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Abstract. Ferroptosis, a relatively recently discovered type of
cell death that is iron dependent and nonapoptotic, is involved
in the accumulation of lipid reactive oxygen species (ROS),
and has been shown to serve a vital role in various pathological
processes, including those underlying neurodegeneration, isch-
emic reperfusion injury, acute organ injury, and in particular,
tumor biology. Emerging evidence has highlighted the roles of
ferroptosis in the development and resistance to chemoradio-
therapy in cancer. Recently, an increasing number of studies
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have shown that non-coding RNAs modulate the process of
ferroptotic cell death, and this has further highlighted the
potential of regulation of ferroptosis as a means of cancer
management. Although these studies have highlighted the
critical role of ferroptosis in cancer therapeutics, the roles of
ferroptosis induced by non-coding RNAs in cancer develop-
ment remain unclear. Herein, the current body of knowledge
of ferroptosis in cancer is summarized and an overview of the
mechanisms of ferroptosis and the functions of non-coding
RNAs in regulating ferroptotic cell death are discussed. The
future status of ferroptosis in cancer management is deliber-
ated and strategies for treatment of therapy-resistant cancers
are discussed.
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1. Introduction

Ferroptosis, a novel form of regulated cell death (RCD), first
proposed by Dixon et al (1) in 2012 and is characterized by
the overwhelming iron-dependent accumulation of lethal lipid
reactive oxygen species (ROS). The morphological hallmarks
of ferroptotic death are a reduction or loss of mitochondrial
cristae (1), condensation of the mitochondrial membrane (2)
and rupture of the outer mitochondrial membrane (3). An
initial characterization of ferroptotic biochemical demon-
strated that cysteine depletion or inactivation of glutathione
peroxidase 4 (GPX4) activity, which causes exhaustion of the
intracellular pool of glutathione (GSH), iron accumulation
and lipid peroxidation, specifically triggers this form of cell
death (4). The genetic features of ferroptosis shows that it
primarily dysregulates ferroptotic molecular on antioxidant
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metabolism, iron and lipid metabolism, such as SLC7A1l,
GPX4, TfR1, ACSL4, which are involved in the initiation of
ferroptosis (5-7). As shown in Table I, there are no forms of
morphological, biochemical, or genetic crosstalk between
ferroptosis and other types of RCD, including apoptosis,
autosis, pyroptosis, autophagy, necroptosis and various other
forms of RCD.

Asacellular process, ferroptosis can be triggered by various
pathological conditions in humans and animals (4,8-10).
Notably, emerging evidence has indicated that ferroptosis
likely prevents tumorigenesis, such as gastric cancer (11),
non-small-cell lung carcinoma (12), glioblastoma (13) and
colorectal cancer (14). Ferroptosis is now accepted as an
adaptive process in biological systems that acts as a tumor
suppressive mechanism to eradicate the malignant cells, but
the activation of oxidative stress pathways when metabolism is
dysregulated leads to tumorigenesis (15). Interestingly, recent
evidence has suggested that non-coding RNAs (ncRNAs),
particularly micro RNAs (miRNAs/miRs), long non-coding
RNAs (IncRNAs) and circular RNAs (circRNAs), serve vital
roles in regulating ferroptosis (16). These ncRNAs are involved
in iron metabolism, ROS metabolism and ferroptosis-related
amino-acid metabolism, which regulates the process of
ferroptosis initiation (17). Of particular interest, the accu-
mulation of abundant lipid ROS in cells is the most critical
factor for triggering ferroptosis (18). Conversely, n.cRNAs can
directly or indirectly regulating lipid ROS-related molecules
to maintain redox dynamics during periods of high levels of
ROS generation, and work to reduce ROS levels below toxic
thresholds, which allows tumor cells to exhibit tolerances to
relatively high levels of cellular ROS and avoids initiating
ferroptosis (19). A moderate increase in cellular ROS levels
promotes cell proliferation, survival and malignant transfor-
mation (19). These findings highlight the potential targets for
anticancer treatments via genetic or pharmacological interfer-
ence in ncRNA-regulated ferroptotic cell death. In the present
review, the primary mechanism of ferroptosis initiation and
the involvement of ncRNAs in ferroptosis in various types
of cancer cells is summarized, with the aim of highlighting
potentially novel strategies for personalized cancer treatment.

2. Mechanism of ferroptosis

Iron metabolism. Iron is an essential nutrient, as it is neces-
sary for the maintenance of cellular metabolism and all several
important physiological activities, such as oxygen transport,
DNA synthesis and ATP production (20). As iron is ubiqui-
tously present, cellular iron homeostasis is a complex and
tightly regulated process though the acquisition, utilization,
storage and recycling of iron (5). The cellular iron balance is
maintained through the redox cycle and iron intake (Fig. 1).
The cellular iron redox cycle is primarily dependent on the
Fenton reaction (21). In the cellular Fenton reaction, ferrous
iron (Fe*) is oxidized to ferric iron (Fe**) during the conver-
sion of H,0, into reactive hydroxyl radicals; conversely, Fe**
is then reduced back to Fe** through superoxide radicals (22).
In of iron intake, transferrin receptor 1 (TfR1) is expressed on
the surface of the majority of cells, where it primarily takes up
transferrin (TF)-bound iron into cells. The TfR1/TF-(Fe*"),
complex is endocytosed (23), and Fe** is released from TF (24),

reduced to Fe** by ferric reductase six-transmembrane epithe-
lial antigen of the prostate 3 (STEAP3), and then transported
across the endosomal membrane by divalent metal trans-
porter 1 (DMT1) (25).

The imported cellular iron enters the transient cytosolic
labile iron pool, a pool of chelatable and redox-active iron (26),
which is utilized by cells for various metabolic processes or
stored in ferritin (27). Excess cellular iron is exported out of the
cell and transported into circulation by ferroportin 1 (FPN-1),
after which it is oxidized by the ferroxidase-ceruloplasmin
and binds to serum TF (28). Furthermore, cellular iron balance
is also regulated by a network of iron-dependent proteins:
The iron-responsive elements (IREs) and iron-regulatory
proteins (IRPs). IRPs are cytosolic proteins that regulate the
expression of genes involved in iron import (TfR1, DMT1),
storage [ferritin (FTH), FTHI and FTL] and export (FPN-1)
by binding IREs (29).

Iron metabolism is an indispensable component of ferrop-
tosis that distinguishes it from other types of RCD. Iron can
gain and lose electrons, rendering it capable of contributing to
free radical formation. When cellular iron is overloaded, the
free radicals accumulate aberrantly, causing increased produc-
tion of ROS. This effect leads to oxidative stress, which results
in ferroptotic cell death (30). However, dysregulation of iron
metabolism also serves an active role in carcinogenesis and
promotes tumor growth (5,31).

TfR1 is a major regulator of intracellular iron uptake, and
researchers found that abnormal accumulation of TfR1 on the
cell surface is a specific marker of ferroptosis (32). In hepatocel-
lular carcinoma, TfR1 and FTHI1 are upregulated in erastin and
sorafenib induced ferroptotic cell death (33), and TfR1 is also
upregulated in erastin-induced cell death in myeloid leukemia
cell lines (34). Furthermore, in Calu-1 lung cancer cells and
HT-1080 fibrosarcoma cells, IRE-binding protein 2 (IREB2) is
an essential gene for erastin-induced ferroptosis by regulating
TFRC, FTH1 and FTL (1). Furthermore, several studies have
suggested that inhibition of DMT1 may prevent iron transloca-
tion, leading to lysosomal iron overload, ROS production and
ferroptotic cell death in cancer stem cells (35), and sulfasala-
zine induced ferroptosis is reduced by the inhibitory effect
of estrogen receptor on TFRC and DMT]1 in breast cancer
cells (36). Artemisinin compounds sensitize cancer cells to
ferroptosis by regulating IRP/IRE-controlled iron homeo-
stasis (37). Therefore, targeting iron metabolic pathways may
offer novel therapeutic options for cancer therapy.

Lipid metabolism. Fatty acid (FA) metabolism provides
specific lipid precursors for energy storage, membrane
biosynthesis, generation of signaling molecules and lipid
oxidation that result in an accumulation of an abundance of
lipid ROS (38). Although ferroptosis is induced by multiple
stimuli, the accumulation of abundant lipid ROS in cells
is the most critical factor causing ferroptotic cell death. In
addition to iron-generated ROS production via the Fenton
reaction, ROS from lipid oxidation appears to serve a role in
ferroptosis (Fig. 1). Therefore, lipid peroxidation is crucial for
induction of ferroptosis.

In the process of lipid metabolism, arachidonic acid (AA),
a fatty acid substrate, is activated by acyl-CoA synthetase
long-chain family member 4 (ACSL4) to produce AA-CoA,
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Ferroptosis

Figure 1. Overview of the mechanism of ferroptotic cell death. Fe** is loaded into the circulating apo-Tf, forming a TfR1-Tf-(Fe**)* complex, which is endocy-
tosed by TfR1, and iron is released from TF at same time. Fe** is reduced to Fe?* by the ferric reductase STEAP3, and Fe** is then transported to the cytosol by
DMT1, where it enters the cytosolic LIP for various metabolic needs. Excess iron is effluxed into circulation by FPN-1 and an associated ferroxidase, which
causes the production of ROS, in-turn initiating ferroptosis. Lipid metabolism: Fatty acids are activated (ACSL4) and esterified (LPCAT3) into PL-PUFAs,
then LOXs catalyze the dioxygenation of PL-PUFAs and generate PL-PUFAs-OOH. Lipid-OOHs are regulated by the balance of GPX4 activity. An excess
of PUFAs enhances generation of ROS and toxic lipid peroxides and simultaneously decreases GPX4 activity, which initiates ferroptosis. Ferroptosis-related
amino-acid metabolism: System Xc- imports cystine in exchange for glutamate, which is reduced to cysteine and used to synthesize GSH, a necessary cofactor
of GPX4 for eliminating ROS. GSH is an antioxidant particularly important in protecting cells from ferroptosis. TfR1, Transferrin receptor 1; TF, Transferrin;
LIP, labile iron pool; DMT], divalent metal transporter 1; GPX4, glutathione peroxidase 4; STEAP3, six transmembrane epithelial antigen of the prostate 3;
FPN-1, ferroportin 1; ROS, reactive oxygen species; PUFA, polyunsaturated fatty acids; LOXs, lipoxygenases; GSH, glutathione.

and then AA-CoA is esterified by lysophosphatidylcholine
acyltransferase 3 (LPCAT?3) to phosphatidyl-(PE)-AA (39).
PE-AA is oxidized to cytotoxic PE-AA-OOH by lipoxy-
genases (LOXs) that are activated during catalysis of
Fe?* (40). Under physiological conditions, glutathione
peroxidase 4 (GPX4) reduces cytotoxic PE-AA-OOH
to non-cytotoxic PE-AA-OH, which protects cells from
oxidative damage. When GPX4 is inactivated or depleted,
PE-AA-OOH accumulates in the cell, and this induces
ferroptosis (40). Thus, lipid peroxidation accounts for a large
proportion of ferroptosis initiation.

ACSLA4 is a key enzyme involved in the synthesis of long
chain unsaturated fatty acids. ACSL4 was found to sensitize
RSL3-induced ferroptosis through altering the cellular lipid
composition (8). In hepatocellular carcinoma patients who had
complete or partial responses to sorafenib-induced ferrop-
tosis, and had higher ACSL4 expression in the pretreated
tumor tissues than those who did not respond, ACSL4 was
a predictive biomarker for sensitivity of sorafenib in hepato-
cellular carcinoma (41). Consistently, ACSL4 suppresses the
proliferation of tumor cells through activation of ferroptosis
in glioma cells (42). Furthermore, a CRISPR-based genetic
screen identified ACSL4 and LPCAT3 as promoting of
RSL3- and DPI7-induced ferroptosis, but they did not affect
erastin-induced ferroptosis (39). Several studies have supported
the conclusion that PUFAs can be oxidized, producing the
lipid peroxides that promote the induction of ferroptosis (43).
Therefore, targeting the lipid metabolism pathway may also be
a novel means of tumor therapy.

Antioxidant metabolism. GSH, a thiol-containing tripeptide, is
a potent antioxidant whose synthesis is limited by the constant
import of cysteine and the availability of cystine/cysteine.
The system Xc™ antiporter is a cystine/glutamate transporter
that takes up extracellular cystine in exchange for intracellular
glutamate (44). SLC7AL11, expressed at the cell surface, is a
regulatory light chain component of the system Xc transporter
and is essential for cystine cellular uptake and serves a role
in intracellular GSH synthesis (19). Once imported into cells,
intracellular cystine is reduced to cysteine, a precursor of GSH
used in GSH biosynthesis. GPX4, a central mediator of ferrop-
tosis, which has phospholipid peroxidase activity, catalyzes
the reduction of lipid peroxides to lipid alcohols using GSH as
an essential co-factor, thus preventing cells from undergoing
too much lipid peroxidation (45). Blockade of a member of the
system Xc™ antiporter, SLC7A11, and inhibition of GPX4 were
shown to induce ferroptosis (1). Both interventions impaired
cellular antioxidant defenses, thereby facilitating toxic ROS
accumulation, suggesting antioxidant pathways as potential
regulators of ferroptosis.

Erastin, a RAS-selective lethal compound, triggers ferrop-
tosis by directly inhibiting system Xc" activity to reduce GSH
levels in cancer cells (1,2). Similarly, sulfasalazine, a drug
used to treat chronic inflammation, also triggers ferroptosis
through directly inhibiting SLC7A11 activity (46). Similar to
the above two compounds, p53, a well-characterized tumor
suppressor, was also shown to sensitize cells to ferroptosis
through the repression of SLC7A11 (47,48). Furthermore, the
tumor suppressor BRCAl-associated protein 1 suppresses
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SLC7A11 transcription by decreasing H2Aub, leading to
elevated lipid peroxidation and thus, increased ferroptosis (49).
kelch-like ECH-associated protein 1 (Keapl) can also suppress
the expression of SLC7A11 through degrading the transcrip-
tion factor nuclear factor erythroid 2-related factor 2 (Nrf2),
which is a master transcription factor of the antioxidant
response (50). Another molecular mechanism of ferroptosis
is the direct suppression of GPX4 by promoting its degrada-
tion or the loss of its activity. GPX4 was identified as a target
protein of the classical ferroptosis inducer RSL3 (51), which
directly binds to GPX4 to inactivate the peroxidase activity of
GPX4 and induce ferroptosis (52). Several ferroptosis inducers
directly inhibit GPX4 function including DPI7, DPI10, DPI12,
DPI13, DPI17, DPI18, DPI19 and ML162 (52,53), and several
ferroptosis inducers have an indirect effect on GPX4 function,
including SRS13-45 (46), SRS13-60 (46), buthionine (54),
sulfoximine (52), DPI2 (52), lanperisone (55), sorafenib (56)
and erastin derivatives (52). Taken together, these studies show
that the SLC7A11-GSH-GPX4 axis primarily mediates the
initiation of ferroptosis, and that GPX4 serves a central role in
regulating ferroptosis.

3. Role of ncRNAs in ferroptosis and cancer development

Well-established regulatory mechanisms that regulate changes
in iron and ROS metabolism in cancer have recently been
identified. ncRNAs are being increasingly recognized as vital
regulatory mediators of ferroptosis.

miRNAs in ferroptosis. A set of miRNAs that post-transcrip-
tionally regulate gene expression by RNA silencing have been
demonstrated to be involved in the regulation of iron and ROS
metabolism. The levels of these miRNAs are directly or indi-
rectly correlated with ferroptosis.

As shown in Table II, miRNAs can participate in the
ferroptotic process. In A375 and G-361 melanoma cell lines,
miR-9 directly suppresses glutamic-oxaloacetic transami-
nase 1 (GOT]1) by binding to its 3'-UTR, which subsequently
inhibited erastin- and RSL3-induced ferroptosis (57). In A549
and SPC-A-1 lung cancer cell lines, miR-6852 regulates the
expression of cystathionine-f-synthase (CBS), a surrogate
marker of ferroptosis, by competing for LINC00336, which
increases the intracellular concentrations of iron, lipid ROS
and mitochondrial superoxide and decreases the mitochon-
drial membrane potential (58). Another study showed that
miR-137 suppressed erastin- and RSL3-induced ferroptosis
through directly targeting the glutamine transporter SLCI1AS
in melanoma (58). In the STKM?2, MKN45 and OE33 gastric
cancer cell lines, miR-4715-3p inhibited AURKA expression
by directly targeting its 3'-UTR, leading to downregulation
of expression of GPX4. Therefore, depletion of miR-4715-3p
promoted ferroptotic cell death by inhibiting GPX4 (60).
In MGC-803, MKN-45 and other gastric cancer cell lines,
miR-103a-3p directly suppressed glutaminase 2 expression,
promoting physcion 8-O-f-glucopyranoside-induced ferrop-
tosis by increasing intracellular Fe** and ROS levels (61).
miR-7-5p expression was shown to be upregulated in clinically
relevant radioresistant (CRR) cells, and increased miR-7-5p
levels could decrease mitoferrin levels and thus reduce Fe?*,
causing CRR cells to suppress ferroptosis (62). miR-K12-11
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was found to suppress BACH-1 to induce SLC7A11 expres-
sion, leading to Kaposi's sarcoma-associated herpesvirus
dissemination and persistence in an environment of oxidative
stress via inhibition of ferroptosis (63). In endothelial cells,
miR-17-92 directly suppressed the expression of ACSL4
by directly targeting A20, protecting endothelial cells from
erastin-induced ferroptosis (64). In HepG2 and Hep3B cells,
erastin enhanced the activation of transcription factor 4 (ATF4),
whereas overexpression of miR-214-3p could sensitized cells to
erastin-induced ferroptosis by directly suppressing the expres-
sion of ATF4 (65). miR-761 expression is downregulated in
glioma, whereas overexpression of miR-761 confers resistance
to erastin-induced ferroptosis by directly repressing integrin
subunit 38 expression in LN229 and U251 cells (66).

IncRNAs and circRNAs in ferroptosis. IncRNAs are a class
of non-coding RNAs >200 nucleotides in length that func-
tion to regulate gene expression by epigenetic, transcriptional
and translational modulation. IncRNAs have been implicated
in various biological processes. Recent studies have shown
dysregulation of several IncRNAs is also involved in the
ferroptotic process (Table II).

IncRNA P53RRA is downregulated in lung cancer and
acts as a tumor suppressor. In the cytoplasm, PS3RRA inter-
acts with G3BP1 to activate the p53 signaling pathway, which
in-turn promotes erastin-induced ferroptosis by increasing
lipid ROS and altering the iron concentration (67). IncRNA
LINCO00336 is upregulated in lung cancer and functions as
an oncogene. LINC00336 competes with miR-6852 for CBS,
inhibiting ferroptosis by decreasing iron concentrations, ROS
and mitochondrial superoxide levels, as well as the mitochon-
drial membrane potential (58). IncRNA GABPBI1-ASI is an
antisense IncRNA of GABPBI that downregulates GABPBI1
levels by blocking GABPBI translation, leading to perox-
iredoxin-5 peroxidase suppression and increased lipid ROS
concentrations, ultimately promoting erastin-induced ferrop-
tosis (68).

CircRNAs are class of non-coding RNA characterized by
a covalently closed loop structure leaving no free ends and
have been demonstrated to be involved in tumorigenesis.
CircTTBK?2 is upregulated in glioma and functions as a
master regulator of CPEB4 by sponging miR-217. Knockdown
of circTTBK2 promoted erastin-induced ferroptosis accom-
panied with an increase in the intracellular concentrations of
ROS, iron and ferrous iron by competing with miR-217 for
CBS in glioma cells (66).

NcRNA related modulators of ferroptosis. Iron metabolism
(Table III), lipid metabolism (Table IV) and antioxidant
metabolism (Table V) are basic functions in the ferroptotic
process, and they serve a vital role in ferroptosis. The primary
modulators of iron, lipid and antioxidant metabolism-related
genes are also involved in regulating the process of ferroptosis
and act as ferroptotic markers. Therefore, these metabo-
lism-related ncRNAs may also be involved in regulating the
process of ferroptosis.

Iron metabolism. Previous studies have demonstrated that
cellular iron overload causes ferroptosis. TfR1 is a critical
transporter involved in iron uptake and a specific ferroptosis
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Table II. Summary of non-coding RNAs involved in ferroptosis.

A, MicroRNA

First author, year Modulatory effect Cell lines (Refs.)

Zhang et al, 2018 Decreases lipid peroxidation and inhibits erastin- and A375,G-361 67
RSL3-induced ferroptosis

Wang et al, 2019 Promotes ferroptosis by regulate CBS expression ADC, A549, SPC-A-1, PC9 (58)

Luo et al, 2018 Suppresses erastin- and RSL3-induced ferroptosis by A375,G-361 59)
repression of SLC1AS expression

Gomaa et al,2019 Overexpression confers resistance to ferroptosis by STKM?2, MKN45, OE33 (60)
promoting of GPX4

Niu et al,2019 Promotes PG-induced ferroptosis by suppressing MGC-803, MKN-45 61)
GLS2 expression

Tomita et al, 2019 Decreases mitoferrin and overexpression sensitizes to HeLa, SAS (62)
ferroptosis induced by radiation

Qin et al, 2010 Induces SLC7A11 expression and inhibits ferroptosis RAW (63)
induced by oxidative stress

Xiao et al,2019 Suppresses erastin-induced ferroptosis by repression HUVECs (64)
of ACSL4 expression

Bai et al, 2020 Overexpression sensitizes to erastin-induced ferroptosis HepG2, Hep3B (65)
by directly target ATF4

Zhang et al, 2020 Overexpression sensitizes to erastin-induced ferroptosis LN229, U251 (66)
by directly target ITGBS

B, Long non-coding RNA

First author, year Modulatory effect Cell lines (Refs.)

Mao et al,2018 Knockdown suppresses erastin-induced ferroptosis SPCA1, H522, A549 67

Wang et al, 2019 Overexpression suppresses erastin- and RSL3-induced ADC, A549, SPC-A-1, PC9 (58)
ferroptosis by repression of CBS expression

Qietal, 2019 Knockdown sensitizes to erastin-induced ferroptosis HepG2, Huh7, Hep3B (68)
by downregulating of GABPB1

C, Circular RNA

First author, year Modulatory effect Cell lines (Refs.)

Zhang et al, 2020 Knockdown sensitizes to erastin-induced ferroptosis LN229, U251 (66)

by directly target ITGBS8

marker, which imports Tf-iron from the extracellular environ-
ment into cells, contributing to the cellular iron pool required
for ferroptosis (32). miR-320 (69), miR-107 (70), miR-148a (71),
miR-7-5p/miR-141-3p (72), miR-152 (73) and miR-210 (74) are
all involved in suppression of TfR1 by directly targeting TfRI1.
Therefore, it has been reasonably shown that these miRNAs
can suppress ferroptosis by targeting TfR1.

FTHI, a major intracellular iron storage protein, is an iron
regulators involved in iron storage. Expression levels of FTH1
are regulated by oncogenic RAS signaling, which controls the
cellular iron pool and ferroptosis sensitivity in tumor cells (51).

FTHLI is regulated by NRF2 in ferroptosis, knockdown of FTH1
enhances erastin or sorafenib-induced ferroptosis sensitivity in
hepatocellular carcinoma, suggesting that reduced iron storage
may contribute to cellular iron overload causing ferroptosis and
that FTH1 may serve as a specific marker of ferroptosis marker
as well (54). miR-200b is involved in the repression of FTH1
by directly targeting FTH1, which transforms H,0O, and O, into
the reactive -OH radical, thus inducing tumor cell death (75).
Oncogenic miR-638 and miR-362 have been identified as
targets of FTHI transcript or multiple FTHI pseudogenes by
an unbiased screen in prostate cancer (76). IncRNA H19 is the
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Table III. Summary of primary modulators of iron metabolism-related ncRNAs involved in ferroptosis.

First author, year Gene Function ncRNA Modulatory effect (Refs.)
Schaar et al, 2009 TfR1 Cellular transferrin-iron ~ miR-320 Suppresses the expression of (69)
uptake TfR1 directly
Fu et al,2019 miR-107 (70)
Babu et al, 2019 miR-148a 71)
Miyazawa et al,2018 miR-7-5p, miR-141-3p (72)
Kindrat et al, 2016 miR-152 (73)
Yoshioka et al, 2012 miR-210 (74)
Xu et al,2015 FTH1 Subunit of major miR-200b Suppresses the expression of (75)
intracellular iron FTHI1 directly
storage protein
Chan et al, 2018 miR-638, miR-362 (76)
Di Sanzo et al, 2018 miR-675 )
Di Sanzo et al, 2018 H19 The pre-miRNA template for amn
the miR-675 and suppresses
the expression of FTH1 by
miR-675
Ripa et al, 2017 IREB2 Regulates iron levels miR-29 Suppresses the expression of  (78,79)
Zhang et al, 2017 in the cells by regulating IREB?2 directly
the translation and
stability of mRNAs that
affect iron homeostasis
Liu et al, 2019 miR-935 (80)
Andolfo et al, 2010 DMT1 Metal-iron transporter miR-Let-7d Suppresses the expression of 81
that is involved in iron DMT1 directly
Jiang et al, 2019 Absorption and use miR-16, miR-195, (82)

miR-497, miR-15b

ncRNA, non-coding RNA; miR, microRNA; TfR1, transferrin receptor 1; FTH1, ferritin heavy chain 1; IREB2, iron response element binding

protein 2; DMT1, divalent metal transporter 1.

pre-miRNA template of miR-675, and knockdown of FTH1
upregulates H19 expression and thus its cognate miR-675, and
H19/miR-675 activation primarily contributes to altered iron
metabolism induced by FTH1 silencing (77). Therefore, it has
been reasonably confirmed that these miRNAs may suppress
ferroptosis by targeting TfR1. Together, these studies have
shown that these ncRNAs may be involved in regulating the
process of ferroptosis through iron storage.

IREB2 is an intra-cellular iron metabolism RNA-binding
protein which regulates the translation and the stability of iron
homeostasis related genes. Knock down of IREB2 suppresses
erastin-induced ferroptosis by amino acid/cystine depriva-
tion (1). miR-29 regulates IREB2 directly, thus affecting both
energy production and redox status of the cell (78). Furthermore,
miR-29a-related genetic variants alter the expression of IREB2
and may modify the risk of lung cancer together with dietary
iron intake (79). Oncogenic miR-935 is elevated in renal cell
carcinoma, and miR-935 directly suppresses the transcription
of IREB2 by binding to the 3'-UTRs of IREB2 (80). Therefore,
these miRNAs may suppress ferroptosis by targeting IREB2.

DMT]1 is a widely expressed key iron transporter located
within the plasma membrane and membranes of lysosomes
and endosomes, which enables the uptake of Fe** to the cytosol
following iron endocytosis. DMT1 inhibitors were selected as
a target in cancer stem cells by blocking lysosomal iron trans-
location, which leads to lysosomal iron accumulation, and thus
production of ROS and induction of ferroptotic cell death (35).
DMT]1 is also involved in sulfasalazine-induced ferroptosis
via activation of iron metabolism in breast cancer cells (36).
miR-Let-7d binds to the 3'-UTR of DMTI-IRE decreasing its
expression at both the mRNA and protein levels in K562 and
HEL cells (81). miR-16 family members miR-16, miR-195,
miR-497 and miR-15b have been shown to suppress intestinal
DMT1 expression by targeting DMT1 3'-UTR in HCT116
cells (82). These miRNAs may be involved in ferroptosis by
targeting DMTI.

Lipid metabolism. ACSL is expressed on the mitochondrial
outer membrane and endoplasmic reticulum, where they
catalyze fatty acids to form acyl-CoAs, which are lipid
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~ - = metabolic intermediates that facilitate fatty acid metabolism
212 =3 = and membrane modifications (83). According to genome-wide
| T << = s recessive genetic screening, ACSL4 has been identified as
- E an essential pro-ferroptotic gene and as a critical deter-
g minant of ferroptosis sensitivity by shaping cellular lipid
> é composition (8). Another study also showed that ACSL4 is a
‘g ‘E biomarker and contributor of ferroptosis via ACSL4-mediated
. ‘_g “ production of 5-hydroxyeicosatetraenoic acid (5S-HETE) (84).
- 3 2 miR-34a-5p/miR-204-5p (85), miR-141 (86), miR-3595 (87),
‘g [a) % 9 miR-34a/c (88,89), miR-548p (90), miR-205 (91),
E 8 %5 £ miR-224-5p (92) and miR-19b-3p/miR-17-5p/miR-130a-3p/
> B s :g; miR-150-5p/miR-7a-5p/miR-144-3p/miR-16-5p (93) can
% .S w 2 : suppress the transcription of ACSL4. These miRNAs may
5 % Nos % S inhibit ferroptosis by targeting ACSL4. In addition, a recent
é? § ;-r % = study reported that IncRNA NEAT1 promotes the transcription
it E é) % of ACSL4 by competing with miR-34a-5p and miR-204-5p,
E e @ @ which may suppress ferroptosis (85).
flé 2 % ) LOXs are a family of iron-containing enzymes, including
g % é % six LOX genes in humans; LOXS5, LOX12, LOX12B, LOX15,
E S 3 jf LOX15B and LOXE3 (94). These genes can catalyze dioxy-
2 genation of PUFAs to produce fatty acid hydroperoxides in
2 a stereospecific manner (94). Oxidation of PUFAs by LOXs
i had been implicated in erastin-induced ferroptosis (94).
2 LOX15-driven enzymatic generation of lipid peroxidation is
= a hallmark of ferroptotic signals (95). In the miR-17 family,
§ miR-18a and miR-203 bind to four sites of the 3'-UTR
b in 15-LOX1, and miR-17, miR-20a, miR-20b, miR-106a,
;‘i miR-106b, miR-93 and miR-590-3p bind to four sites of the
<Zt % 3'-UTR of 15-LOX2 (96). Oncogenic miR-219-2 (97) directly
% ff targets the 3'-UTR of 15-LOX, whereas miR-674-5p (98),
= 2 miR-216a-3p (99) and miR-19a-3p/miR-125b-5p (100) regulate
o 5 5-LOX through directly targeting the 3'-UTR of 5-LOX.
; i GPX4, unlike other members of the GPX family, serve
Q g E a unique role in physiology; they catalyze the reduction of
S % § ‘E lipid peroxides in a complex cellular membrane environment.
© - d — E Overexpression or knockdown of GPX4 modulates the lethality
© o o = A of ferroptosis inducers, indicating that GPX4 is an essential
B E 3 & g regulator of ferroptotic cell death (52). miR-181a-5p decreases
3 the expression of GPX4 by targeting SBP2 or SECISBP2 and
“ 2 reduces the ability to counter oxidation, which may promote
; g ferroptosis (101,102).
4 g = Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting step
g _§ i 5 catalytic enzyme in mono-unsaturated fatty acid (MUFA)
5 5 = | B synthesis that serves a central role in FA metabolism by
E E L% f:» converting the saturated fatty acids palmitate and stearate
ﬁ 5|4 to the MUFAs palmitoleate (PMA) and oleate. SCDI1, as
£ é St) an inhibitor of ferroptosis, serves an important role in the
?D § < negative regulation of ferroptosis through the products of
= Qzé MUFAS (103). miR-27a (104), miR-212-5p (105), miR-103 (106),
5 miR-192* (107), miR-378 (108), miR-4668 (109), miR-600 (110)
° é and let-7c (111) significantly suppress the relative expression of
5 " Qé SCDI1 by directly binding to its 3'-UTR. Moreover, IncRNA
© @) 2 uc.372 promotes the transcription of SCD1 by competing with
. Z, miR-4668 (109).
§ Qf,) Citrate synthases (CSs) are implicated in the regulation of
£ §  » S o g mitochondrial fatty acid metabolism, which supply a specific
g z: = ] § SIS lipid precursor necessary for ferroptotic cell death (1). Silencing
(;. % 8“ =] < 3 § CS suppresses erastin-induced ferroptosis (1). miR-122
= 3 § S R §D E <Zc suppresses the expression of mRNAs and proteins related to
= @ s 2 8 § 8| CS (112), whereas miR-19 only regulates the expression of
FIEI@BmNO N & | =
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proteins related to CS (113). Therefore, these ncRNAs have
been implicated in promoting ferroptosis by targeting lipid
metabolism-related genes.

Antioxidant metabolism. Nrf2 is a pivotal inhibitor of ferrop-
tosis due to its ability to inhibit cellular iron uptake, limit ROS
production, and upregulate SLC7A11 expression by regulating
the Nrf2-targeted genes FTH1, HO-1 and NQOI. Certain
miRNAs can directly or indirectly suppress the transcrip-
tion of Nrf2 or Nrf2 signaling to promote ferroptosis. For
example, miR-675 (114), miR-181 (115), miR-302b-3p (116),
miR-141 (117,118), miR-1225 (119), miR-25 (120),
miR-128-3p (121), miR-19b (122), miR-125b (123) and
miR-494 (124) restrain Nrf2 signaling by targeting Nrf2-related
genes. Incontrast,miR-365 (125),miR-495 (126), miR-136 (127),
miR-34a (128), miR-340-5p (129), miR-125b (130),
miR-101-3p (131,132), miR-155 (133), miR-380-3p (134),
miR-144 (135-137), miR-153 (138), miR-28/miR-708 (139),
miR-129-3p (140), miR-27b (141), miR-140-5p (142),
miR-93 (143) and miR-365-1/miR-193b/miR-29-bl (144) have
been shown to decrease Nrf2 levels through directly binding
to the 3-UTR of Nrf2. Additionally, certain miRNAs activate
Nrf2 signaling via a variety of mechanisms, ultimately resulting
in inhibition of ferroptosis. For example, miR-152-3p (145),
miR-101 (146), miR-455 (147), miR-601 (148), miR-7 (149),
miR-200a (150), miR-873-5p (151), miR-24-3p (152),
miR-34b (153), miR-223 (154), miR-146b-5p (155) and
miR-98-5p (156) activate Nrf2 signaling by targeting
Nrf2-related genes. It is thus hypothesized that these miRNAs
can regulate ferroptosis by targeting Nrf2, but this has not yet
been demonstrated.

Emerging evidence has indicated that IncRNAs
Blncl (157), MALAT1 (158-162), Nrf2-IncRNA (163),
AK094457 (164), Linc01213 (165), IncRNA74.1 (166),
ODRUL (167), SNHG14 (168), UCAI1 (126), LUCAT1 (169),
TUGI (170-172), Loc344887 (173), H19 (174), Mhrt (175),
MIAT (176), MRAKO052686 (177), AATBC (178),
HOTAIR (179), NRAL (129), H19 (114), Sox20T (180),
MTIDP (125), MEG3 (127,128,181) and KRAL (117) may
activate Nrf2 signaling by targeting Nrf2-related genes.
Furthermore, circRNA-4099 may activate Nrf2 signaling by
targeting miR-706, which augments H,0,-induced cell damage
in the LO, cells (182). Notably, these ncRNAs are involved in
regulating ferroptosis and may be a potential target for cancer
therapy.

SLC7A11, the subunit of cystine-glutamate antiporter, is
a crucial mediator in the process of ferroptosis. Studies have
shown that miR-27a (183), miR-375 (184) and miR-26b (185)
directly suppress the transcription of SLC7A11 by binding
to its 3'-UTR. Therefore, these miRNAs have been
implicated in promoting ferroptosis by directly targeting
SLC7A11. Furthermore, IncRNAs SLC7A11-AS1 (186) and
AS-SLC7A11 (187), the antisense IncRNAs of SLC7A1I,
suppress the transcription of SLC7A11. Therefore, these two
SLC7Al1l1-antisense IncRNAs have been hypothesized to
suppress ferroptosis by downregulating SLC7A11 levels.

Keapl is a member of the BTB-kelch protein family,
which are primarily located in the perinuclear region of the
cytoplasm (188). Keapl represses Nrf2 transcriptional activity,
a transcriptional target of Keapl. Overexpression of Keapl
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enhanced erastin- and RSL3-induced ferroptosis, while knock-
down conferred resistance to ferroptosis (189). Studies have
shown that overexpression of miR-7 (149), miR-873-5p (151),
miR-24-3p (152), miR-34b (153), miR-223 (154), miR-26b (190),
miR-941 (191), miR-200a (192,193), miRNA-421 (194),
miR-626 (195), miR-1225 (119), miR-141 (118) and
miR-432 (196) suppressed Keapl 3'-UTR expression and
downregulated its mRNA and protein expression. Notably,
IncRNA MALATI could epigenetically downregulate Keapl
expression (161). IncRNA KRAL functions as a ceRNA by
effectively binding to miR-141 and then restoring Keapl expres-
sion (117). These studies suggest that Keapl related-ncRNAs
are involved in the process of ferroptosis.

GOT!1 is essential for cell sustaining proliferation and
maintenance of redox homeostasis. Reduced GOT1 suppresses
erastin-induced ferroptosis by amino acid/cystine depriva-
tion (197). According to previous studies, both in pancreatic
cancer and melanoma, miR-9-5p inhibited the expression of
GOT]1 by directly binding to its 3'-UTR, ultimately resulting
in decreased proliferation, glutamine metabolism and
redox homeostasis, which suppresses the process of
ferroptosis (57,198).

Collectively, the modulators of ferroptotic markers are
their related ncRNAs, which serve critical roles in the regula-
tion of ferroptosis. As discussed above, ncRNAs possess tumor
suppressor or oncogenic roles in the process of ferroptosis
during the course of tumorigenesis and progression. Thus,
targeting ncRNAs may be a viable strategy in the development
of novel cancer treatments.

4. Therapeutic approaches for ncRNAs targeting ferroptosis
in cancer

Ferroptosis likely inhibits tumor development and/or
progression, thus inducing ferroptosis is a promising strategy
for anticancer therapy. ncRNA expression patterns show speci-
ficity for specific tumor and tissue types, highlighting ncRNAs
as potential therapeutic targets in cancer. With advances in
biotechnologies, such as genome editing, high-throughput
sequencing and nanotechnology, ncRNAs can be theoreti-
cally used as molecular targets for cancer therapy. Therefore,
ncRNAs are considered as an emerging and viable candi-
dates for precision medicine depending on its property of
tissue-specific expression.

Thus far, among the annotated ncRNAs, miRNAs,
IncRNAs and circRNAs are the most extensively investigated.
They function as either oncogenes or tumor suppressors,
which induce or inhibit ferroptosis by targeting their mRNAs,
respectively. Previously, several preclinical studies have
investigated RNA-guided precision medicine for cancer treat-
ment (161,199-201). For example, miR-34a mimic-mediated
tumor suppression was the first miRNA-based therapy to be
used in the clinic (202). IncRNA MALATI1 with antisense
oligonucleotide-conjugated nanostructure inhibited metas-
tasis of lung cancer cells (203). In total, three strategies have
been proposed for ncRNA-based therapy: i) ncRNA-guided
nanoparticles, ii) ncRNA modification and iii) an oncolytic
adenovirus strategy (204).

The methods described above are currently the most
promising ncRNA-based treatment strategies for cancer. These
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Figure 2. Therapeutic approaches for use of ncRNAs for targeting ferroptosis in cancer. In anticancer approaches, induction of the occurrence of ferroptosis
by lipid ROS is the primary approach of ferroptosis based cancer therapy. Targeting ncRNA-related ferroptosis via activation of lipid and iron metabolism or
suppression of antioxidant metabolism by ncRNA-guided nanoparticles, ncRNA modification or oncolytic adenovirus strategy. NcRNA-guided nanoparticles
strategies primarily include self-assembled oligonucleotide nanoparticles, LNPs, inorganic nanoparticles, and polymeric nanoparticles; ncRNA modification
strategies primarily include RNAi, ASOs, LNAs, Morpholinos and CRISPR-associated system; and oncolytic adenovirus strategies primarily includes the
use of Ad-shRNA. LNPs, lipid-based nanoparticles; RNAi, double stranded RNA-mediated interference; ASOs, single stranded antisense oligonucleotides;
LNAs, locked nucleic acids; Ad-shRNA, adenovirus-shRNA. ncRNA, non-coding RNA; ROS, reactive oxygen species.

therapeutic approaches can also be used in ncRNAs targeting
ferroptosis for cancer treatment. Most of the ncRNAs regulate
lipid ROS-related molecules and antioxidant metabolism-related
molecules, which leads to increased tumor cell tolerance for
relatively higher ROS levels and thus reduced possibility of
initiating ferroptosis. At same time, high levels of cellular ROS
promote tumor cell growth. To initiate ferroptotic cell death,
stimulating ncRNAs need to activate lipid and iron metabolism
or otherwise activate antioxidant metabolism, which in turn
leads to an accumulation of cellular ROS and eventually cell
death (Fig. 2). Thus, ncRNAs have been considered not only
as therapeutic targets for cancer therapy, but also as potentially
promising therapeutic tools for precision medicine. However,
the majority of studies regarding the use of ncRNAs therapeuti-
cally are still in their early stages. Several problems need to
be overcome before they can be used clinically, such as the
off-target effects, short half-life, severe toxicity and low trans-
fection efficiency in ncRNA guided strategies (204). A large
number of further studies are still required.

5. Conclusions and future perspectives

Ferroptosis is a novel type of cell death with distinct func-
tions intricately involved in numerous physiological processes
and various diseases. Substantial progress in exploring the
mechanisms of ferroptosis and understanding on how onco-
genic states drive sensitivity to ferroptosis has been made.
Collectively, these studies have demonstrated ferroptosis as a
tumor suppressive mechanism that inhibits tumor growth and
contributes to chemotherapy sensitivity, and that induction of
ferroptosis is a viable anticancer therapeutic strategy, particu-
larly for drug-resistant tumors.

However, cellular sensitivity to ferroptosis likely depends
on the cell type and physiological conditions. What types of
physiological processes are associated with ferroptosis? Under
what context do cells benefit from ferroptotic cell death?
Studies exploring the association between cancer and ferrop-
tosis are still limited. Although several candidate primary
markers of ferroptosis have been identified, and the pathways
they target are known, several candidates fail to acquire their
special cellular conditions and exhibit poor pharmacokinetics.
A large number of recent studies have demonstrated that
miRNAs, IncRNAs and circRNAs serve an important role
in the process of ferroptosis, and that these ncRNAs may
affect the regulation of ferroptosis in a cell type-dependent
or tissue type-dependent manner. Due to the heterogeneity
of gene expression on a per individual basis, ncRNA-based
treatment strategies can be used for personalized cancer
treatment and may eventually exhibit more specificity than
ferroptosis-inducing drugs such as erastin, sulfasalazine and
RSL3. Thus, targeting ncRNAs may at present be considered a
prototypic intervention which has the potential to be superior
in terms of precision compared with established anti-tumor
drugs. Moreover, with the development of gene related tech-
nologies, ncRNAs constitute promising potential targets for
gene therapy. However, a deeper understanding of the mecha-
nisms by which ncRNAs regulate ferroptosis is still required,
and tissue specific expression of ncRNAs and the variety of
off-target effects are major challenges.

In summary, ncRNAs may serve as anticancer targets by
regulating ferroptosis, which is a novel and promising means
of treating drug-resistant cancer. Targeting key ncRNA-related
ferroptotic molecules may create novel opportunities for gene
therapy for the treatment of cancer.
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