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Abstract. ‘Epigenetics’ is defined as the inheritable changes 
in gene expression with no alterations in DNA sequences. 
Epigenetics is a rapidly expanding field, and the study of 
epigenetic regulation in cancer is emerging. Disruption of the 
epigenome is a fundamental mechanism in cancer, and several 
epigenetic drugs have been proven to prolong survival and 
to be less toxic than conventional chemotherapy. Promising 
results from combination clinical trials with DNA methylation 
inhibitors and histone deacetylase inhibitors have recently 
been reported, and data are emerging that describe molecular 
determinants of clinical responses. Despite significant 
advances, challenges remain, including a lack of predictive 
markers, unclear mechanisms of response and resistance, and 
rare responses in solid tumors. Preclinical studies are ongoing 
with novel classes of agents that target various components of 
the epigenetic machinery. In the present review, examples of 
studies that demonstrate the role of epigenetic regulation in 
human cancers with the focus on histone modifications and 
DNA methylation, and the recent clinical and translational 
data in the epigenetics field that have potential in cancer 
therapy are discussed. 
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1. Epigenetic mechanisms

In the eukaryotic nucleus, DNA is compacted into a chromatin 
structure with the nucleosome as the basic unit, in which 
histone octamer is surrounded by the 147 bases of DNA for 
1.7 laps. The histone octamer includes two elements of the 
core histone (H3, H4, H2A and H2B) (1). The packaging of 
DNA into chromatin presents a potential barrier to factors 
that require DNA as their template. There are mainly three 
modifications regulating chromatin structure and epigenetic 
mechanisms of gene expression, including DNA methylation, 
histone covalent modification and microRNAs (miRNAs) (2). 
These modifications jointly constitute the ‘Epigenetic code’ 
to modulate the expression of the mammalian genome in 
different cell types, through developmental stages and in 
diverse disease states including cancer (2-4).

2. DNA methylation

DNA methylation is a widespread modification in bacteria, 
plants and mammals, and this covalent molecular transfor-
mation is a natural modification of DNA. DNA methylation 
which is produced during DNA replication is considered as 
a stable gene-silencing mechanism. In eukaryotic cells, DNA 
methylation is the covalent modification taking place at the 
5' end of the CpG dinucleotide of the cytosine ring and with 
S-adenosyl-methionine as its methyl donor. This reaction is 
catalyzed by the DNMT family, including DNMT1, DNMT3A 
and DNMT3B. During the process of embryo formation, 
DNMT3A and DNMT3B are required for DNA methylation 
from scratch, while DNMT1 is considered to be the methyl-
transferase maintaining the methylation status (5).

This covalent modification can inhibit the activity of gene 
transcription; either by blocking the combination of a tran-
scription factor and its binding sites (6), or through recruitment 
of methylated binding domain proteins that mediate inhibition 
of gene expression (7). In mammalian cells, DNA methylation 
occurs mainly in CpG dinucleotides (8). However, CpG sites are 
not randomly distributed in the genome, but are concentrated 
in short CpG-rich DNA fragments or DNA fragments in the 
long repeat so-called ‘CpG islands’ (8,9). Although for normal 
cells, the majority of CpG sites of the genome are methylated, 
usually the cytosine in CpG islands is not methylated in the 
development and differentiation of tissues. However, in normal 
cells, certain subsets of CpG islands at the promoter can be 
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methylated leading to long-term silencing of transcription. The 
DNA methylation pattern is formed during cell differentia-
tion, but it also causes cells to partially or completely lose the 
ability to divide. DNA methylation profiles are tissue-specific, 
and the functions of methylation profiles in different cells 
are not the same. CpG island-containing gene promoters are 
usually unmethylated in normal cells to maintain euchromatic 
structure, which is the transcriptional active conformation 
allowing gene expression. However, during cancer develop-
ment, many of these genes are hypermethylated at their CpG 
island-containing promoters to inactivate their expression by 
changing open euchromatic structure to compact heterochro-
matic structure (Fig. 1).

3. Histone modification

Histones including H2A, H2B, H3 and H4, together form 
the histone octamer that is the basic structure of nucleosome 
components (1). N-terminals of histones protrude out of the 
nucleosome core, and amino acids of N-terminals easily undergo 
a series of covalent modifications, such as methylation, acety-
lation, phosphorylation, ubiquitination and sumolation (10,11). 
Acting individually or in combination, these modifications 
are believed to encipher inheritable epigenetic programs that 
encode distinct nucleosome functions such as gene transcrip-
tion, X-chromosome inactivation, heterochromatin formation, 
mitosis, and DNA repair and replication (2-4,10). For example, 
a previous study showed that direct interaction between the 
chromodomain of Tip60 and histone H3 trimethylated on 
lysine 9 (H3K9me3) at DSBs activates the acetyltransferase 
activity of Tip60. Depletion of intracellular H3K9me3 blocks 
activation of the acetyltransferase activity of Tip60, resulting 
in defective ATM activation and widespread defects in DSB 
repair  (12). Mechanistically, these functions are mediated 
either directly by altering nucleosome interactions with chro-
matin or indirectly by recruiting effector proteins that possess 
characteristic modules that recognize specific histone modifi-
cations in a sequence-dependent manner. The underlying basis 
of these epigenetic codes resides in the substrate specificity 
of the enzymes that catalyze the numerous covalent modifica-
tions as well as the enzymes that remove these marks to alter 
the modifications.

Given that chromatin is the physiological template for 
all DNA-mediated processes, it is not surprising that histone 
modifications represent an essential component in controlling 
the structure and/or function of the chromatin, with different 
modifications yielding distinct functional consequences. 
Indeed, previous research has shown that site-specific histone 
modifications correlate well with particular biological func-
tions such as gene transcription (13). For instance, histone H3 
lysine 9 acetylation (H3K9ac), H3 serine 10 phosphorylation 
(H3S10ph), and H3 lysine 4 trimethylation (H3K4me3) are 
reported to be associated with transcriptional activation (14). 
Conversely, H3K27me3 and hypoacetylation of H3 and H4 
have been shown to be correlated with transcriptional repres-
sion. As stated above, ultimately, the functions of histone 
modifications are uncovered by the recognition of histone code 
or histone language by particular cellular machinery such as 
the transcription apparatus (15). Our previous study found 
that the histone H3S10 phosphorylation mark is catalyzed by 
mitogen and stress-activated protein kinase 1 (MSK1) and is 
recognized by a 14-3-3ε/14-3-3γ heterodimer through its inter-
action with H3K4 trimethyltransferase SMYD3 and the p52 
subunit of TFIIH (14) (Fig. 2).

4. microRNAs

microRNAs (miRNAs) are endogenous, short, 19-25 nucleo-
tide long, evolutionarily conserved non-coding RNAs, which 
partially or perfectly match the 3' untranslated regions 
(3'UTR) of target mRNAs to regulate gene expression by post-
transcriptional silencing and/or by the degradation of target 
mRNAs (16). Bioinformatics and experimental studies have 
shown that more than 30% of human genes are direct miRNA 
targets, which implies that miRNAs function in almost all 
biological processes including cell cycle regulation, cell 
growth, apoptosis, cell differentiation and stress reactions. In 
various species, including the human, a growing number of 
miRNAs have been determined in the past few years. Genome-

Figure 1. Global changes in DNA methylation in both normal and cancer 
cells. In normal cells, CpG islands in active promoters are not methylated, 
thus allowing transcriptional activation. CpG islands within coding regions 
are often methylated. Reverse patterns are observed in cancer cells. Figure 2. After transcription factor binding to the gene promoter, a series 

of histone modification enzymes responsible for H3K4me3 are recruited to 
these nucleosomes, thus catalyzing trimethylation of histone H3 lysine 4. 
This modification provides binding sites for effector proteins, such as 
WDR5 and ING4. Subsequently, gene transcription is turned on. However, 
H3K27me3 mediated by EZH2 leads to transcription inactivation through 
interaction with CBX1, 3 and 5.
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wide studies estimate that miRNA genes represent ~1% of the 
entire genome in different species; this percentage is similar 
to other large gene families with regulatory functions such 
as the home-domain transcription factor family (17,18). The 
number of genes demonstrated to be the targets of miRNAs 
is growing rapidly. The latest release of the Sanger miRNA 
Registry currently annotates more than 800 human miRNAs 
(http://microrna.sanger.ac.uk; release 13.0), yet many more 
miRNAs are expected to be identified in the future (19). It is 
not surprising that miRNAs, just like protein-coding genes, 
have to be tightly regulated in order to contribute to a distinct 
transcriptome of a normal cell. In cancer, however, miRNAs 
have been found to be massively deregulated. 

The direct interaction between miRNAs and epigenetic 
mechanisms is believed to be a quite complicated regulatory 
network  (20). On the one hand, expression of miRNAs is 
tissue-specific, and is subject to fine and strict regulation by 
epigenetic mechanisms such as DNA methylation and histone 
modifications (21); on the other hand, in turn, miRNAs can also 
affect epigenetic mechanisms and regulate gene transcription; 
the ability to target post-transcriptional gene-silencing (22).

5. Epigenetic abnormalities in tumorigenesis and 
development

Epigenetic mechanisms are required to maintain normal 
growth and development and gene expression in different 
organs (23). Abnormal epigenetic regulation may alter gene 
expression and function which may lead to diseases such 
as cancer. Human tumors, in essence, are a genetic disease, 
since during cancer formation, a large number of genes are 
mutated or abnormally activated (24,25). However, recent 

studies indicate that carcinogenesis cannot be accounted 
for by genetic alterations alone, but also involve epigenetic 
changes such as DNA methylation, histone modifications 
and microRNAs (Fig. 3). Global levels of lysine methylations 
are quite different between cell types and these molecular 
changes have been considered to be correlated with various 
types of cancers (Table I). In addition, the lysine methyltrans-
ferases and demethylases are reported to be de-regulated in 
a variety of cancers (Tables  II and III). These molecular 
alterations lead to permanent changes in the patterns of gene 
expression that regulate the neoplastic phenotype, such as 
cellular growth and invasiveness. In this part of the present 

Table I. Global histone lysine methylation patterns in cancer.

Histone	 Alteration in cancer
modification	 (expression compared to normal tissues)	 Associated cancer 	 Refs.

H3K4me1	 Decreased	 Prostate, bladder cancer 	 (58,104)
	 Increased upon progression

H3K4me2	 Decreased	 Lung, kidney, prostate, non-small cell lung carcinoma,	 (105,106)
		  hepatocellular carcinoma, breast, pancreatic,
		  adenocarcinoma, renal cancer
	 Increased upon progression	 Prostate

H3K4me3	 Increased	 Prostate, renal cancer	 (58,104,107,108)
	 Decreased	 Bladder cancer

H3K9me2	 Decreased	 Pancreatic adenocarcinoma, prostate, kidney 	 (58)

H3K9me3	 Increased	 Gastric adenocarcinomas	 (58,109)
	 Decreased	 Prostate

H3K27me3	 Decreased	 Breast, ovarian, pancreatic, colon cancer	 (105,108,110,111)
	 Increased	 Paragangliomas

H4K20me1	 Decreased	 Bladder cancer,	 (104)

H4K20me3	 Decreased	 Lymphomas, colorectal adenocarcinomas,	 (104-106,112)
		  breast carcinomas, bladder cancer, liver cancer,
		  non-small cell lung cancer

Figure 3. During cancer formation, a large number of epigenetic modifiers 
are mutated or abnormally activated. At the same time, epigenetic changes 
such as DNA methylation, histone modifications and microRNAs lead to 
abnormal gene expression which evoke genome instability.
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review, we focus on recent discoveries of epigenetic altera-
tions in several types of tumors including breast, prostate, 
lung and colon cancer.

Breast cancer. Global DNA hypomethylation is frequently 
reported in breast tumors, but the number of hypomethylated 
genes is relatively small. DNA hypomethylation of FEN1, 

Table II. Histone lysine methyltransferases implicated in cancer.

Writer	 New name	 Alteration in cancer	 Associated cancer	 Refs.

MLL1	 KMT2A	 Translocation, amplification,	 Human lymphoid and myeloid leukemias,	 (113,114)
		  tandem duplication 	 myelodysplastic syndrome

Menin	 ---	 Mutated	 Multiple endocrine neoplasia type 1 (MEN1)	 (115-117)
		  Reduced expression	 Lung adenocarcinoma
		  Increased expression	 Prostate

Ash2L	 ---	 Increased expression	 Squamous cell carcinomas of cervix and larynx,	 (118, 119)
			   melanoma, rhabdomyosarcoma, breast and colon
			   carcinomas, neuroendocrine carcinomas, pancreatic
			   ductal adenocarcinomas and gastric carcinomas
 	  	 Low levels	 Hepatocellular carcinoma

Ezh2	 KMT6	 Overexpression	 Prostate, breast, follicular and germinal center	 (120-122)
		  Mutation	 B cell lymphoma, gallbladder adenocarcinoma
Suv39H1	 KMT1A	 Overexpression	 Colon 	 (123)
SMYD3	 ---	 Overexpression	 Colon, breast, hepatocellular carcinoma 	 (124,125)
RIZ1	 KMT8	 Mutation/downregulation	 Liver, breast and gastric cancer 	 (126,127)

NSD1	 KMT3B	 Translocation	 Acute myeloid leukemia	 (128,129)
		  Mutations	 Sotos syndrome	 (130)
		  Silencing by promoter	 Neuroblastoma and gliomas
		  hypermethylation

NSD2	 ---	 Translocation	 Multiple myeloma	 (131,132)
		  Overexpression	 Multiple tumors

NSD3	 ---	 Translocation	 Leukemia	 (132,133)
		  Amplification	 Breast cancer

G9a	 KMT1C	 Overexpression	 Hepatocellular carcinomas	 (81,134)
		  Hypoxia-mediated upregulation	 Gastric cancer, lung cancer

Table III. Histone lysine demethylases implicated in cancer.

Eraser	 New name	 Alteration in cancer	 Associated cancer	 Refs.

LSD1	 KDM1	 Overexpression	 Prostate, neuroblastoma, breast cancer	 (119,135)
		  Low levels	 Hepatocellular carcinoma
FBXL10	 KDM2B	 Mutation	 Lymphoma	 (136)
		  Decreased	 Brain, glioblastoma multiforme
JMJD2C	 KDM4C	 Overexpression	 Prostate, esophageal squamous cell carcinoma,	 (135,137,138)
			   desmoplastic medulloblastoma, MALT lymphoma
RBP2	 KDM5A	 Overexpression	 Gastric cancer	 (139)
PLU-1	 KDM5B	 Overexpression	 Breast, prostate, testis, ovary, lung, bladder cancer	 (140,141)
UTX	 KDM6A	 Mutations	 Multiple myeloma, several cancers, renal cell carcinoma 	 (142)
JMJD3	 KDM6B	 Overexpression	 Prostate, pancreatic cancer, lymphoma	 (143)
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BCSG1, PLAU, IGF2 and CDH3 has been detected in breast 
cancer cells (26,27). However, more than 100 genes have been 
considered to be hypermethyated in breast cancer, and these 
aberrantly methylated genes play critical roles in all types 
of cell processes including cell-cycle regulation, apoptosis, 
tissue invasion and metastasis, angiogenesis and hormone 
signaling (28). For instance, CCND2 and p16ink4A/CDKN2A 
which function as crucial regulators of the cell cycle are 
commonly found to be methylated in breast cancer (29); APC, 
TWIST and HOXA5 which play key roles in apoptosis are 
silenced due to DNA hypermethylation (30,31); ERα and PR 
which are critical in hormone regulation are also frequently 
methylated (32). In addition to protein-coding genes, recent 
research shows that microRNAs with tumor-suppressor func-
tion could be silenced in breast cancer cells through DNA 
methylation (33). These findings strongly indicate that DNA 
hypermethylation plays a crucial role in breast carcinogenesis, 
which cooperatively and synergistically interact with other 
genetic alterations to promote the development of breast 
cancer.

A growing number of histone modifications and histone 
modification enzymes have been found to be deregulated in 
breast cancer. H4K16ac and its responsible enzyme hMOF 
were found to be markedly reduced in primary breast carci-
nomas and medulloblastomas (34). EZH2, which is a subunit 
of the polycomb-repressive complex 2 (PRC2) and catalyzes 
the trimethylation of histone H3 on Lys 27 (H3K27), is ampli-
fied and overexpressed in breast cancer (35). Furthermore, 
histone demethylases are shown to function during breast 
tumorigenesis. Pygo2 associates with histone-modifying 
enzymatic complexes, specifically the MLL2 histone meth-
yltransferase (HMT) and STAGA histone acetyltransferase 
(HAT) complexes, to facilitate their interaction with β-catenin 
and to augment Wnt1-induced, TCF/LEF-dependent transcrip-
tional activation in breast cancer cells (36). Depletion of H3K9 
trimethyl demethylase JMJD2B, which is shown to be an 
integral component of the H3K4-specific methyltransferase, 
the mixed-lineage leukemia (MLL) 2 complex, impairs the 
estrogen-induced G (1)/S transition of the cell cycle in vitro 
and inhibits breast tumorigenesis in vivo (37). Previous results 
demonstrate that LSD1 is downregulated in breast carcinomas 
and that its expression level is negatively correlated with that 
of TGFβ1 which inhibits the invasion of breast cancer cells 
in  vitro and suppresses breast cancer metastatic potential 
in vivo (38).

Recent genome-wide approaches have revealed that 
miRNAs are globally downregulated in breast cancer. They 
identified 29 differentially expressed candidates, of which 15 
predictive miRNAs were able to distinguish between breast 
cancer and normal breast tissue (39). Depletion of the let-7 
family (containing at least 11 homologous miRNAs) in breast 
cancer causes enhanced tumorigenicity and is associated with 
clinical features, such as PgR status (let-7c), a positive lymph 
node status (let-7f-1, let-7a-3 and let-7a-2), or a high prolifera-
tion index (let-7c and let-7d) (40,41). In addition, miR-15/16 is 
shown to be downregulated in breast cancer which leads to 
aberrant expression of BCL2  (42). AIB1 which plays an 
important role in the ERα signaling pathway is overexpressed 
in breast cancer due to downregulation of miR-17-5p (43). 
However, certain miRNAs are found to be frequently amplified 

in breast cancer; for example, miR-21, whose overexpression 
in breast cancer confers increased invasive capacities and 
promotes tumor metastasis to the lung (44). Decreased Dicer 
expression was recently observed in breast cancer, where loss 
of expression represented an independent prognostic factor for 
metastatic disease, and reduced expression of Dicer was asso-
ciated with the highly aggressive mesenchymal phenotype.

Prostate cancer. Prostate cancer is the most common cancer 
in men in Western countries and its incidence is increasing 
steadily worldwide. Genome-wide DNA hypomethylation 
has been observed in prostate cancer cells, which may lead 
to structural and functional changes of the genome. It has 
been reported that global hypomethylation is considerately 
lower in patients with metastatic prostate cancer in contrast 
to non-metastatic prostate cancer  (45,46). Gene-specific 
hypomethylation has also been found in prostate cancers 
and functions during a variety of cellular processes, such 
as tumor invasion and metastasis (urokinase plasminogen 
activator, cellular proliferation gene  heparanase) (47), cell 
cycle control (cancer/testis antigen)(48), hydroxylation of 
estrogens and activation of carcinogens (cytochrome P450 
1B1) (49), X-chromosome inactivation [X (inactivate)-specific 
transcript] (50). DNA hypermethylation has been the most 
common and best-characterized epigenetic event in cancer, 
including prostate cancer. In prostate cancer, a large number 
of genes have been found to be hypermethylated. These genes 
are involved in a variety of biological processes including 
DNA damage repair (Glutathione S transferase P1) (51), signal 
transduction (RASSF1A) (52), adhesion (E-cadherin, CD44 
and galectins) (53), hormonal responses (retinoic acid receptor, 
androgen receptor and estrogen receptor), apoptosis (death-
associated protein kinase) (54), invasion and metastasis (tissue 
inhibitors of metalloproteinases and galectins) (55) and cell 
cycle control (cyclins, cyclin-dependent kinases) (56).

Research indicates that alterations of histone modifica-
tions play crucial roles during prostate tumorigenesis (57). 
The increased active histone modifications in prostate cancer 
facilitate activation of proto-oncogenes and other genes 
involved in cell growth and survival, while increased repres-
sion of histone modifications leads to tumor-suppressor gene 
silencing. For instance, H3K4me1 and H3K4me2 are found 
to be increased at the AR enhancers of cell cycle genes (e.g. 
CDK1), which facilitates upregulation of these cell cycle 
genes to promote cellular growth (58). H3K4me3 is shown 
to be enriched in prostate cancer cells, and is correlated with 
activation of genes involved in cell growth and survival (e.g. 
BCL2) (59). H3K9me1, H3K9me2 and H3K9me3 have been 
involved in repression of AR target genes in LNCaP cells (58). 
In addition, H3K27me3 enrichment at the promoters of genes 
(e.g., tumor-suppressor genes GAS2, PIK3CG and ADRB2) 
in metastatic prostate cancer represses the expression of these 
genes, leading to prostate cancer cell growth, survival and 
invasion (60).

More than 50 miRNAs have been found to be aberrantly 
regulated in prostate cancer, including upregulation of several 
oncogenic miRNAs (miR-488, miR-15a/16, miR-221/-222, 
miR-21, miR-125b, miR-32, miR-26a, miR-196a, miR-181a, 
miR-25, miR-93, miR-92 and let-7i) (61) and downregulation 
of various tumor-suppressor miRNAs (miR-101, miR-126, 
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miR-205, miR-31, miR-146a, miR-330, miR-34 cluster, 
miR-218, miR-128, miR-203 and miR-200 family)  (62). In 
prostate cancer cells and primary tumor cells, the cell cycle 
inhibitor p27Kip1 was found to be extensively downregulated 
by extra introduction of miR-221/miR-222, which strongly 
increased cell growth potential by inducing a G1-S shift in 
the cell cycle subsequently enhancing tumorigenicity in SCID 
mice (63). In prostate cancer, miR-21 was found to be elevated 
in PC3 and DU145 cells. Blocking miR-21 by antisense oligo-
nucleotides did not affect proliferation, but it sensitized cells 
to staurosporine-induced apoptosis and impaired cell motility 
and invasion (64). Both miR-143 and -145 have been reported 
to be associated with bone metastasis of prostate cancer and 
are involved in the regulation of EMT (65). H3K27me3 meth-
yltransferase EZH2 is shown to be enriched due to miR-101 
decrease during prostate cancer progression, thus, leading to 
widespread gene silencing. miR-34 activation can recapitulate 
the elements of p53 activity, inducing cell cycle arrest and 
apoptosis by the down-modulation of proteins such as CDK4, 
CDK6, cyclin D1, cyclin E2, E2F3 and BCL2 (66,67). Notably, 
miR-34 also inhibits SIRT1, a gene that hinders p53-dependent 
apoptosis, promoting survival under genotoxic and oxidative 
stress. Likewise, by targeting glutaminase, miR-23 has been 
found to participate in the pro-tumorigenic network resulting 
from MYC overexpression, which is thought to be the most 
common alteration in prostate cancer. In addition to belonging 
to the group of reduced miRs, the contribution of miR-146 to 
prostate cancer progression has been identified in its capacity 
to repress ROCK1 expression, a downstream effector of 
hyaluronan-mediated signaling on the CD168 receptor (68).

Lung cancer. Lung cancer is a major worldwide health threat 
and is the leading cause of cancer-related mortality. Global 
hypomethylation and regional hypermethylation in normally 
unmethylated CpG islands have all been implicated in lung 
cancer (69). Loss of imprinting of the H19, IGF2 and MEST 
genes has been found in lung cancer cells due to genome-wide 
DNA hypomethylation, which may result in deregulated cell 
growth. In addition, upregulation of cancer testis antigens 
(CTAs) including the melanoma-associated antigen family as a 
result of global hypomethylation has also been observed (70). 
However, a number of tumor-suppressor genes has been shown 
to be aberrantly methylated and associated with different 
cellular processes, such as cell cycle regulation (p16) (71), 
DNA repair (MGMT)  (72), apoptosis (DAPK, caspase 8, 
ARF, FAS and TRAILR1) (72,73), RAS signaling (RASSF1A, 
NORE1A and G0S2) and invasion (cadherins, TIMP3 and 
laminin family) (74,75).

Different histone modifications may play crucial roles 
in the epigenetic alterations in lung cancer. Gain of H4K5ac 
and H4K8ac and loss of H4K12ac, H4K16ac and H4K20me3 
have been found in lung cancer cells (76). In addition, low 
cellular levels of both H3K4me2 and H3K18ac predict poor 
clinical outcome in lung cancer patients (77). HDACs have 
been reported to repress critical gene pathways involved in 
protection against lung cancer and, therefore, reduction in lung 
HDACs may promote tumorigenesis (78). Previous studies 
have demonstrated that expression of HDACs is significantly 
increased in various lung cancer cells and is associated with 
poor prognosis after surgery. The abnormal overexpression of 

HDACs may result in the downregulation of critical tumor-
suppressor genes which promotes tumorigenesis. For example, 
transcription factor ZBP-89, which has been implicated in the 
induction of growth arrest and apoptosis, can recruit HDAC3 
to the promoter of p16, and thus downregulates p16 expres-
sion by altering the histone modification status. In addition, 
FEZ1 and MYO18B have been suggested to be related to 
tumorigenesis of lung cancer through repression as the result 
of histone deacetylation (79,80). In addition to DNA meth-
ylation, alteration of histone modification is another crucial 
mechanism leading to the silencing of TGF β RII, MAGE-3, 
Ep-CAM and MYO18B (81). These results suggest that histone 
deacetylation contributes to gene silencing in lung cancer cells 
and is involved in lung carcinogenesis.

Previous studies have demonstrated that miRNA altera-
tions occur as an early event in response to environmental 
carcinogens ahead of the onset of cancer. The expression of 
let-7 miRNA, which correlates with shorter survival and is an 
independent prognostic factor, is observed to be reduced in 
primary lung tumors. It has also been observed that overex-
pression of miRNA let-7 in A549 lung adenocarcinoma cell 
lines inhibited cancer cell growth. Further studies have shown 
that let-7 negatively regulates the expression of RAS and MYC 
by targeting their mRNAs for translational repression (82,83). 
Downregulation of miR-128b, which is a direct negative 
regulator of the EGFR oncogene, is found in lung tumors. In 
addition, expression of miR-124a is epigenetically silenced by 
DNA hypermethylation in lung cancer (84). In contrast to the 
above miRNAs, the expression of miRNA cluster miR-17 is 
markedly amplified in lung cancer, and stimulates cell prolif-
eration. The predicted targets of the miR-17 cluster include 
PTEN, E2F1 and RB2 that are known to play important roles 
in lung cancer (85). In addition, abnormal amplifications of 
miR-155 and miR-21 have been correlated with poor prog-
nosis and reduced survival of patients diagnosed with lung 
cancer (86).

Colon cancer. Colon cancer is one of the most common types 
of cancer and is a leading cause of cancer-related mortality 
worldwide. It has been more than 25 years since an extensive 
loss of DNA hypomethylation was reported in colon cancer 
cells. Various studies have confirmed this initial finding not 
only in colon cancer but also in a number of other cancer 
types. This widespread hypomethylation may include different 
epithelial cells, increasing genome instability, overexpression 
of a number of genes and loss of imprint of specific genes. 
Hypermethylation targeting promoters of specific genes has 
also frequently been detected in colon cancer. Numerous 
genes influenced by DNA hypermethylation are correlated 
with diverse biological functions including cell cycle control 
(p16, p15, MINT1, MINT2 and MINT31), DNA damage repair 
(MLH1, MSH2 and MGMT), apoptosis (DAPK), tumor cell 
invasion (APC and LKB1), cell proliferation (IGF2) and tumor 
angiogenesis and metastasis (COX-2) (87-89).

Histone modifications are necessary for the regulation 
of gene expression, but levels of these covalent changes and 
modification enzymes are usually altered in colon cancer. 
Colon cancer cells exhibit increased HDAC activity compared 
with non-malignant cells. HDACs are upregulated in colon 
cancer cells and in primary colon cancer. For example, over-
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expression of HDAC1 and HDAC3 may silence SLC5A8, the 
gene coding for the Na(+)-coupled pyruvate transporter (90); 
upregulation of HDAC1 may repress P21, the gene involved in 
cell cycle regulation (91); and amplification of HDAC3 which 
is determined in approximately half of all colon adenocar-
cinomas alters the epigenetic programming of colon cancer 
cells to impact intracellular wnt signaling and their sensitivity 
to external growth regulation by vitamin D (92). In addition, 
YPEL3 and NDRG1, members of the secreted frizzle-related 
proteins (SFRPs) and the GATA family of transcription 
factors which are demonstrated to be silenced in specific colon 
cancer cell lines are occupied by inactive histone modifica-
tions (93,94). Enrichment of H3K27me3, HDAC1 and EZH2 
are found at the promoters of RUNX3 and PTPRR-1 in cancer 
cells, which may downregulate these genes and are associ-
ated with tumor progression (95). It has also been reported 
that overexpression of hSET1 in colon cancer promotes cell 
proliferation and cancer cell survival (96). Furthermore, HIF 
recruits JMJD1A to regulate the expression of adrenomedullin 
(ADM) and growth and differentiation factor 15 (GDF15), 
ultimately enhancing tumor growth (97). In addition, RGC-32 
may contribute to the development of colon cancer by regu-
lating chromatin assembly (98).

miRNAs are negative regulators of target genes through 
post-transcriptional inhibition of specific mRNAs. Both over-
expression and suppression of miRNAs have been found to be 
involved in the tumorigenesis of colon cancer. Overexpressed 
miRNAs such as miR-20, miR-21, miR-17-5p, miR-15b, miR-
181b, miR-191 and miR-200c have been found in colon cancer 
cells. miRNAs function by targeting and inhibiting different 
tumor-suppressor genes such as E2F1, tropomyosin 126, PTEN 
and Pdcd4 (99). Lower levels of mature miRNAs such as let7, 
miR-22, miR-34a, miR-126, miR-143, miR-145, miR-342 and 
miR-345 are also found in colon cancers, suggesting that 
they act as tumor-suppressor miRNAs (100). The loss of such 
miRNAs may lead to overactivity of oncogenes and deregula-
tion of signaling pathways finally promoting cell growth and 
invasion in colon cancer. For example, the putative identified 
targets of miR-145 are transforming growth factor receptor II 
and insulin receptor substrate 1 (IRS-1), which promote 
tumor-suppressor activity (101). Repression of miR-22 upregu-
lates HIF-1α expression, promoting VEGF production during 
hypoxia (102). miR-345 may play an important antineoplastic 
role; a growth inhibitor in the development of colon cancer 
through downregulation of BCL2-associated athanogene 3 
(BAG3) (103).

6. Epigenetic therapy and future challenges

Human tumors are a group of diseases triggered by various 
causes, including progressive genetics and abnormal 
epigenetics. More and more studies have demonstrated that 
epigenetic changes are main factors in tumorigenesis and 
cancer development. Epigenetic abnormalities occurring in 
tumors have led to the development of epigenetic treatment 
in cancer. Epigenetic therapy aims to reverse the epigenetic 
alterations occurring in tumors, thus, restoring the normal 
epigenome.

Remarkable progress has been made during the past few 
decades on DNA methylation and histone modifications in 

gene transcription, yet the role of epigenetic events in cancer 
has not been fully explained. However, great progress has 
been accomplished in regards to epigenetic drugs targeting 
chromatin and histone-modifying enzymes. Many epigen-
etic drugs, including two DNA methyltransferase enzyme 
(DNMT) inhibitors and a deacetylase (HDACs) inhibitor 
have been approved by the FDA as effective drugs for cancer 
treatment. Meanwhile, various inhibitor drugs, such as FK228, 
SAHA and MS-275, have already been the focus of phase III 
clinical experiments. Nevertheless, there is still a long way 
to go until the succesful epigenetic treatment of cancer. The 
main strategy of recent epigenetic treatment is to inhibit 
abnormal DNMTs and HDACs using specific inhibitors. More 
specific and effective inhibitors should be developed to reduce 
unwanted side-effects as much as possible since epigenetic 
modifying enzymes function in a wide range of organs in the 
body; in addition, epigenetic changes occurring in tumors have 
not been completely studied. Research on detailed epigenetic 
changes in cancer, and the in-depth study of tumor pathology 
are expected to enhance the ability to diagnose and treat 
cancer.
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