
ONCOLOGY LETTERS  27:  256,  2024

Abstract. Cluster of differentiation 47 (CD47) is a transmem‑
brane protein that is widely and moderately expressed on the 
surface of various cells and can have an essential role in medi‑
ating cell proliferation, migration, phagocytosis, apoptosis, 
immune homeostasis and other related responses by binding 
to its ligands, integrins, thrombospondin‑1 and signal regula‑
tory protein α. The poor prognosis of cancer patients is closely 
associated with high expression of CD47 in glioblastoma, 
ovarian cancer, breast cancer, bladder cancer, colon cancer and 
hepatocellular carcinoma. Upregulation of CD47 expression 
facilitates the growth of numerous types of tumor cells, while 
downregulation of its expression promotes phagocytosis of 
tumor cells by macrophages, thereby limiting tumor growth. 
In addition, blocking CD47 activates the cyclic GMP‑AMP 
(cGAMP) synthase/cGAMP/interferon gene stimulating factor 
signaling pathway and initiates an adaptive immune response 
that kills tumor cells. The present review describes the struc‑
ture, function and interactions of CD47 with its ligands, as 
well as its regulation of phagocytosis and tumor cell fate. It 
summarizes the therapeutics, mechanisms of action, research 
advances and challenges of targeting CD47. In addition, this 
paper provides an overview of the latest therapeutic options 
for targeting CD47, such as chimeric antigen receptor (CAR) 
T‑cells, CAR macrophages and nanotechnology‑based delivery 
systems, which are essential for future clinical research on 
targeting CD47.
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1. Introduction

Cluster of differentiation 47 (CD47) expression levels are 
influenced by an organism's physiological state and cell 
type (1). Under normal physiological conditions, the expres‑
sion level of CD47 has a vital role in maintaining homeostasis. 
For instance, young erythrocytes have high CD47 expression 
on their surface. By contrast, senescent erythrocytes have low 
CD47 expression on their surface, which allows macrophages 
to eliminate CD47 for erythrocyte renewal (2). As previously 
reported, binding different ligands to CD47 also results in 
different biological effects. For example, CD47 binds to 
signal regulatory protein α (SIRPα) to activate a signaling 
pathway that inhibits phagocytosis and the killing of tumor 
cells by macrophages in the tumor microenvironment (TME) 
by modulating the immune response (3). Under pathological 
conditions, CD47 is highly expressed in hematological tumors, 
and by binding to its ligand SIRPα, CD47 transmits a series 
of inhibitory signals to macrophages; consequently, the 
phagocytosis of tumor cells by macrophages is prevented (4). 
The expression level of CD47 and blockade of the signaling 
pathway activated by CD47 also significantly impact the fate 
of tumor cells, and the upregulation or downregulation of 
CD47 expression and blockade of CD47 signaling can deter‑
mine the fate of tumor cells. Blocking CD47 signaling can also 
determine the survival of tumor cells. In recent years, blocking 
CD47 has emerged as a potential therapeutic strategy for tumor 
immunotherapy (5), and immunotherapies targeting CD47 
have achieved significant success in certain cancer patients. 
However, remission rates vary; not all individuals benefit 
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from current treatments (6). Various drugs targeting CD47, 
such as monoclonal antibodies (mAbs), SIRPα fusion proteins 
(SIRPα‑Fc), bispecific antibodies (BsAbs), small‑molecule 
inhibitors and nanotechnology‑based delivery systems, are 
being developed (7,8). Preclinical studies and early clinical 
trials have demonstrated that CD47‑targeted therapies have a 
promising future for application. In addition, CD47‑targeted 
therapies have potential limitations and challenges, including 
adverse reactions such as anemia and thrombocytopenia, as 
well as resistance to drugs (9).

2. CD47 

In 1990, Brown et al (10) first identified CD47 as a cell surface 
protein associated with αvβ3 integrins in placenta and plate‑
lets. This protein was subsequently shown to regulate integrins 
and leukocyte responsiveness to extracellular matrix proteins; 
hence, it was named integrin‑associated protein (IAP) (11,12).

CD47 has a molecular weight of 45‑55 kDa and is a member 
of the immunoglobulin (Ig) superfamily (IgSF)  (4,13,14). 
Its molecula r st ructure includes one N‑terminal 
extracellular IgG‑like domain, five highly hydrophobic trans‑
membrane segments and one hydrophilic cytoplasmic tail at 
the C‑terminus. Hatherley et al (15,16) investigated the crystal 
structure of the IgG structural domain. They showed that the 
structure of CD47 has a typical IgV‑like fold and is similar to 
that of myelin oligodendrocyte glycoprotein. CD47 mediates 
vascular smooth muscle cell (VSMC) proliferation and migra‑
tion (17), as well as platelet activation and spreading (18), and 
recruits granulocytes and T cells to the site of infection (11).

Although an existing review  (19) has summarised the 
structure and function of CD47, a description of the structure 
and function of CD47 isoforms is lacking. This review refers 
to previous studies reporting that CD47 has four traditional 
isoforms in human cell lines and tissues, all of which have 
different amino acid lengths in the cytoplasmic tail (19). In a 
recent study, sequence analysis of cDNA cloned from human 
skeletal muscle revealed that, in addition to the four traditional 
isoforms, human CD47 has a new isoform 5, which features 
an entirely different cytoplasmic tail amino acid length and 
amino acid sequence compared with the four traditional 
isoforms (20,21). 

The distribution and functions of different isoforms within 
tissues vary. bladder, ovarian and breast cancer cells are 
examples of keratinocytes and tumor cells expressing type 1 
CD47 (22,23). The most extensively expressed form, type 2 
CD47, is mainly involved in signaling between astrocytes and 
is primarily expressed in hematopoietic cells, epithelial cells 
and vascular endothelial cells. Neuronal, testicular and intes‑
tinal mucosal cells explicitly express type 3 and 4 CD47 (24). 
Types 3 and 4 are thought to be closely related to memory 
mechanisms because their expression is markedly elevated in 
the brains of rats with good memory (25,26). Protein linking 
IAP with cytoskeleton 1 (PLIC‑1) cytoplasmic protein regu‑
lates cyclic adenosine monophosphate (cAMP) signaling by 
CD47 by binding to the cytoplasmic tails of types 2 and 4, 
recruiting heterotrimeric G proteins to CD47 (27), inhibiting 
chemotactic signaling induced by the Gi‑coupled receptor 
C‑X‑C motif chemokine receptor 4 (28) and activating the 
PI3K/Akt pathway in astrocytomas  (29). More research is 

required to determine the functional distinctions between the 
cytoplasmic tails of the various CD47 isoforms, as the studies 
on this aspect of CD47 isoforms have been minimal in recent 
years, resulting in a limited understanding of the regulatory 
mechanisms and roles of the cytoplasmic tails of different 
isoforms of CD47.

In addition, certain cells can adapt to various physiolog‑
ical and pathological changes by switching their subtype, e.g., 
Reinhold et al (23) used PCR to detect mRNA expression and 
found that primary mouse endothelial cells cultured in vitro 
predominantly expressed CD47 type 2 mRNA, and endothe‑
lial cells transformed with intermediate T antigen expressed 
all four types of mRNA. However, certain researchers dispute 
this; for instance, Mateo et al (30) observed no change in 
the expression of CD47 isoforms. These studies indicate that 
the role of the CD47 types in tumorigenesis and develop‑
ment and the mechanism of interconversion require further 
investigation.

3. CD47 receptors

CD47 receptors include integrin, thrombospondin‑1 (TSP‑1) 
and SIRPα. Based on published reviews, it may be summa‑
rized that CD47 affects multiple biological functions of target 
cells by binding to these ligands (31,32). In addition, the gene 
expression of the three ligands of CD47 under physiological 
conditions and in tumors may be summarized through the 
GEPIA database (http://gepia.cancer‑pku.cn/index.html) and 
the Human Protein Atlas (https://www.proteinatlas.org/), as 
elaborated below.

Interaction with integrins. Integrins are transmembrane 
ligands that bridge the gap between cells and the extracel‑
lular matrix and regulate signaling processes such as the cell 
cycle, morphology and motility (26,32,33). CD47 was initially 
found to interact with αvβ3 intergrin, hence the designation 
IAP. Under normal physiological conditions, αvβ3 integrins 
are mainly expressed in cardiomyocytes, oligodendrocytes 
and astrocytes, while under pathological conditions, they 
may be widely expressed mainly in cancers, such as glio‑
blastoma, esophageal, thyroid and pancreatic cancers. The 
CD47‑integrin complex may activate multiple heterotrimeric 
G proteins by linking IAP to PLIC‑1, thereby inducing CD47 
to activate cAMP signaling (34). Lindberg et al (35), through 
a study using a CD47‑deficient human cell line, showed that 
CD47 is required for αvβ3 integrin‑mediated binding of 
hyaluronan to encapsulated microbeads. In addition to αvβ3 
integrin, CD47 binds to αIIbβ3 integrin and induces platelet 
aggregation and increased adhesion spot kinase tyrosine 
phosphorylation (18). In addition, CD47 binds to α4β1 integrin 
and mediates reticulocyte adhesion (36); CD47 binds to α5β1 
integrin and is involved in chondrocyte mechanotransduc‑
tion (37); and CD47 binds to α6β1 integrin and has a role in 
fibrillar β‑amyloid‑mediated activation and phagocytosis of 
microglia (38).

Interaction with TSP. TSP is an extracellular matrix 
calcium‑binding glycoprotein that is highly expressed on 
monocytes, mucus cells and macrophages under normal physi‑
ological conditions and is widely expressed in cancers, such 
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as breast adenocarcinoma carcinoma, lung adenocarcinoma, 
pancreatic adenocarcinoma and gastric adenocarcinoma, 
mainly under pathological conditions. There are currently five 
known isoforms of TSP, i.e., TSP‑1‑5 (39). TSP‑1 is the first 
identified endogenous ligand of CD47 and it has a variety of 
biological functions, including the inhibition of angiogenesis, 
activation of transforming growth factor‑β and participation 
in tissue repair (40). Protein‑related studies have shown that 
TSP‑1 binds to the CD47 extracellular IgV structural domain 
through its C‑terminal structural domain peptide 4N1K and 
has a role in several biological processes, including inflamma‑
tion, immune response, cell proliferation, apoptosis, adhesion 
and migration (41). The mechanism of CD47‑TSP‑1 interaction 
has not been studied in detail because the crystal structure 
of the CD47‑TSP‑1 complex still needs to be clarified. Early 
experiments have shown that CD47 affects signaling through 
heterotrimeric Gi proteins in a pertussis toxin‑sensitive 
manner (28), thereby modulating TSP‑1‑induced cell spreading 
and platelet activation. Isenberg et al (42) measured cGMP 
levels by immunoassay, indicating that binding of CD47 
to TSP‑1 inhibits nitric oxide signaling in endothelial and 
VSMCs, thereby promoting platelet aggregation. To date, we 
have found that CD47‑TSP‑1 expression serves as a marker for 
predicting patient response to immune checkpoint blockade 
therapy, but there is no targeted therapy for the CD47‑TSP‑1 
axis. It is hypothesized that this may be because CD47 has 
little effect on the adaptive immune response through its inter‑
action with TSP‑1, and therefore, blocking the CD47‑TSP‑1 
axis has little clinical therapeutic significance. However, a 
novel immunotherapeutic drug, TAX2 peptide, which acts as 
an orthosteric antagonist of the interaction between TSP‑1 and 
CD47, has shown a good safety profile in mouse models of 
ovarian cancer and is effective in killing tumor cells (43).

Interaction with SIRPα. SIRPα, the ligand with the highest 
affinity for CD47, is a member of the SIRP family and was 
first identified by Kharitonenkov et  al  (44) in the 1990s. 
Belonging to the IgSF, under normal physiological conditions, 
SIRPα is extensively expressed on the surface of cells such as 
monocytes, macrophages, neutrophils, dendritic cells (DCs) 
and microglia. Under pathological conditions, it is widely 
expressed in cancers such as glioblastoma, melanoma, renal 
cancer and head and neck cancer (45,46).

The intracellular region of SIRPα contains four tyrosine 
phosphorylation sites and two immunoreceptor tyrosine inhi‑
bition motifs (ITIMs), and the extracellular region has three 
IgSF structural domains, namely, one N‑terminal IgV‑like 
domain and two C‑like domains (47,48). The crystal structure 
of the N‑terminal IgV‑like domain of SIRPα suggested an 
IgV‑like fold and four‑loop structure (BC, CD, DE and FG 
loops) with an overall structure similar to that of the T‑cell 
receptor (16,49).

SIRPα binds to CD47 through its N‑terminal FG and BC 
loop, thus forming a highly entangled, well‑fitted complex 
structure (15). The long disulfide bond between Cys33 of the 
IgV structural domain and Cys263 of the transmembrane 
structural domain in CD47 is essential for enhancing binding 
to SIRPα (50‑52). According to X‑ray computational crystal‑
lography calculations and analysis, when CD47 interacts 
with SIRPα, the total distance between the two cell types 

approximates the entire distance of the immune synapse 
(~14 nm) (53). Therefore, the binding of SIRPα to CD47 may 
occur via an antigen receptor rather than through the usual 
cell‑cell structural domain binding interaction (16).

The binding of SIRPα to CD47 promotes the phos‑
phorylation of the intracellular region of the ITIM (15,47). 
Phosphorylated ITIM recruits and activates Src homology 
region 2 (SH2)‑containing tyrosine phosphatase‑1 (SHP‑1) and 
SHP‑2 (54), which affects cytoskeletal function by inactivating 
motor myosin IIA (55), thereby blocking tyrosine phosphoryla‑
tion‑dependent signaling pathways and limiting phagocytosis 
by macrophages and others (47). Although SHP‑1 and SHP‑2 
are typically inactive, phosphorylated ITIM recruits the SH2 
structural domain to the cell membrane, and a change in its 
conformation activates SHP‑1 and SHP‑2. SHP‑1 is present 
mainly in hematopoietic and epithelial cells and is selectively 
expressed in myeloid cells, which function as a negative regu‑
lator of phagocytosis. By contrast, SHP‑2 is widely expressed 
and promotes cell proliferation, growth and migration mainly 
by regulating the GTP‑binding proteins RAS and Rho (26).

CD47‑SIRPα interactions not only regulate the mainte‑
nance of lymphocyte homeostasis (56), DC maturation and 
activation (57), the correct localization of DC subpopulations 
in sub‑lymphoid organs and cell migration (58) but also have 
an essential role during remodeling of the nervous system 
and bone tissues  (59). The cellular responses regulated by 
CD47‑SIRPα interactions depend upon bidirectional signaling 
between CD47 and SIRPα: CD47 on host cells acts as a 
‘self‑tag’ (60) and regulates phagocytosis by binding to SIRPα. 
How this regulates phagocytosis will be further discussed in 
a later section.

4. CD47 and SIRPα: Bidirectional regulation of the 
immune system

Complex cellular communication systems in multicellular 
organisms have evolved to ensure adequate intercellular 
communication, which is crucial for cell differentiation, tissue 
and organ formation, individual development in multicellular 
organisms and immune function regulation (61).

The interaction between CD47 and SIRPα constitutes an 
intercellular communication system whose role in regulating 
immune system function is bidirectional (62). The CD47‑SIRPα 
signaling pathway negatively regulates DC activation. The 
fusion protein of CD47, when bound to SIRPα, inhibits the 
phenotype and function of immature DCs and the production 
of cytokines by mature DCs (63). However, considering its role 
in antigen presentation, SIRPα has a positive regulatory effect. 
SIRPα is abundantly expressed on the surface of mature DCs. 
When the immune system responds to pathogens, SIRPα helps 
DCs present relevant antigens to T cells and costimulatory 
molecules associated with initiating T cells, thus promoting 
T‑cell activation and proliferation (1,19).

5. CD47‑SIRPα regulates phagocytosis

Phagocytosis is the process by which tissue cell debris and 
apoptotic cells are engulfed and digested, and this process 
helps maintain a stable balance in the body's internal environ‑
ment. CD47 has a vital role in regulating phagocytosis. This 
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regulatory function is mediated by binding to the inhibitory 
receptor SIRPα on phagocytes to activate the CD47‑SIRPα 
signaling pathway. CD47 binds to SIRPα and sends an 
inhibitory ‘do not eat me’ signal to phagocytes, thus limiting 
phagocytosis (3,64) (Fig. 1).

The most characterized function of the CD47‑SIRPα 
signaling pathway in vivo is the clearance of senescent and 
apoptotic erythrocytes. Okazawa et al (65) reported that the 
primary site of erythrocyte macrophage clearance is the red 
pulp of the spleen, suggesting that erythrocyte clearance is 
mediated by splenic red pulp macrophages. SIRPα is abundant 
in these macrophages and Ishikawa‑Sekigami et al (66) demon‑
strated that erythrocyte clearance was significantly increased 
in SIRPα mutant mice injected with normal erythrocytes. This 
increase is because the mutated form of SIRPα expressed by 
SIRPα mutant mice cannot bind to SHP‑1 or SHP‑2 due to 
the lack of cytoplasmic domains, and SIRPα fails to exert an 
inhibitory effect on the CD47‑SIRPα signaling pathway. As a 
result, the phagocytosis of red blood cells by splenic red pulp 
macrophages is enhanced (65). This phenomenon is observed 
not only in erythrocytes but also in platelets. Previous studies 
have demonstrated that SIRPα mutant mice lacking the cyto‑
plasmic structural domains exhibit thrombocytopenia in the 
SIRPα mutant mouse model and clear platelets from the blood 
of the mutant mice at a more rapid rate when compared to 
wild‑type mice (13,67).

CD47‑SIRPα signaling also has an essential regulatory 
role in hematopoietic stem cell (HSC) transplantation. HSCs 
upregulate CD47 expression to protect themselves from 
phagocytosis by macrophages, thus achieving successful 
implantation  (68,69). In general, the CD47 of one species 
has little interaction with the SIRPα of another species. 
However, higher‑polymorphism SIRPα on macrophages was 
observed in a nonobese diabetic (NOD)‑severe combined 
immunodeficiency xenograft mouse model when compared 
with other mouse lines. These cells have an exceptionally high 
affinity for human CD47, even higher than the mouse‑mouse 
or human‑human affinity of CD47 and SIRPα  (70,71). 
Theocharides et al  (72) demonstrated that implantation of 
normal human HSCs in NOD mice was also dependent on 
the interaction of human CD47 with SIRPa in NOD mice by 
implanting HSCs into a NOD mouse model. These studies 
demonstrated that the interaction between CD47 on human 
HSCs and SIRPα on macrophages is critical for the successful 
implantation of HSCs. In addition, human SIRPα is polymor‑
phic and each polymorphic variant has a different affinity for 
human CD47 in vitro. This finding suggested that the human 
SIRPα polymorphism is critical for successfully implanting 
HSCs (73,74). 

The ‘do not eat me’ signal from the CD47‑SIRPα signaling 
pathway is also used to maintain homeostasis in body. The 
body must remove various cells, including those that are 
overproduced, damaged or aged. One removal mechanism is 
apoptosis, through which macrophages clear apoptotic cells 
precisely and efficiently. This mechanism is a key ‘do not eat 
me’ signal from CD47 that occurs on the surface of healthy 
cells, and binds to SIRPα inhibitory receptors on macrophages 
to prevent them from being eaten by macrophages. CD47 
expression on the surface of apoptotic cells is downregulated, 
thereby attenuating the inhibitory signal generated by CD47 

binding to SIRPα. By contrast, low IgG or C3b opsonization 
levels can cause the phagocytosis of apoptotic cells by macro‑
phages (75).

6. CD47 signaling regulates tumor cell fate

Malignant tumors like glioblastoma, acute lymphoblastic 
leukemia, as well as ovarian, breast, gastric and lung cancers 
express high levels of CD47  (76‑78). Liu  et  al  (79) used 
flow cytometry to detect the expression of CD47 in isolated 
primary lung cancer cells and adjacent normal cells and the 
results showed that the expression level of CD47 in tumor 
cells was higher than that in normal cells. There were apparent 
differences between subtypes of lung cancer, with the highest 
expression of CD47 in small‑cell lung cancer, followed by 
lung adenocarcinoma, and the lowest in lung squamous 
carcinoma (79). Furthermore, compared to normal myeloid 
cells from healthy individuals, acute myeloid leukemia (AML) 
and chronic myeloid leukemia cells expressed higher levels of 
CD47. Furthermore, a positive association was found between 
high levels of CD47 expression and poor treatment response 
and patient prognosis  (80). A study confirmed that CD47 
mRNA and protein levels were higher in leukemic stem cells 
of patients with AML than in normal healthy stem cells (81). In 
a study on Epstein‑Barr virus (EBV)‑associated gastric cancer 
(EBVaGC), the expression of CD47 in EBVaGC was higher 
than that in EBV‑negative gastric cancer tissue samples, which 
also indicated that high expression of CD47 was associated 
with poor prognosis in EBVaGC (82). Yu et al (83) detected 
the expression of CD47 in ovarian cancer tissues by immuno‑
histochemistry, which showed that the prognosis of patients 
with low expression of CD47 was better than that of patients 
with high CD47 expression. The above studies indicate that 
CD47 expression levels are closely related to the prognosis of 
patients with cancer.

Recent research has demonstrated that controlling the 
expression of CD47 in tumor cells and inhibiting the signaling 
pathway that CD47 activates have crucial regulatory roles in 
determining the fate of tumor cells. The mechanisms of action 
include the following: i) Upregulation of CD47 expression, 
which binds to the macrophage surface receptor SIRPα and 
transmits the ‘do not eat me’ signal to promote phagocytosis 
of tumors by macrophages; ii) blockade of CD47 enhances 
the phagocytosis of tumor cells by DCs and promotes antigen 
delivery from DCs to T lymphocytes, initiating an antitumor 
adaptive immune response; iii) blockade of CD47 is capable 
of clearing tumor cells through natural killer cell‑mediated 
antibody‑dependent cell‑mediated cytotoxicity (ADCC) and 
complement‑dependent cytotoxicity (CDC) to clear tumor 
cells; iv)  blockade of CD47 also activates the apoptotic 
pathway and directly induces apoptosis in tumor cells.

The expression level of CD47 is regulated by transcrip‑
tion factors such as nuclear factor κB (NF‑κB), the MYC 
oncogene and hypoxia‑inducible factor‑1 (HIF‑1), which 
regulate the phagocytosis of tumor cells by upregulating or 
downregulating the expression of CD47 (4). In a T‑cell acute 
lymphoblastic leukemia xenograft model, MYC directly 
binds to the CD47 promoter and upregulates its expression, 
thus promoting the growth of tumor cells. By contrast, inac‑
tivation of MYC downregulates the expression of CD47 and 
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enhances macrophage infiltration and phagocytosis, thereby 
inhibiting tumor cell growth  (84). In addition, activated 
NF‑κB directly binds to specific enhancer components of 
CD47 and upregulates CD47 expression in breast cancer cells, 
thereby promoting tumor growth (85). In a clinical analysis 
of thousands of patients with breast cancer, Zhang et al (78) 
reported a strong correlation between CD47 and HIF‑1. Under 
hypoxic conditions, HIF‑1 binds to the CD47 promoter and 
upregulates its expression, thereby inhibiting the phagocytosis 
of breast cancer cells (84). In addition, ERK signaling inhibits 
tumor‑cell phagocytosis by activating nuclear respiratory 
factor‑1 and upregulating CD47 expression in melanoma cells. 
Conversely, microRNA (miRNA)‑mediated downregulation of 
CD47 expression promotes tumor‑cell phagocytosis. MiR‑708 
is inversely associated with CD47 expression and its binding 
to the 3'‑untranslated region of CD47 induces tumor‑cell 
phagocytosis by suppressing CD47 expression (86). In multiple 
myeloma, CD47 expression on the surface of myeloma cells 
can be inhibited by upregulating the expression of the tumor 
suppressor gene miRNA‑155, thereby inducing phagocytosis 
of tumor cells by macrophages (87) (Fig. 2).

Reputable reviews (64,88) have shown that transcription 
factors, oncogenes and miRNAs may control CD47 expres‑
sion in tumor cells; however, regulation of CD47 expression 
occurs in the tumor immune microenvironment and the 
immune response of other cell types. A recent study found that 
blocking CD47‑SIRPα signaling enhances antitumor immune 
responses (89). Tumor DNA in DCs activates the cell membrane 
DNA sensor cGMP‑AMP (cGAMP) synthase (cGAS), which 
subsequently exerts potent antitumor effects by binding to 
the second messenger cGAMP and activating interferon gene 

stimulating factor (STING) (89). By contrast, CD47 inhibits 
this signaling pathway and aids in the immune escape of tumor 
cells. For instance, in treating glioblastoma, blocking CD47 not 
only enhances DC phagocytosis but also promotes the initiation 
of the adaptive immune response by T cells by activating the 
cGAS‑cGAMP‑STING signaling pathway (90). In addition, a 
study by Xu et al (91) found that in mouse models of colon cancer, 
lymphoma and melanoma, blocking CD47‑SIRPα signaling 
activates NADPH oxidase in DCs to inhibit the degradation of 
tumor‑derived mitochondrial DNA (mtDNA), which leads to an 
increase in the level of mtDNA and its recognition by cGAS in 
the cytoplasm of DCs. As a result, the cGAS‑cGAMP‑STING 
signaling pathway is activated, which releases interferon‑γ to 
initiate the CD8+ T‑cell mediated adaptive immune response, 
thereby killing tumor cells (47); i.e., the tumor‑killing effect 
of T cells is dependent on the blockade of the CD47‑activated 
cGAS‑cGAMP‑STING signaling pathway (4) (Fig. 3).

In addition, blocking CD47 induces tumor cell death only 
when endogenous activation signals are present (64). A study 
by Chen et al (92) revealed the presence of an endogenous acti‑
vation signal on the surface of tumor cells called SLAM family 
member 7 (SLAMF7), a prophagocytic signal of SLAMF7, 
which is a prophagocytic ‘eat‑me’ signal and usually interacts 
with the macrophage‑1 antigen, promoting the phagocytosis of 
tumor cells by macrophages. Furthermore, they contended that 
CD47‑mediated phagocytosis requires SLAMF7. However, 
He et al (93) refuted this view by finding that phagocytosis was 
also effectively induced in SLAMF7‑negative diffuse large 
B‑cell lymphomas cells after they blocked CD47 by the CD47 
antibody Inhibrix. Further studies are needed to determine 
whether SLAMF7 is required to mediate CD47.

Figure 1. Regulation of phagocytosis by the CD47‑SIRPα signaling pathway. SIRPα is the receptor with the highest affinity for CD47. When CD47 on the 
surface of tumor cells binds to SIRPα, an inhibitory receptor on macrophages, it sends a ‘do not eat me’ signal to macrophages, preventing immune surveil‑
lance. When the CD47‑SIRPα signaling pathway is blocked, phagocytosis of tumor cells by macrophages is promoted (schematic generated with figdraw). 
CD47, cluster of differentiation 47; SIRPα, signal regulatory protein α; SHP‑1, Src homology region 2‑containing tyrosine phosphatase‑1; P, phosphate.
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7. Therapeutic strategies targeting CD47

Clinical research has shown that CD47 is an intrinsic immune 
checkpoint with high clinical development value and promising 
application prospects. Numerous domestic and foreign compa‑
nies are actively developing drugs targeting CD47, particularly 
mAbs, BsAbs, fusion proteins and small‑molecule antibodies, 
and many of them have already entered the clinical research 

stage. A search of the PubMed database (https://pubmed.ncbi.
nlm.nih.gov/) and online open resources from the US National 
Clinical Trials Registry system (www.clinical trials.gov) was 
performed as part of the present review. Compared with previ‑
ously published reviews (48,94,95), not only the names, structures 
and clinical trials of various CD47‑targeted representative drugs 
were summarized, but the current state of clinical research and 
the results of clinical trials were also outlined (Table I).

Figure 2. CD47 expression levels regulate tumor cell fate. Multiple transcription factors regulate CD47 expression levels. Nuclear factors bind to specific 
enhancers to promote CD47 expression. MYC and HIF enhance CD47 expression by directly binding to promoters, ERK signaling activates NRF‑1 and 
upregulates CD47 expression, and upregulation of CD47 expression promotes tumor cell growth. By contrast, miRNA‑708 and miRNA‑155 promote phagocy‑
tosis of tumor cells by downregulating CD47 expression (schematic generated with figdraw). NF‑κB, nuclear factor κB; HIF, hypoxia‑inducible factor; NRF‑1, 
nuclear respiratory factor‑1; miRNA, microRNA. 

Figure 3. Blockade of the CD47‑SIRPα signaling pathway initiates an adaptive immune response to kill tumor cells. Blockade of the CD47‑SIRPα signaling 
axis inhibits the degradation of tumor‑derived mtDNA through the activation of NOX2, which, once in the cytoplasm of the DC, is recognized by cGAS, 
further activating the cGAS‑cGAMP‑STING signaling pathway to release INF‑γ, thus promoting T cells to initiate adaptive immune response and kill tumor 
cells (schematic generated with figdraw). mtDNA, mitochondrial DNA; DC, dendritic cell; NOX, NADPH oxidase; cGAMP, cyclic GMP‑AMP; cGAS, 
cGAMP synthase; INF, interferon; STING, INF gene stimulating factor.
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mAbs targeting CD47 or SIRPα. Immunotherapies targeting 
CD47 can be divided into two categories: First, blocking 
or inhibiting the ‘do not eat me’ signal with SIRPα via 
antibodies to promote the phagocytosis of tumor cells by 
macrophages (96); second, the activation of innate and adap‑
tive immune responses. Tumor cells are recognized, taken up 
by antigen‑presenting cells (APCs) and delivered to the initial 
T cells, activating T cells. T cells activate when APCs identify, 
pick up and transfer tumor cells to initial T cells. Antibodies 
targeting CD47 can kill tumor cells by inhibiting protein 
kinase A (97,98).

Closure of CD47 on tumor cells using mAbs targeting 
CD47 or soluble SIRPα‑Fc structures triggers macrophage 
antibody‑dependent cellular phagocytosis in vitro. It signifi‑
cantly promotes the killing of tumor cells (99). In addition, 
the CD47‑targeted fusion protein SIRPαD1‑Fc was found to 
inhibit the Akt/mTOR signaling pathway, upregulate reac‑
tive oxygen species production and promote autophagy in 
non‑small cell lung cancer cells, thereby enhancing the anti‑
tumor effect (100).

More than 10 antibodies targeting CD47 have entered clin‑
ical trials (Table I), among which Magrolimab (Hu5F9‑G4) 
was the first CD47 antibody to enter clinical trials and 
is already in clinical trials for various types of cancers, 
including AML, myelodysplastic syndromes (MDS) and solid 
tumors (45,101,102).

Furthermore, CD47‑targeting antibodies can synergize 
with various mAbs, and combining the two can provide a 
better antitumor effect. Commonly used combinations include 
combination therapy with other therapeutic antibodies, chemo‑
therapy or radiation therapy. A phase I clinical study revealed 
that the combination of a CD47 mAb and Rituximab resulted 
in an objective response rate (ORR) of 40% and a complete 
response rate (CRR) of 33% in patients with diffuse large 
B‑cell lymphoma, with an ORR of 71% and a CRR of 43% in 
patients with follicular lymphoma (45). 

In addition, several clinical trials have evaluated the safety 
and efficacy of CD47‑targeted drugs in different stages and 
types of tumors. For instance, Lemzoparlimab (TJC4), which 
targets CD47, was screened using a phage display system. A 
phase I clinical trial is evaluating the efficacy effects of TJC4 
alone or in combination with Pembrolizumab or Rituximab in 
the treatment of relapsed or refractory (R/R) advanced solid 
tumors and lymphomas (103). The results of the preclinical 
study demonstrated a favorable safety profile and clinical 
efficacy in five patients with AML and high‑risk MDS who 
had received at least two treatments. Of particular note, one 
patient with R/R AML achieved a morphologic leukemia‑free 
status after treatment with TJC4  (104). Humanized CD47 
antibody Ligufalimab (AK117) is an anti‑CD47 mAb with a 
unique structure, which not only has anti‑tumor effects but 
also eliminates erythrocyte agglutination and significantly 
reduces phagocytosis of erythrocytes by macrophages. Phase 
I trials have been completed in Australia and phase II trials 
are underway in China and Australia. Results from a clinical 
trial enrolling 15 patients with advanced solid tumors showed 
that AK117 was safe and well tolerated, with no infusion‑ or 
treatment‑related adverse effects observed (105). AO‑176, a 
mAb targeting CD47, is being evaluated in a phase I clinical 
trial for treating R/R multiple myeloma (106,107). AO‑176 

binds preferentially to tumor cells (rather than normal cells), 
can bind tumor cells more efficiently in an acidic microenvi‑
ronment and can kill tumor cells directly in a cell‑autonomous 
manner (108). Current clinical data show that of the 27 patients 
treated with AO‑176, one patient with endometrial cancer did 
not respond to its treatment regimen and seven patients had 
the best response of stable disease (SD) (109). CC‑90002 is 
the first generation of humanized CD47 antibody to enter 
clinical studies that block CD47‑SIRPα binding to achieve 
the killing of hematological tumor cells (96). Clinical trials 
for AML and MDS revealed that CC‑90002 had poor efficacy 
and safety, which led to its forced discontinuation. Researchers 
restarted clinical trials after improving the CC‑90002 
treatment regimen and safety (110,111). In a mouse transplan‑
tation tumor model of multiple myeloma, CC‑90002 showed 
significant dose‑dependent antitumor activity. In addition, in 
non‑primate animals, CC‑90002 exhibited favorable pharma‑
cokinetic properties and toxicity (96). TTI‑621 and TTI‑622 
are SIRPs‑Fc fusion proteins that have been used in the treat‑
ment of hematologic malignancies, solid tumors and mycosis 
fungoides (112), and such agents are currently being evaluated 
in a phase I clinical trial for R/R B‑cell lymphomas (113). In 
164 patients with B‑cell non‑Hodgkin's lymphoma (B‑NHL), 
TT‑621 plus rituximab was used to treat the disease in a phase 
I trial. The study showed that TT1‑621 was well tolerated 
and that monotherapy is a promising therapeutic option. The 
ORR for all patients treated with TTI‑621 monotherapy was 
13%, while it was 29% for diffuse large B‑cell lymphoma 
and 25% for T‑cell NHL (113). Clinical studies of TTI‑622 
in patients with advanced R/R lymphomas showed that one 
patient with non‑growth center B cells who had received five 
prior therapies achieved partial remission (PR) at week 8 and 
overall response at week 36 (114). The SIRPs‑Fc fusion protein 
Evorpacept (ALX148) is presently undergoing evaluation in 
several programs (95), such as a phase I/II trial for patients 
with advanced solid tumors and a phase I trial for patients 
with aggressive and indolent NHL  (115). PR rates were 
22% with trastuzumab combination therapy in patients with 
Her2‑positive gastric cancer and 16% with pembrolizumab 
combination therapy in patients with head and neck squamous 
cell carcinoma (116).

BsAbs. BsAbs are genetically engineered artificial antibodies 
that contain two specific antigen‑binding sites. The BsAb back‑
bone has two binding arms, one blocking the CD47‑SIRPα 
pathway and the other binding tumor‑specific antigens, thus 
ensuring the killing of tumor cells by BsAbs (99). Compared 
with combination therapy, using BsAbs also reduces the cost 
of drug development and clinical trials. 

Several CD47‑related BsAbs are in early clinical trials. 
For instance, IMM0306, a BsAbs targeting CD20 and 
CD47, avoids binding to CD47 in normal cells due to its 
high affinity for CD20, thus reducing the toxicity associated 
with the CD47 target. IMM0306 has demonstrated vigorous 
antitumor activity in a mouse model of human NHL trans‑
plantation tumor (117). It is currently being evaluated in a 
phase I clinical trial in B‑NHL (118). IBI322 is a drug that 
inhibits both the programmed cell death 1 (PD‑1)/PD‑1 
ligand 1 and CD47‑SIRPα signaling pathways for treating 
intermediate to advanced malignancies. Repeated weekly 
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injections of IBI322 showed good tolerability in non‑human 
primates (119). IBI322 is currently being evaluated in a phase 
I clinical trial for advanced malignancies. HX009 is a BsAb 
targeting PD‑1 and CD47 for treating advanced tumors such 
as gastric, colorectal and hepatocellular carcinomas and is 
currently being evaluated in a phase I trial for advanced solid 
tumors  (120). Clinical studies demonstrated that of the 18 
patients with at least one post‑baseline tumor assessment, three 
patients achieved a PR and six achieved SD (121). CC‑96673, 
a humanized BsAbs co‑targeting CD47 and CD20, was able to 
efficiently promote phagocytosis by macrophages by blocking 
CD47‑SIRPα interactions and mediated the selective removal 
of CD20‑expressing tumor cells by ADCC and CDC to selec‑
tively clear CD20‑expressing tumor cells. A phase I clinical 
trial is presently assessing it for R/R NHL. NI‑1701 is a novel 
BsAb constructed using spinopore technology to target CD47 
and CD19 (122). Previous studies have found that NI‑1701 
selectively binds to CD47 and CD19 co‑expressing cells and 
has poor binding ability with normal cells by interacting 
poorly with normal cells, avoiding binding to normal cells 
and thus improving biosafety (121,123). SL‑172154, a fusion 
protein targeting SIRPs‑Fc and CD40L, is being evaluated in 
a phase I clinical trial for solid tumors (124).

Other treatment strategies. Chimeric antigen receptor T cell 
(CAR T cell) immunotherapy has made significant progress in 
oncology, and combining CD47 blockade therapy with CAR 
T‑cell therapy has become a hot research topic. A previous 
review (125) described CAR T cells and their future prospects 
and directions in detail; however, there is a lack of description 
of the role of CD47‑CAR T cells in various types of tumor. 
CAR T‑cell therapy is a cell‑over‑cell immunotherapy that 
does not depend on major histocompatibility complex (126). 
Beckett et al (127) examined the role of CD47 in CAR T‑cell 
function by knocking down CD47 in T cells for downstream 
functional analysis. They showed that CD47 expression is 
critical for CAR T‑cell survival in vivo and is required for 
successful overt T‑cell therapy. Golubovskaya  et  al  (128) 
reported that CD47 CAR T cells had antitumor activity and 
significantly inhibited the growth of transplanted pancreatic 
cancer tumors. Shu et  al  (129) constructed a CAR T cell 
targeting both CD47 and tumor‑associated glycoprotein 72 
(TAG‑72), which showed vigorous antitumor activity in both 
in vitro and in vivo models of ovarian cancer. The specific 
targeting of TAG‑72 could reduce its killing of normal cells. 
Chen et al (130) developed a SIRPα‑Fc fusion protein CAR 
T cell, which promoted the phagocytosis of macrophages, 
recruited more DCs into tumor tissues, inhibited the apoptosis 
of CAR T cells themselves and reduced the expression of PD‑1 
on the surface of CAR T cells, thus enhancing the antitumor 
effect.

The understanding of chimeric antigen receptor macro‑
phages (CAR‑Ms) is minimal. CAR‑Ms is the engineering of 
macrophages to modify CARs in order to enhance macrophage 
antigen‑specific phagocytosis and tumor clearance (131,132). 
Klichinsky et al  (133) first proposed the CAR‑M concept, 
constructed CAR‑Ms and reported that CAR‑Ms have strong 
antitumor effects and can promote the secretion of proinflam‑
matory factors, promote M2‑type to M1‑type polarization and 
increase T‑lymphocyte antigen presentation (134).

In addition, a new therapeutic strategy for targeting CD47 
has emerged in recent years, namely reprogramming the 
immunogenicity of cancer cells, whereby specific chemo‑
therapeutic agents or radiation therapy stimulate tumor cells 
to undergo tumor immunogenic cell death (ICD), which is 
a form of apoptosis that activates the immune system (9). 
Abdel‑Bar et al (135) developed nucleic acid lipid particles 
for the delivery of ICD‑inducing Adriamycin and CD47 
proteins, which could enhance phagocytosis by macrophages 
by increasing the amount of cell surface calreticulin.

8. Challenges of antitumor therapy targeting CD47

Due to its high expression on the surface of tumor cells, 
CD47 has become an ideal target for tumor immunotherapy, 
and antitumor drugs targeting CD47 were shown to have 
promising applications. However, chemotherapeutic drugs 
targeting CD47 have numerous adverse effects, a limitation 
that makes targeted CD47 therapy a significant challenge. 
First, CD47 is widely expressed on the surface of tumor 
cells and normal cells, leading to inevitable injury to 
normal red blood cells in the process of killing tumor cells. 
Many red blood cells will become the best ‘cover’ for tumor 
cells, and red blood cells will be exhausted by targeted 
drugs before tumor cells, resulting in adverse effects such 
as red blood‑cell aggregation, anemia and thrombocyto‑
penia (100,136). The degree of toxicity is dose‑, time‑ and 
patient‑specific and can be reduced by optimizing the 
dosage and combining drugs with erythropoietin. Second, 
there may be differences in the level of CD47 expression on 
the surface of different tumor cells, resulting in different 
sensitivities to targeted CD47 therapy (137,138). Finally, 
due to the presence of multiple immunosuppressive cells in 
the human body, such as myeloid‑derived suppressor cells, 
tumor‑associated macrophages and tumor‑associated DCs, 
tumor cells may evade the surveillance of immune cells 
by upregulating the expression other immune checkpoint 
molecules (139‑141), thus altering the therapeutic efficacy 
of targeting CD47 (6). 

Challenges in immunotherapy targeting CD47 have led 
to the proposal of new therapeutic regimens to improve the 
effectiveness of treatment. One such approach is to combine 
CD47‑targeting drugs with other immune checkpoint 
inhibitors to reduce immune escape by tumor cells (142,143). 
Furthermore, the development of BsAbs has provided 
new ideas for achieving improved specificity of targeted 
therapy (144,145). In addition, solutions to modulate the TME 
to enhance the efficacy of CD47‑targeted therapies are also 
being explored (141,146,147). These solutions are expected to 
improve the efficacy of CD47‑targeted therapies and reduce 
resistance.

9. Conclusion and prospects

In recent years, an increasing number of studies on CD47 
have been conducted, and this topic has become a signifi‑
cant hotspot in various research fields. CD47 binds to 
SIRPα to activate a signaling pathway that regulates DC 
activation and antigen presentation in both directions and 
regulates macrophage phagocytosis during erythrocyte 
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and HSC transplantation. Upregulating or downregulating 
the expression of CD47 has an essential regulatory role in 
tumor‑cell growth or death, and blocking CD47 expres‑
sion also initiates an adaptive immune response that kills 
tumor cells  (148). Although the combination of targeted 
CD47‑SIRPα axis blockade therapy with other antibody 
drugs or therapies has shown good antitumor efficacy, 
CD47 is widely expressed in erythrocytes, myeloid cells 
and other hematopoietic cells, and anemia remains the most 
significant challenge associated with CD47‑targeted drug 
therapy  (149); furthermore, relevant antibody drugs have 
shown good efficacy. These drugs effectively attenuate the 
adverse effects of CD47‑SIRPα blockade and significantly 
improve safety (117,143). However, much progress is needed 
before immunotherapy targeting the CD47‑SIRPα axis can 
be applied in the clinic. To date, numerous clinical studies 
have shown that metabolic reprogramming has an essential 
role in the regulation of macrophage activation and study 
of the regulation of phagocytosis by the CD47‑SIRPα axis 
from the point of view of metabolic reprogramming will be a 
promising direction; however, the underlying mechanisms of 
metabolism during phagocytosis, which are associated with 
the CD47‑SIRPα axis, remain elusive (9). Further scientific 
research will clarify the mechanisms of action.
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