activated protein kinase (AMPK)
pathways (104), suppresses the expression of pro-oxidant
enzymes via the same pathway, and increases mitochondrial
oxidative capacity (104,108-111).

Pro-inflammatory adipokines and their relationship with
obesity

Leptin. Leptin belongs to adipokines and is a 16-KDa peptide,
encoded by the obese (ob) gene. It is mainly secreted by
WAT and its secretion increases according to the volume
of AT and to the TGs stored in adipocytes (2,48,112-116).
When body energy stores are adequate, leptin suppresses
food intake, regulating appetite, energy balance and causing
satiety (2,48,112-114). The sensation of satiety of leptin is
achieved by crossing the blood-brain barrier and targeting the
hypothalamus (2,112,117-119). Hypothalamic leptin signaling
is mediated by leptin receptor and downstream processes,
including JAK2/STAT3 pathway (120). However, obesity is
associated with increased leptin protein and mRNA levels
compared with lean controls. The failure of the elevated leptin
levels to correct the metabolic complications seen in obesity,
is mainly related to leptin resistance, in tissues with decreased
sensitivity to leptin (3,35,39,121-123). The influence of leptin on
IR is not yet fully understood (35). However, it has been found
that IR is associated with elevated serum leptin levels (35).
A possible explanation is that leptin resistance causes reduc-
tion of lipid oxidation, which leads to lipid accumulation and
IR (124,125). Also, leptin in obese humans causes an increase
in blood pressure, through sympathetic activation at vascular
and/or renal levels (126). Leptin has pro-inflammatory actions,
which are related to structural and functional similarities
with the cytokine IL-6 (115). Also, leptin promotes OS and
endothelial cell dysfunction and activation, increases phago-
cytic activity by macrophages and induces the production of
pro-inflammatory cytokines such as TNF-a, IL-6, IL-2 and
IL-1 (2,127,128). In addition, it has been found that leptin
administration increases c-reactive protein (CRP) levels,
which confirms further its inflammatory effects (123).

Visfatin. Visfatin also known as nicotinamide phosphoribos-
yltranferase and pre-B-cell colony enhancing factor (129,130)
is a 52 kDa adipokine, which is predominantly expressed in
human VAT (131), an area of fat tissue, whose accumulation
is strongly associated with an enhanced cardiovascular (CV)
risk (48,129). Visfatin is also secreted by macrophages, bone
marrow, skeletal muscles and various organs including the
liver, lungs, brain, heart and pancreas (49,129). However, a
specific receptor for visfatin has not been identified yet (93).
Several authors have suggested that visfatin levels increase
with obesity, T2DM, MetS or CVDs (132-134). However, other
studies have shown conflicting results regarding the relation-
ship of visfatin with MetS (135,136). It has been found that
weight loss decreases visfatin levels in obese patients (134).
Moreover, leucocytes from obese patients produce higher
amounts of visfatin compared with lean patients (137). Visfatin

levels beyond a threshold appear to be associated with IR and
obesity-related vascular disorders (130,138). Specifically,
visfatin appears to contribute to the release of pro-inflammatory
cytokines IL-1p, IL-6, IL-8 and TNF-a, through a regulation
of the JAK2/STAT3 and IKN/NF-kB signaling pathways,
promoting inflammation (129,131,139-144). Moreover, in
experimental studies, it has been found that visfatin induces
endothelial dysfunction, via the NF-kB pathway, in the
vascular endothelium and promotes the proliferation of human
VSMCs (129,138). Additionally, visfatin induces NF-xB
pathway dependent OS, and blockade of this pathway, via
selective IkB Kinase (IKK-2) inhibition, leads to a partial
reduction in OS, which it is independent of the MAPK/ERK
signaling pathway (138,145).

Resistin. Resistin is a 12.5 kDa adipokine, which in human
AT is secreted predominantly in macrophages (93). Resistin
is also known as adipocyte-secreted factor or Found in
Inflammatory Zone 3 (93). The resistin receptor remains
unknown, but resistin binding to the Toll-like receptor
4, adenylyl cyclase-associated protein 1 receptor and G
protein-coupled receptors was proposed to mediate resistin
inflammatory responses in human cells (93,146,147). Resistin
has also been associated with the inflammatory response,
by promoting activation of the pro-inflammatory cytokines
IL-6, IL-1f and TNF-a (16,131,148-150). Moroeover, resistin
upregulates several adhesion molecules, through NF-kB, in
vascular endothelial cells (148,151). In animal models, resistin
promotes IR, but in humans there are conflicting reports about
the potency of resistin in metabolic diseases (93,152,153).
Several studies indicated that increased serum resistin levels
are associated with increased obesity, visceral fat, IR and
T2DM (154-157), while other studies failed to reach to such
conclusions (158,159). Also, resistin generates OS, which
activates MAPK signaling and inhibits endothelial nitric
oxide synthase (eNOS) gene expression (160). Moreover,
resistin reduces NO production, by inducing the proliferation
of VSMCs, and causes endothelial dysfunction (160). In turn,
reduction of NO availability results in impaired vasodilation,
increased vascular permeability, endothelial cell adhesion and
damage leading to CVDs (160,161).

Plasminogen activator inhibitor-1 (PAI-1). PAI-1, also
known as SERPINEI is a physiological inhibitor of tissue
plasminogen activators (tPAs) (162). Increased PAI-1 activity
is associated with reduced fibrinolytic activity and thus,
increased risk for thrombus formation and CVDs (163). PAI-1
is synthesized in AT, especially in visceral fat, as well as in
preadipocytes, fibroblasts, vascular endothelial cells and in
immune cells (2,163-165). Increased PAI-1 plasma levels have
been found in obese patients and reduced levels were achieved
with weight loss (129,166). In experimental studies, using
obese mouse models with MetS, it has been found that the
deletion of PAI-1 inhibited carotid artery atherosclerosis (167),
while pharmacological PAI-1 inhibition attenuated atheroscle-
rosis by inhibiting macrophage accumulation and eliminating
senescent cells in the atherosclerotic plaques (168). In human
studies, PAI-1 was found to be associated with IR, MetS and
atherosclerosis in obesity (163,169). Also, in animal studies
using mice fed with a high-fat diet, a deficiency of PAI-1 led to
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a decrease of body weight gain and improvement of IR (170).
In addition, adipocyte hypertrophy in obesity may create local
hypoxic areas, which activates hypoxia-inducible factor-1a
(HIF-1a). The increase in HIF-1a causes an increased expres-
sion of several pro-inflammatory cytokines, such as TNF-a,
IL-6, IL-1p and ROS, leading to higher PAI-1 expression in
adipocytes (171).

Pro-inflammatory cytokines and their relationship with
obesity

TNF-a. TNF-a is a 26-kDa pro-inflammatory cytokine
produced by macrophages, adipocytes and vascular
endothelial cells, in response to chronic inflammatory
activity (37,85,172,173). TNF-a exists in two forms,
membrane-bound (MTNF-a) and free soluble (fTNF-a).
TNF-a is synthesized as a transmembrane monomer, which
afterwards can be cleaved by TNF-a converting enzyme, to
yield the 17-kDa soluble form (52). Both forms exist as trimers
that have biological activity. TNF-a has two distinct TNF-a
receptors, TNF-R1 and TNF-R2, that are similar in their
extracellular ligand-binding domains but differ markedly in
their intracellular signaling domains (52,85). The majority of
signaling in AT is downstream of the TNFRI1 (52). TNF-a
is a pro-inflammatory cytokine characterized by various
biological effects including metabolic, inflammatory, prolif-
erative and necrotic (173). TNF-a directly impairs peripheral
glucose uptake, by increasing serine phosphorylation of
insulin receptor substrate 1 (IRS-1), inhibits GLUT 4 trans-
location to the plasma membrane and results in peripheral
IR (173,174). TNF-a also potentially increases lipolysis in
human adipocytes by regulating hormone-sensitive lipase
in adipocytes, resulting in increased circulating FFA levels
and peripheral IR in obesity (173). Expression of TNF-a is
increased in obesity and IR in humans (37), whilst treatment
with TNF-a induces IR in AT (48). Serum TNF-a levels
are decreased during weight loss (175). TNF-a is a part of a
complex inflammatory network and is capable of initiating
cytokine cascade activation that involves both synergistic and
inhibitory reactions, which control the synthesis and expres-
sion of other cytokines, hormones and their receptors (176).
ROS production can also be induced by TNF-a binding to
its TNF-R1 receptor promoting NF-«B, ERK, p38MAPK and
FADD/pro-caspase-8 signaling pathways (177-179). TNF-a
causes systemic acute-phase response via the release of other
pro-inflammatory cytokines, such as IL-6 and the reduction
of anti-inflammatory adiponectins (48). TNF-a also increases
the induction of OS and the production of superoxide
anions (180).

IL-16. 1IL-1p is a 31-kDa pro-inflammatory cytokine, secreted
by M1 macrophages (181). It is produced as pro-IL-1p, a
pro-inflammatory cytokine, which becomes biologically active
by cleavage, requiring the protease caspase-1 (182), which is
activated through the NLRP3 inflammasome complex (183).
Obesity appears to be directly related to the deregulation of
IL-1p expression and the increase in its levels. The increased
IL-1p levels contribute to the induction of chronic inflamma-
tory diseases (184). High levels of IL-1f3 promote ectopic fat
accumulation, recruitment of immune cells to AT and liver,
fibrosis, IR, T2DM and atheromatous plaque formation in

obese patients (181,184). In particular, the increase in IL-1
levels, in STAT, contributes to the suppression of PPARYy
expression and the inhibition of the differentiation of
preadipocytes to mature adipocytes. However, there is a
discrepancy about the effects of IL-1p on lipogenesis and
lipolysis (185-188). High levels of IL-1f are observed in the
VAT of obese individuals (189,190), leading to reduced TG
storage in WAT and hepatic steatosis (184). In parallel, high
levels of IL-1P in AT are associated with extracellular matrix
(ECM) disorganization, diminishing AT hyperplasia (191) and
provoking fibrosis and inflammation (192). Elevated IL-1f
levels contribute to high immune cell recruitment, promote
local inflammation via increase in expression of VCAM-1,
ICAM-1, MCP-1 and suppression of PPARa (193). Moreover,
the increased recruitment of immune cells is responsible
for the hepatic cirrhosis promotion (184). IL-1$ contributes
to an increase in PAI-1 secretion and promotes fibrosis and
chronic liver disease (194). IL-13 appears to lead to activation
of the serine/threonine kinase, janus kinase (JAK) 1, which
inactivates IRS1 and IRS2 (184), downregulates the expres-
sion of PI3K, p85, pAkt and GLUT4, leading to suppression
of insulin signal transduction, with a subsequent increase in
blood glucose levels (195). Elevated FFAs bind to receptors
in the liver, activating the IKK/NFkB pathway and stimu-
lating increased IL-1( expression (196). Respectively, high
glucose levels stimulate NADPH oxidase, ROS production
and thioredoxin-interacting protein expression, that binds to
NIPR3 (196) and activates IL-1 production. As a result, IL-13
binds to the IL-R1 receptor on pancreatic B-cells and leads
to increased expression of cytokines and chemokines (197),
facilitating the accumulation of hematopoietic cells, such as
macrophages, which secrete pro-inflammatory cytokines that
further exacerbate the inflammation cascade causing impair-
ment of insulin secretion (184). High IL-1f concentration is
further capable of leading to pancreatic [3-cell apoptosis by
the NF-kB pathway regulation and FAs overexpression (198),
or through the depletion of calcium ions (Ca*), in the c-Jun
N-terminal kinase (JNK)-mediated endoplasmic reticulum
(ER) with the mediation of INK (199). Finally, IL-1 enhances
the proliferation and migration of VSMCs promoting the
atherosclerotic plaque development (184).

IL-6. IL-6 is produced by numerous different cell types,
including adipocytes, endothelial cells, pancreatic p-cells,
macrophages and monocytes (14,200-202). There are two
signaling pathways for IL-6 including its classical signaling
mechanism involving the binding of IL-6 to its receptor
complex (IL6-Ra) that subsequently interacts with an IL-6ST
signaling protein (also known as glycoprotein 130, gp130) at
the plasma membrane, and the non-classical signaling mecha-
nism which is related to the interaction of the IL-6ST protein
with a soluble form of the IL-6-binding receptor (203). Both
IL-6 signaling pathways lead to activation of the JAK1-STAT3
pathway (203). Its actions can be beneficial or harmful to the
organism, depending on the site of action, the magnitude of
production and the duration of the response (204,205). In
summary, its beneficial actions are related to its production by
skeletal muscles, in response to physical exercise, contributing
to lipid metabolism and enhancement of insulin sensitivity
in muscles (204,205), as well as appetite suppression (206).
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Other actions of IL-6 include immune response and hemato-
poiesis (14,200-202). It participates in the regulation of neural
differentiation, maturation and function and in energy homeo-
stasis (14,200-202). In obesity, serum IL-6 levels are elevated
and 10-35% of IL-6 produced is attributed to WAT (207). In
obesity, high caloric intake in combination with reduced energy
expenditure is directly related to changes in the physiology
and morphology of WAT (207). In particular, WAT expan-
sion is observed through an increase in the number or size of
adipocytes (208,209). Therefore, in the WAT of obese patients
there is an infiltration of immune cells, including T cells and
macrophages (19). Both adipocytes, as well as immune cells in
WAT, are the main sources of increased circulating IL-6 levels.
The VAT secretes a number of substances that further promote
IL-6 expression and releases ~2-3 times more IL-6 concentra-
tions than STAT (19). Chronic exposure to high serum IL-6
levels has been associated with an elevated likelihood of
impaired glucose tolerance, T2DM, high blood pressure and
obesity (48), while is also positively associated with IR in
obesity (210,211). Furthermore, exogenous IL-6 administra-
tion causes IR in humans, while weight loss results in IL-6
decrease and bariatric surgery improves IR (212-215). Thus,
if the elevated plasma IL-6 levels in obesity are considered,
it could be suggested that chronic low-grade inflammation
in obesity links IL-6 as causal factor for IR through the
progressive tissue-infiltration by immune cells (216).

3. Obesity, OS and insulin resistance (IR)

Insulin is an anabolic, peptide hormone, secreted by the pancre-
atic B-cells of the islets of Langerhans, in response to high blood
glucose levels and controls the metabolism of carbohydrates,
proteins and fats by stimulating the absorption of glucose from
the blood into lipid cells, skeletal muscle cells and the liver,
for ATP production or storage as glycogen and TGs (217).
More specifically, in fed states, the exogenous glucose uptake
increases the circulating glucose levels and stimulates insulin
secretion (123,217,218-220). Also, other nutrients from food such
as FAs and amino acids increase insulin secretion, which stimu-
lates lipogenesis and protein synthesis (218,221). Under fasting
conditions, lipolysis is induced from stored TGs in AT and
supplies i) glycerol for hepatic glucose production (gluconeo-
genesis) and ii) FAs for 3-oxidation (2,220). In the liver, insulin
suppresses hepatic gluconeogenesis (220). Also, insulin reduces
the rate of breakdown of glycogen in muscles and liver (glyco-
genolysis), retaining normal glucose levels (222). Regarding the
effect of insulin on lipid metabolism, insulin inhibits lipolysis
(antilipolytic action), increases hepatic lipid synthesis for subse-
quent TGs storage in AT (223) and stimulates glucose uptake
into the skeletal muscles, heart and AT (220). In order to exert
its effects, insulin binds to its receptor (IF), a tyrosine kinase
receptor. A reduction in insulin signaling triggers IR that could
affect the metabolic actions of insulin (224). If a decrease of the
blood glucose levels is not achieved by insulin, then pancreatic
[-cells increase insulin release resulting in hyperinsulinemia,
which is the key for IR (225). Therefore, hyperinsulinemia often
precedes the development of marked IR and fat mass gain (226).

Insulin signaling is initiated by the phosphorylation/
activation of the cytoplasmatic insulin tyrosine kinase receptor
that is associated with the activation of two main signaling

pathways: i) PI3K/AKT [also known as protein kinase B
(PKB)] pathway; and ii) the MAPK pathway (2,227). In
healthy subjects, by simultaneously stimulating these distinct
pathways (PI3K and MAPK), insulin couples metabolic and
hemodynamic homeostasis.

PI3K/AKT? signaling pathway (also known as protein kinase
B or PKB). In the PI3K-AKT/PKB pathway the binding of
insulin to its cell surface receptor activates the lipid kinase,
PI3K, binding to its Src homology 2 domain, which activates
several phosphatidylinositol-(3,4,5)-triphosphate-dependent
serine/threonine kinases, including AKT/PKB (2). Ultimately,
these signaling events result in the translocation of the
insulin-dependent GLUT4 from its cytoplasmic storage vesicle
to the plasma membrane, leading to an increase in glucose
uptake (2). The PI3K-AKT signaling pathway regulates the
metabolic insulin actions by promoting glucose utilization,
protein synthesis and lipogenesis (228).

MAPK pathway. MAPK activation triggers a cascade that
regulates the effects of insulin on mitogenesis, growth and
differentiation and is not implicated in the metabolic actions of
insulin (2). Also, MAPK-dependent insulin signaling pathway
controls secretion of the vasoconstrictor, endothelin-1, from
endothelium (63).

IR. When a decrease of blood glucose levels is not achieved
by insulin, then pancreatic [3-cells increase the release of
insulin, resulting in hyperinsulinemia, which is the key for
IR (224,225). Therefore, hyperinsulinemia often precedes
the development of marked IR and fat mass gain (226,229)
(Fig. 4). The IR in AT, skeletal muscles and liver is commonly
linked with obesity, which is a pathophysiological factor
of T2DM (230-233). When IR develops in fat tissues,
insulin-mediated inhibition of lipolysis is impaired leading to
increased lipolysis (123,234) (Fig. 4). The resulting increase
in circulating FAs in turn worsen IR, causing alterations in
the insulin signaling cascade in different organs, thus creating
a vicious cycle (235,236) (Fig. 4). Moreover, in IR, there is
a reduced insulin ability to suppress glycogenolysis in hepa-
tocytes and myocytes (234). In IR, FFAs, in muscles, affect
IRS-1-associated PI3K activity, leading to decreased GLUT4
translocation to the surface and reduced glucose uptake (235).
In parallel, in IR the FFAs act on the liver to promote
gluconeogenesis. Therefore, insulin-resistant individuals fail
to inhibit hepatic glucose production and hyperglycemia.
This results in a hyperinsulinemic state to maintain normal
glucose levels (123). However, this compensation eventually
fails, leading to decreased insulin levels, which is further
exacerbated by the lipotoxic effect of FFAs on pancreatic
B-cells (123,236,237). Additionally, in IR, the FFAs act on the
liver and promote lipogenesis (Fig. 4). It is essential to note
that visceral lipolysis increases the supply of FFAs, directly
to the liver, via the splanchnic circulation, thus making
visceral fat deposits more important contributors to IR than
subcutaneous fat (123). Together with this, there is increased
de novo hepatic TG synthesis and a disruption of B-oxidation
in hepatic mitochondria (238-241). This net leads to increased
hepatic very low-density lipoproteins (VLDLs) secretion and
hypertriglyceridemia (238-241). The hepatic accumulation of
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Figure 4. Schematic illustration of the pathways associated with the devel-
opment of T2DM in obese individuals. The cellular mechanisms involved
in the pathogenesis of obesity-associated T2DM include: i) Alterations in
the insulin signaling in metabolic tissues, such as liver, adipose tissue
and skeletal muscles; ii) pancreatic f-cell dysfunction; and iii) chronic
low-grade inflammation and increased oxidative stress. Obesity causes IR
and hyperglycemia. Hyperglycemia causes glucotoxicity and an increase
in AGEs, resulting in the up-regulation of NF-kB, which is a mediator of
inflammation and immunity. Increased AGEs affect vascular endothelium
and block the activity of NO. The inhibition of NO enhances the oxidative
stress. Additionally, glycotoxicity induces the glycolysis and the Krebs cycle
resulting in an increased flow of NADPH and FADH2, that act as electron
donors to the mitochondrial chain, resulting in an excess of electrons in
coenzyme Q and the production of mitochondrial superoxide, resulting in an
increase in ROS. Chronic exposure to high intracellular ROS levels in adipo-
cytes ultimately causes mitochondrial dysfunction and perpetuates adipose
tissue inflammation, resulting in IR and T2DM. In addition, peroxide-induced
OS, causes impairment of the AKT, which results in IR and T2DM. Also,
chronic hyperglycemia causes alterations in IR in the liver, adipose tissue
and skeletal muscles. Furthermore, chronic hyperglycemia creates chronic
low-grade inflammation, which increases OS. The increased FAs cause
lipotoxicity and increase the secretion of IL-1f, which is responsible for
the deficiency of insulin secretion from pancreatic -cells resulting in IR
and T2DM. Moreover, infiltration of adipocytes by macrophages causes an
increase in TNF-a and IL-6. The increase in TNF-a is responsible for tissue
inflammation, generation of ROS and IR propagation in peripheral tissues
and adipocytes, which is important for the onset of T2DM. In addition, the
increase in IL-6 levels contributes to indirect prevention of insulin binding to
its receptor, as well as the induction of CRP, which like TNF-a, is associated
with IR and T2DM. T2DM, type 2 diabetes mellitus; IR, insulin resistance;
AGEs, advanced glycation end products; NO, nitric oxide; FADH2, flavin
adenine dinucleotide (reduced form); ROS, reactive oxygen species; FAs,
fatty acids; CRP, c-reactive protein.

TGs and the toxic levels of FFAs results in hepatic lipotox-
icity (238-241). This mechanism contributes to the production
of ROS and the development of NAFLD, which is associated
with the development of MetS, which may progress to the more
serious non-alcoholic steatohepatitis (NASH) with subsequent
hepatic fibrosis, cirrhosis and cancer (225,242). In fact, there
is a by-directional relationship between obesity-related IR
and NAFLD, since obesity-related IR causes fatty liver and
excessive hepatic fat accumulation, promotes IR and weight
gain (243). In addition, high concentrations of FFAs increase
cholesterol esters and triglyceride (TG) synthesis and subse-
quently the production of VLDLs rich in TGs (244,245).
These in turn, activate cholesterol ester transfer protein,
promote TG transfer from VLDL to high-density lipoprotein
(HDL), increase HDL clearance and decrease its concentra-
tions (244,245). Moreover, triglyceride-rich LDL, formed after

exchange with LDL cholesterol ester, becomes hydrolyzed
by lipoprotein lipase or hepatic lipase, leading to choles-
terol-depleted small dense LDL particles (244,245). All these
alterations in lipoprotein concentrations constitute the hallmark
of atherogenic dyslipidemia, caused by IR, in MetS (244,245).
Another contribution of IR to MetS is the development of
hypertension caused partly by the loss of the vasodilatory
effect of insulin and by FFA-induced vasoconstriction due to
ROS production and the subsequent scavenging of NO (246).
Other mechanisms involve the increased sympathetic
stimulation and the renin-induced sodium reabsorption in the
kidneys (247). Finally, the contribution of IR, to the promotion
of atherogenic processes and the increase of CVD risk, is the
development of a higher serum viscosity and a pro-thrombotic
state, caused by the increased levels of fibrinogen and
PAI-1 (34,165,169,248-253). IR and IL-6 produced during the
acute phase reaction contribute to elevated fibrinogen concen-
trations (34,254). Fibrinogen is synthesized by hepatocytes and
holds a pivotal role in the coagulation cascade, being a major
determinant of plasma viscosity and platelet aggregation,
whilst potentially plays a pro-inflammatory role in vascular
wall disease (34,254,255). In parallel, PAI-1 is elevated in IR,
obesity and MetS (34,256). PAI-1 regulates the endogenous
fibrinolytic system and constitutes the main inhibitor of fibri-
nolysis by binding and inactivating the tPA (34,248,257-260).
Therefore, elevated PAI-1 levels lead to decreased clearance of
clots (34,248,257-260). Enhanced AT expression of PAI-1 has
been reported in obesity, particularly in VAT (34,261), whilst
there is an inverse relationship between PAI-1 activity and
adiponectin in overweight and obese women (34,259,260).

4. Obesity, OS and metabolic syndrome (MetS)

MetS is a complex disorder defined by a cluster of clinical
and metabolic conditions that occur together and increase the
risk for IR, T2DM, dyslipidemia, CVDs, prothrombotic state
and stroke (262-264). According to the International Diabetes
Federation (IDF), metabolic syndrome (MetS) is character-
ized as the presence of three or more of the following features:
i) obesity; ii) hyperglycemia; iii) hypertension; iv) low HDL
cholesterol levels; and/or v) hypertriglyceridemia (263).
Obesity is the most frequently observed component of
MetS (265). It has been established that patients with MetS are
five times more likely to develop T2DM and have a 2-3 times
higher risk of CVDs (stroke and myocardial infarction),
compared with healthy subjects (264,266,267). In addition,
MetS has been associated with other clinical conditions, such
as hepatic steatosis and NAFLD, hypogonadism, polycystic
ovarian syndrome, obstructive sleep apnea, vascular dementia,
Alzheimer's disease and carcinomas, especially breast,
pancreatic and colorectal cancers (218,268,269). Obesity
is the most frequently observed component of MetS (265).
The IDF estimates that MetS affects almost a quarter of the
adult general population in Western societies (269-271). The
prevalence of MetS in men does not differ before and after
50 years of age, but women >50 years, show a sharp increase
in prevalence (272). It is associated with higher mortality risk
in younger adults than in elders (273). Accumulating evidence
indicates that dysregulation of the production a wide range of
adipocytokines and cytokines, due to excessive accumulation of
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body fat, participates in the pathogenesis of obesity associated
MetS (128,163,169). The link between PAI-1 and MetS with
obesity is well established. Increased PAI-1 serum levels are
associated with the development of IR, MetS, atherosclerosis
and thrombosis in obese patients (128,163,169). Treatment with
TNF-a contributes to the development of IR in AT (175). In
patients with MetS, chronic exposure to increased IL-6 levels
is related to the development of IR by depletion of GLUT4 and
disruption of insulin signaling (210,211). Leptin is also involved
in the pathophysiology of MetS (274). High plasma levels of
leptin are directly associated with IR, MetS and lipid accu-
mulation due to leptin resistance (35,39,124,125). Moreover,
visfatin plays a central role in MetS. Elevated visfatin serum
levels are associated to IR, T2DM and decreased function of
pancreatic -cells (129,275). Conversely, a protective role of
adiponectin against MetS has been reported, since it directly
attenuates production of IL-6 and TNF-a, by macrophages,
through its ability to suppress NF-«kB activation (78,276). In
addition, apelin reduces MetS risk. It has been demonstrated
that apelin stimulates glucose uptake, increases insulin sensi-
tivity and regulates lipolysis in patients with MetS (101). OS
is also critically involved in the pathogenesis of MetS and in
the progression of its complications (277-280). In patients with
MetS there are higher levels of oxidative markers, as well as
reduced antioxidant defenses (277). In obesity, the chronic
low-grade inflammation, produced by adipocytes exacerbates
OS (35) (Fig. 4). Visceral fat accumulation induces an increase
in mitochondrial and peroxisomal oxidation of FAs, and the
production of ROS (35,281,282). Furthermore, visceral fat accu-
mulation causes over-consumption of oxygen, which generates
FRs in the mitochondrial respiratory chain (35,281,282). In
addition, a lipid-rich diet can alter oxygen metabolism and
generate ROS (35,281,282). Moreover, high ROS production
and a decrease in antioxidant capacity leads to a reduction in
the bioavailability of vasodilators, particularly NO, and an
increase in endothelium-derived contractile factors, favoring
atherosclerotic disease (35,281,282) (Fig. 4). With regards to
hypertension, elevated OS, in vascular wall leads to vasocon-
striction, vascular remodeling, inflammation and fibrosis which
results in hypertension and atherosclerosis (268,277,283).
Regarding NAFLD, it has been documented that elevated OS
appears to be a key mechanism in promoting liver injury and
liver inflammation in NAFLD (284). Finally, it has been found
that dyslipidemia is associated with higher ROS release and
lower eNOS synthesis (277).

5. Obesity, OS and T2DM

T2DM is a heterogeneous, chronic metabolic disorder, charac-
terized by elevated blood glucose levels with a high prevalence,
up to 90%, of all diagnosed diabetic cases in adults (285,286).
IR leads to hyperglycemia and over time to T2DM (286). It has
been found that the relative risk of T2DM, in adult men and
women, increases for a BMI, >24 kg/m? in men, and 22 kg/m?
in women (34). Women with T2DM are 3-4 times more prone
to CVDs compared with 2-3 times in men with T2DM (287).
Obesity is an important independent risk factor for IR and
T2DM (288-291). IR is responsible for the development of
hyperglycemia and over time may evolve to T2DM. IR alone
is not capable of causing an increase in blood sugar (292),

since the pancreas has mechanisms to adapt, by increasing the
mass of f-cells and the ability to produce insulin (292,293).
Thus, despite reduced peripheral insulin sensitivity, blood
sugar levels could retain stable (292). The cellular mechanisms
involved in the pathogenesis of obesity-associated T2DM
include: i) alterations in the insulin signaling; ii) pancreatic
B-cell dysfunction and failure; and iii) chronic low-grade
inflammation and increased OS (294). The mechanisms inter-
relating obesity to the pathogenesis of T2DM are depicted in
Fig. 4. Obesity causes generalized IR in AT, liver and skeletal
muscles and is associated with increased insulin secretion and
chronic hyperinsulinemia, which promotes further weight
gain (292,295,296). Therefore, there is a bi-directional relation-
ship between obesity and hyperinsulinemia. Insulin resistant
conditions in T2DM could be caused by signaling defects at a
number of levels of the insulin-signaling cascade in metabolic
tissues, such as liver, AT and skeletal muscles (292,243,297).
In addition, in IR and T2DM, the liver fails to suppress
glycogenolysis and gluconeogenesis, despite compensatory
hyperinsulinemia, and is associated with accelerated glucose
synthesis and fasting hyperglycemia (292,243,297). In T2DM,
the IR in skeletal muscles is associated with postprandial
hyperglycemia, since in these patients, skeletal muscles
exhibit decreased insulin sensitivity, which results in impaired
insulin-stimulated glucose uptake (298). As aforementioned,
IR does not necessarily imply T2DM. A harmful mechanism
for the functionality of -cells is ‘glucotoxicity’. Glucotoxicity
is dependent on the duration and degree of hyperglycemia, in
which the elevated glucose levels, characteristic of T2DM,
contribute to desensitization of pancreatic 3-cells in insulin
secretion (292,294). Another mechanism that contributes to
further loss of B-cells and pancreatic dysfunction is ‘lipo-
toxicity’. It is directly related to fat occuring obesity and is
accompanied by an underlying predisposition to T2DM and
increased serum FFA levels (292,299). FFAs are elevated
in the plasma of patients with T2DM, due to uncontrolled
lipolysis, by insulin-sensitive lipase, in adipocytes (300). The
high levels of FFAs impair the function of pancreatic B-cells
and the glucose-induced insulin secretion (300) (Fig. 4).
Another mechanism, related to the disruption of pancreatic
B-cells, is their low antioxidant defense, since they do not
express, in high ratio, antioxidant enzymes, which make them
susceptible to oxidative damage (301). Finally, due to the
accumulated fat during obesity, increased levels of cytokines
from macrophages are observed, such as IL-1f (302), which
is also responsible for the deficiency of insulin secretion from
B-cells (34) (Fig. 4). In addition to BMI, there is a strong
association between abdominal obesity (central obesity) and
the incidence of T2DM (24,303-308). Abdominal obesity
is associated with the following conditions that may lead to
systemic inflammation and IR: i) increased levels of glucose
and non-esterified fatty acids; ii) hormonal imbalance with
increased leptin levels and decreased adiponectin levels; and
iii) increased secretion of cytokines and pro-inflammatory
substances from fat cells (309,310). In more detail, in terms of
the secretion of cytokines and pro-inflammatory substances
from adipocytes, the driving force is the excess visceral fat that
triggers the cascade of inflammation (309,310). In response to
the secretion of these substances, mononuclear cells migrate
from blood circulation to the AT, and they differentiate into
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macrophages (309,310). Macrophages secrete cytokines,
thus in obesity an increased secretion of TNF-a and IL-6 is
observed (309,310) (Fig. 4). Secretion of TNF-a is responsible
for tissue inflammation, due to its role in the generation of ROS,
and activation of transcription-induced pathways, and for IR,
in peripheral tissues and adipocytes, which is important for the
onset of T2DM (309,310). The increase in IL-6 levels contrib-
utes to the prevention of the binding of insulin to its receptor,
through the induction of proteins associated with it (310-312),
as well as the induction of CRP, which like TNF-a, is associ-
ated with IR (309,310) (Fig. 4). Additionally, hyperglycemia,
characteristic in T2DM, is associated with the generation of
advanced glycation end products (AGEs), binding to their
receptors. AGEs are responsible for the up-regulation of the
transcription factor NF-kB, which is a mediator of inflamma-
tion and immunity (313), while AGEs also block the activity of
NO in the vascular endothelium and promote the production of
ROS (313) (Fig. 4). Finally, a key role for chronic inflammation
and OS in obesity related T2DM is mitochondrial dysfunc-
tion (314-316). Specifically, due to the increased concentration
of sugars, glycolysis and the Krebs cycle are induced and
cause an increased flow of NADH and FADH2 (flavin adenine
dinucleotide; reduced form) (314-316). They act as electron
donors to the mitochondrial chain, resulting in the accumula-
tion of electron donors in coenzyme Q (314-316). This results
in the production of mitochondrial superoxide radical (FR), an
important source of ROS from adipocytes (314-316). Chronic
exposure to high intracellular ROS levels in adipocytes ulti-
mately causes mitochondrial dysfunction and perpetuates AT
inflammation, together with impairment of the AKT signaling
pathway that induces IR (314-316) (Fig. 4).

6. Therapeutic interventions on inflammatory mediators
for the therapy of obesity-associated metabolic diseases

Treating inflammation by blocking IL-IR. In patients with
T2DM, the high blood glucose levels induce cytokine IL-1p
production and secretion, in the [3-cells of the pancreatic
islets of Langerhans, leading to pro-inflammatory immune
responses, P-cell dysfunction, decreased (-cell prolifera-
tion and increased B-cell apoptosis (198,317,318). Therefore,
short-term IL-1 receptor (IL-1R) blockage could lead to
improvements in both metabolic and inflammatory param-
eters in patients with MetS and T2DM and may represent a
potential targeted therapeutic approach for these patients. For
instance, Larsen et al tested the effects of anakinra therapy
in two studies (319,320). In their first study, Larsen et al (319)
examined the effects of anakinra treatment, in a double-blind,
parallel-group trial with 70 patients with T2DM, that were
randomly assigned to receive a placebo, or 100 mg of anakinra,
subcutaneously, once daily. Anakinra is a human recombi-
nant IL-1Ra, which prevents signal dunsduction of IL-la and
IL-1p (321,322). Anakinra is approved by the Food and Drug
Administration (FDA) for the treatment of rheumatoid arthritis
in adults and neonatal onset multisystem inflammatory
disease (323). During a 13-week treatment period, anakinra
administration improved glycemia and pancreatic B-cell
secretory function, compared with the placebo group. This
occurred by reducing the glycated hemoglobin levels (HbAc),
the ratio of proinsulin to insulin (marker of pancreatic -cell

dysfunction and reduced insulin secretory capacity), the serum
levels of systemic inflammatory markers (IL-6 and CRP), and
enhanced C-peptide and insulin secretion (319) (Table II).
Furthermore, Larsen et al (320) in a 39-week follow-up study
examined the durability of anakinra administration on the
management of T2DM and found maintenance of increased
insulin secretion and reduction of insulin requirements (320).
These findings suggest that IL-1R blockade with anakinra may
improve glucose control and [-cell secretory function for a
long period (319,321). Van Asseldonk ef al (324) in a random-
ized, double-blind, crossover study examined the effects of
anakinra in nondiabetic, obese individuals, with MetS, at
a dose of 150 mg, subcutaneously, once daily for a 4-week
treatment period. The authors found that anakinra administra-
tion compared with the placebo group, led to a significantly
lower degree of inflammation by reducing the circulating
CRP levels and the number of leukocytes accompanied by a
significant increase in the disposition index and improvement
in pancreatic B-cell function (324) (Table II). Nevertheless,
anakinra did not significantly improve insulin sensitivity (324)
(Table II). Also, van Poppel et al (325) assessed the effects
of anakinra therapy in another double-blind, randomized,
placebo-controlled crossover study, involving 16 subjects,
with impaired glucose tolerance, assigned to receive 150 mg
anakinra daily, for 8 weeks. A significant improvement in
the first-phase insulin secretion and pancreatic [3-cell func-
tion was found (325) (Table II). In line with these findings,
Cucak et al (326) evaluated in female non-obese diabetic
(NOD) mice, the effects of SER140, which is a 10-amino-acid
peptide antagonist of IL-1p receptors (IL-1Ra), on the
progression of diabetes and pancreatic 3-cell changes. The
study consisted of an 8-week treatment period. The results
of this study showed a reduction in the incidence of diabetes,
by >50%, compared with the control group, a decrease in
non-fasting plasma glucose concentrations and an increase in
plasma insulin levels. Additionally, SER140 administration
changed the immune-endocrine dynamics in the NOD mouse
pancreas. The authors suggested that the SER140 treatment
can postpone the onset of diabetes in female NOD mice by
competing with IL-1p for IL-1p receptors (IL-1R) (326).

Treating inflammation with anti-IL-1f3 therapies. Other
promising IL-1 blocking therapies have demonstrated anti-
diabetic potential as well. Cavelti-Weder et al (327) evaluated
the safety and biological activity of gevokizumab in patients
with T2DM. Gevokizumab is a recombinant human mono-
clonal anti-IL-1p antibody. In this study a total of 98 patients
with T2DM participated, 17 patients to the control group and
81 patients to the gevokizumab treatment group, at increasing
doses. It was found that gevokizumab treatment was safe and
led to significant reduction in HbAlc values (-0.85%) after
3 months, accompanied by augmented C-peptide secretion,
increased insulin sensitivity and decreased CRP levels (327)
(Table II). Rissanen et al (328) evaluated the effects of a
single dose of canakinumab, a recombinant human mono-
clonal antibody targeting circulating IL-1f in patients with
impaired glucose tolerance or T2DM treated with insulin and
metformin. The authors found a trend towards increased insulin
secretion (Table II). In another study conducted with 551
metformin-treated patients, with T2DM, Hensen et al (329)
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assessed the safety, tolerability and effects of different monthly
doses of canakinumab (5, 15, 50 or 150 mg). The authors found
that canakinumab treatment was safe and well tolerated. In
addition, canakinumab (50 mg) led to a reduction in HBAlc
values compared with the placebo group (329) (Table II). These
findings suggest that monthly adjuvant treatment, with 50 mg
canakinumab, on metformin-treated patients, with T2DM,
could potentially improve pancreatic 3-cell function (329).
However, Ridker et al (330) did not find alterations in HbAlc,
glucose and insulin levels after canakinumab treatment in
patients with T2DM with high cardiovascular risk (Table II).
By contrast, cankinumab significantly reduced inflammation
markers such as CRP, IL-6 and fibrinogen (330) (Table II).
Choudhury et al (331) examined the effects of cankinumab
in patients with atherosclerotic cardiovascular disease and
T2DM or impaired glucose tolerance for 12 months and
found reduction in inflammation markers (hsCRP, IL-6)
compared with the control group (Table II). Furthermore,
Noe et al (332) found similar results (Table II). In addition,
Sloan-Lancaster et al (333) examined the effects of LY2189102
in the treatment of patients with T2DM. LY2189102 is a
recombinant human monoclonal antibody (IgG4) that binds to
IL-1p with high affinity and neutralizes its activity by forming
a complex with circulating IL-1f. The authors demonstrated
that the weekly subcutaneous administration of LY2189102 for
12 weeks can reduce postprandial glycemic levels and improve
anti-inflammatory effects in patients with T2DM (Table II). In
a canakinumab anti-inflammatory thrombosis outcomes study,
IL-1p inhibition by canakinumab did not show long-term (over
a median period of 3.7 years) benefits in the reduction of
HbAIc values in patients prior to myocardial infarction with
or without pre-diabetes or T2DM (334) (Table II). In addition,
canakinumab administration was ineffective in reducing the
occurrence of new onset T2DM (334) (Table II). Also, the
development of vaccines against IL-1p represents a treatment
option for IL-1B-dependent diseases such as T2DM (327).

Treating inflammation with anti-TNF-a therapies. Since obese
humans have increased circulating levels of TNF-a and TNF-a
levels, in human AT, is positively associated with BMI and
hyperinsulinemia (317,335), their levels have been proposed
to play a role in the development and pathogenesis of IR and
T2DM (317,336).Indeed, van den Oever et al (337) in their study
found that adalimumab administration in patients with RA or
OA and IR improves IR and pancreatic 3-cell function (337)
(Table II). Adalimumab binds with specificity to TNF-a and
inhibits its interaction with the p55 and p75 cell surface TNF
receptors (337). Also, infliximab is a chimeric monoclonal
antibody that binds TNF-a with high affinity and neutralizes
TNF-a. Kiortsis et al (338) found that the administration of
infliximab in patients with RA or ankylosing spondylitis and
IR improved insulin sensitivity (Table II). Similar results were
also found by Gonzalez-Gay et al (339) in insulin resistant
patients, with RA (Table II). In addition, Haida er al (340)
demonstrated that infliximab treatment prevents hypergly-
cemia and liver gluconeogenesis, in high fat diet-fed mice.
Moreover, infliximab seems to ameliorate TNF-a-induced
IR, in 3T3-L1 adipocytes, in vitro, by improving the insulin
signaling pathway, via inhibition of protein tyrosine phospha-
tase 1B (341). Additionally, Abdelhamid et al (342) showed

that infliximab administration in rats reduces TGs, increases
HDL-c levels and reverses fructose-induced adiponectin resis-
tance. Therefore, the authors suggested that infliximab may
affect the manifestation of MetS. However, infliximab failed
to affect MetS-mediated hyperglycemia, hypertension and the
elevated peroxidation levels, as the levels of malondialdehyde
dictate (342). Bernstein et al (343) investigated the effects of
the inhibition of TNF-a with entanercept (a TNF-a blocker), in
patients with MetS, for a 4-week treatment period. The authors
concluded that etanercept reduced CRP levels (Table II). Also,
Lo et al (344) randomized obese patients with MetS on etan-
ercept and demonstrated increased circulating levels of total
adiponectin but the ratio of high molecular weight adiponectin
(HMWA) to total adiponectin was reduced (Table I1); HMWA
is the most biologically active form of the adipokine and is
thought to mediate insulin sensitivity (345). Conversely,
Stanley et al (346) found that the administration of etanercept,
on obese individuals, with MetS, increased the ratio of HM WA
to total adiponectin (Table II). Paquot ez al (347) in their clin-
ical trial failed to show an improvement in insulin sensitivity
after TNF-a neutralization, following a single intravenous
administration of a TNF receptor antagonist (Ro45-2081;
a soluble TNF-receptor-IgG fusion protein) in obese insulin
resistant patients (Table IT). Moreover, Dominguez et al (348)
failed to reverse vascular and metabolic IR, after short-term
etanercept treatment, in obese patients with T2DM (Table II).
This evidence may support the hypothesis that AT TNF-aq,
which is not secreted in the systemic circulation may act in
an autocrine or paracrine manner. Therefore, the anti-TNF-a
agents may not reach the AT microcirculation, which is mark-
edly impaired in T2DM (347,349,350). Thus, anti-TNF-a
therapy may fail to improve insulin sensitivity in such cases.
In summary, treatment with anti-TNF-o agents in patients
with T2DM did not yield consistent results for glucose and
HbA Ic reduction. Ruscitti et al (351) investigated the effects
of anti-IL-1 treatment with anakinra compared with TNF-a
inhibitors, such as etanercept, adalimumad, infliximad, certoli-
zumab pegol or golimumab, in patients with RA and T2DM in
an open label, prospective, controlled, parallel-group trial. The
authors found that anakinra reduced HbAlc values compared
with TNF-a inhibitors after a 6 month treatment period and
also reduced antidiabetic drugs defined as the reduction of
administered dosages, change from combination therapy to
monotherapy or discontinuation of anti-diabetic drugs (351).
However, after the mean follow-up of 18 months anakrinra had
no effects in HbAlc values compared with TNF-a inhibitors
but continued to reduce the use of antidiabetic drugs. On the
contrary, an increase of anti-diabetic therapies was needed in
participants treated with TNF-a inhibitors to reduce HbAlc
levels (351) (Table II).

Treating inflammation with synergic anti-IL-13 and
anti-TNF-a therapies. Diacerein is both an IL-1R blocker
and a TNF-a antagonist by its active metabolite, rhein (352).
Ramos-Zavala et al (352) found that diacerein administra-
tion in patients with T2DM increased insulin secretion and
decreased fasting glucose levels (Table II). In addition,
Cardoso et al (353) found that diacerein administration
reduced HbAlc values in patients with T2DM (Table II).
These findings are in agreement with the studies reported from
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Tres et al (354) (Table II) and Jangsiripornpakorn et al (355)
(Table II). In patients with T2DM and chronic kidney
disease, intervention with diacerein improves the metabolic
control of T2DM and reduces nighttime blood pressure
but has no effects in glomerular filtration rate and urinary
albumin/creatinine ratio (356) (Table II).

Treating inflammation with CCR2 antagonists. Drugs targeting
immune cell infiltration have been tested for anti-inflammatory
and anti-obesity therapy as well. Di Prospero et al (357)
evaluated the safety, tolerability, pharmacokinetics and pharma-
codynamics of JNJ-41443532, a CCR2 antagonist, in a small
sample size, double-blind, placebo-controlled, randomized,
multicenter study for 4-weeks, in patients with T2DM. The
authors found that JNJ-41443532 treatment was well toler-
ated in patients with T2DM and showed modestly improved
glycemic parameters compared with the placebo group (357)
(Table II). Also, Mulder et al (358) examined in male mice
whether propagermanium, an inhibitor of CCR2, could atten-
uate tissue inflammation and NASH development. The results
of this study showed that early propagermanium intervention
was more effective than late intervention in attenuating IR,
WAT inflammation and NASH development (358). In addi-
tion, Huh et al (359) investigated the effects of PF4178903, an
antagonist for dual CCRs, CCR2 and CCRS, on obesity and IR,
in high fat diet fed mice. The authors demonstrated that the dual
CCR2 and CCRS5 antagonist, PF4178903, attenuated metabolic
dysfunction, induced by a high-fat diet. There was a decrease in
body weight gain, blood glucose levels, lipid levels, adipocyte
size and systemic inflammation, and an improvement in glucose
tolerance and insulin sensitivity (359). Particularly, PF4178903
significantly shifted the M1 macrophage phenotype towards
the M2 phenotype, in high fat diet-induced obesity, suggesting
that the dual CCR2 and CCRS5 blockade regulates macrophage
polarization in AT macrophages (359).

Treating inflammation with NF-xB inhibition. Tuttle et al (360)
found that baricitinib, an oral, reversible, selective inhibitor of
JAK1 and JAK2 decreases inflammation, HBAlc and albu-
minuria in patients with T2DM and diabetic kidney disease.
Salsalate is a product of salicylate showing anti-inflammatory
effects by inhibiting the IKKb/NF-kB and JNK singnaling
pathways. Faghihimani er al (361) found that the adiminstra-
tion of salsalate in T2DM reduced HbAIc values and fasting
glucose levels (Table II). Similar results were shown in the
study by Godfine et al (362) (Table II). Greater improvement
of glycemic control of salsalate might be seen with newly
diagnoseed patients with T2DM or with longer duration of
antidiabetic treatment (363).

Treating inflammation with IL-6R inhibitors. Sarilumab is a
human anti-IL-6 receptor (IL-6R) monoclonal IgGl1 antibody
that targets both the membrane-bound and soluble IL-6
receptor forms (364,365). Therefore, sarilumab blocks both
the cis- and trans-inflammatory signaling cascades of IL-6
and reduces the activity of pro-inflammatory cytokines and
inflammation (364,365). In particular, sarilumab has been
shown to reduce HbAlc values after a 24 week treatment
period compared with adalimumab in patients with rheuma-
toid arthritis with or without T2DM (366) (Table II).

Side effects of anticytokine therapies. However, anticytokine
therapy is not devoid of unwanted side effects (367-369).
Serious side effects derived from the use of anticytokines
include infections, reactivation of latent tuberculosis and
hepatitis B virus infection, hepatotoxicity, demyelinating
disorders of the central nervous system and adverse cardiac
events (369). Therefore, potential benefits should be carefully
weighed against potential side effects related to the use of
these medications (369).

7. Anti-inflammatory effects of thiazolidinediones (TZDs)
in the treatment of obesity-associated T2DM

Pharmacological elevation of plasma levels of adipo-
nectin could become a promising therapeutic strategy in
countering-balacing obesity-associated T2DM (370). The
thiazolidinediones (TZDs) are agonists of peroxisome prolif-
eration activating receptor-y (PPARYy), with TZDs such as
troglitazone, rosiglitazone, glitazone and pioglitazone having
been shown to increase the activation of PPARY, elevate serum
adiponectin concentrations, restore lipogenic function and
decrease inflammation (371-373). TZDs also block the ability
of TNF-a to inhibit insulin signaling through increased serine
phosphorylation of IRS-1 (374). Wolf et al (375) demonstrated
in vitro that adiponectin displays potent immunosuppressive
effects inducing the production of anti-inflammatory cytokines
IL-10 and IL-1Ra in myeloid cell types. In addition, IL-10
can inhibit the production of pro-inflammatory mediators by
macrophages, including IL-1, IL-2, IL-6, IL-12, interferon
gamma (INFy) and TNF-a (375,376). Furthermore, adipo-
nectin rapidly up-regulates IL-10 and subsequently increases
the levels of tissue inhibitor metalloproteinase-1 (an inhibitor of
matrix metalloproteinases) in human macrophages preventing
the degradation of the ECM (78). Although, TZDs are effective
in controlling glycemia and IR, and are not associated with
hypoglycemia, when used as monotherapy (377,378), there are
some serious safety concerns that must be considered when
selecting TZDs for the treatment of metabolic disorders (370).
For example, troglitazone was removed from the market after
the FDA received reports of 94 cases of troglitazone-induced
liver failure (379). Also, pioglitazone usage increases the risk of
bladder cancer (380) and edema in T2DM (381,382). Another
important safety issue of TZDs, is their risk for heart failure
due to fluid retention (383). Moreover, glitazone has been asso-
ciated with macular edema of the retina that leads to vision
loss (384,385). Additionally, TZDs decrease bone density and
therefore increase the bone fracture risk (386). Apart from the
aforementioned side effects of TZDs, treatment with TZDs is
associated with a rise in body weight due to increased fat mass
and fluid retention in patients with T2DM (387,388).

8. Conclusion and future perspectives

Obesity has evolved to an epidemic condition that causes
health impairment by increasing the risk of developing other
relevant conditions, such as MetS, IR, T2DM, hypertension,
atherosclerosis, dyslipidemia, CVDs, respiratory disorders and
several types of cancer. The molecular and pathophysiological
mechanisms linking visceral obesity and MetS are mediated by
chronic low-grade inflammation and OS, but they are not fully
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understood. Particularly, obesity results in a pro-inflammatory
state in the adipocytes characterized by increased recruitment,
accumulation and AT infiltration of M1 macrophages with a
consequent release of highly pro-inflammatory cytokines, such
as IL-1P, IL-6 and TNF-q, and pro-inflammatory adipokines,
such as PAI-1, visfatin, resistin and leptin. The polarization
of macrophages toward the M1 pro-inflammatory state results
in reduced adiponectin levels. Accumulating evidence indi-
cates that obesity related factors, such as a high-calorie diet,
sedentary lifestyle, AT micro-environment and gut microbiota
deregulation, exacerbate chronic tissue inflammation. To
date, clinical studies, which tested the safety, tolerability and
efficacy of molecular therapies targeting obesity-associated
inflammation, have shown hopeful results by enhancing insulin
sensitivity and improving metabolic function and IR, but they
still remain unsatisfactory with poor treatment outcomes and
in numerous cases are accompanied with serious side effects.
Therefore, new efficacious and safe molecular targeted agents
need to be discovered.
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