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Abstract. Hypoxic-ischemic encephalopathy (HIE) is an 
important cause of brain injury in the newborn and may result 
in long-term devastating consequences. Excessive stimulation 
of glutamate receptors (GluRs) is a pivotal mechanism under-
lying ischemia-induced selective and delayed neuronal death. 
Although initial studies focused on N-methyl-D-aspartic acid 
(NMDA) receptors as critical mediators in HIE, subsequent 
studies supported a more central role for α-amino-3-hyd
roxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-
tors (AMPARs), particularly Ca2+-permeable AMPARs, in 
brain damage associated with hypoxia-ischemia. This study 
reviewedthe important role of Ca2+-permeable AMPARs in 
HIE and the future potential neuroprotective strategies associ-
ated with Ca2+-permeable AMPARs.
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1. Introduction

Hypoxic-ischemic encephalopathy (HIE) is a major cause of 
newborn morbidity and mortality, occurring in ~2% of full-term 
infants and in ~60% of premature newborns (1). In total, 
20-50% of hypoxic-ischemic infants who exhibit severe HIE, 
succumb to this condition during the newborn period (2,3). Of 
the survivors of severe HIE, ≤25% exhibit permanent neuro-
psychological handicaps in the form of learning disabilities, 
epilepsy or cerebral palsy (4). Although the exact cause is not 
always identified, antecedents include cord prolapse, uterine 
rupture, placental abruption, placenta previa, maternal hypo-
tension, breech presentation or shoulder dystocia (5-7). The 
principal mechanism underlying neurological damage in HIE is 
oxygen and glucose deprivation (OGD), which causes a primary 
energy failure and initiates a cascade of biochemical events 
leading to cell dysfunction and ultimately to cell death. The 
increase in extracellular glutamate concentration and activation 
of glutamate receptors (GluRs) after hypoxia-ischemia triggers 
the excitotoxic cascade. There is an increase in cytosolic Ca2+ 
via influx through open N‑methyl‑D‑aspartic acid (NMDA) 
and Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid (AMPA) receptor channels and release of Ca2+ 
from intracellular stores. The deleterious effects of increased 
cytosolic Ca2+ include the activation of neuronal nitric oxide 
synthase and the subsequent formation of nitric oxide, the 
generation of free radicals and the degradation of cellular lipids 
via activation of phospholipases, the degradation of cellular 
proteins via activation of proteases and of cellular DNA via 
activation of nucleases, as well as accentuation of mitochon-
drial injuries (8-11). Over the last two decades, several studies 
demonstrated the critical role of glutamate as the mediator of 
neuronal death in HIE (12-15).

Glutamate is the predominant excitatory amino acid 
neurotransmitter and has three major types of ionotropic 
receptors, NMDA, AMPA and kainate receptors, present in 
the majority of neurons and glial processes (16,17). AMPA 
receptors (AMPARs) are tetrameric assemblies of the 
subunits GluR1-4 and are encoded by separate genes, which 
are differentially expressed throughout the central nervous 
system. AMPARs lacking the GluR2 subunit are perme-
able to Ca2+ (18). Considerable evidence supports the role of 
GluR2-lacking Ca2+-permeable AMPARs in hypoxia-isch-
emia-induced neuronal death (19,20). Those findings provided 
molecular and functional evidence for the enhanced expres-
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sion of Ca2+-permeable receptors and predicted enhanced 
vulnerability of neurons to ambient glutamate (19-23). 

This study was approved by the ethics committee of the 
Children's Hospital Affiliated to Soochow University. 

2. Structure of Ca2+‑permeable AMPARs

AMPARs are ionotropic GluRs that mediate the majority of 
fast excitatory neurotransmissions in the mammalian central 
nervous system. AMPARs are composed of GluR1-4 subunits 
in a tetraheteromeric complex, with the vast majority of 
AMPARs containing GluR2 subunits (16,24). The lack of Ca2+ 
permeability in AMPARs is the result of special genetic engi-
neering. In all AMPAR GluR1-4 subunit genes, there exists a 
conserved glutamine site at the second intramembrane domain 
that constitutes the inner face of the channel. GluR2-lacking 
and, thus, Ca2+-permeable AMPARs, have been detected in 
several brain regions and synapses and are more abundantly 
encountered in early developmental neurons (25-27). AMPARs 
exhibit the same characteristics: i) They are Ca2+-permeable; 
ii) the AMPARs exhibit inward rectification in the presence 
of the polyamine spermine, and iii) Ca2+-permeable AMPARs 
become selectively sensitive to inhibition by 1-naphthyl acetyl 
spermine (Naspm) (21,28).

Ca2+ impermeability is a consequence of editing at the Q̸R 
site of GluR2 pre-mRNA in which a gene-encoded glutamine 
(Q) codon in the channel-forming intramembrane segment 
is changed to an arginine (R) codon. This Q̸R editing is 
mediated by the enzyme adenosine deaminase. Transgenic 
replacement of edited GluR2, substituting an arginine in 
the Q/R editing site, was shown to restore viability (29,30). 
Although it is evident that Ca2+-permeable AMPAR upregula-
tion occurs in ischemia, recent evidence indicated that GluR2 
RNA-editing deficiencies also occur in ischemia. In a model 
of transient global ischemia, GluR2 RNA-editing efficiency 
of individual neurons at the Q/R site in the CA1 region of the 
hippocampus was significantly decreased (31). This editing 
efficiency was closely correlated with the Ca2+-permeability of 
the neurons. Those experiments provided substantial evidence 
that GluR2 RNA editing is crucial in mediating excitotoxic 
neuronal death during ischemia. Consistent with this finding, 
knockdown of the GluR2 gene by administration of antisense 
oligonucleotides, even in the absence of an ischemic insult, 
leads to pyramidal neuron death, whereas the overexpression 
of Ca2+-permeable GluR2 (Q) channels in vivo promotes the 
ischemia-induced death of normally resistant CA3 pyramidal 
cells. Moreover, the overexpression of Ca2+-impermeable 
GluR2 (R) channels protects CA1 neurons against ischemia- 
induced neuronal death. Previous studies demonstrated that 
neonatal hypoxia-ischemia downregulated the expression 
of GluR2 and enhanced AMPAR-mediated Ca2+ influx in 
CA1 pyramidal neurons. Ischemia induced Ca2+-dependent 
AMPA excitatory postsynaptic currents at the CA1 synapses, 
which are sensitive to the Ca2+-permeable AMPAR blocker 
Naspm (32-35). Those findings provided molecular and 
functional evidence supporting the enhanced expression of 
Ca2+-permeable receptors at the CA1 synapses of postisch-
emic brain and predicted enhanced vulnerability of neurons to 
glutamate. More importantly, an increasing number of studies 
have observed the dynamic occurrence of Ca2+-permeable 

AMPARs and their involvement during the induction of varied 
forms of hypoxia-ischemia brain injury (36,37).

3. Ca2+‑permeable AMPARs and glutamate excitotoxicity

Glutamate ionotropic receptors normally exhibit a sequential 
participation in activity-dependent neuronal plasticity and 
neuronal excitation for normal tasks. Excitotoxicity occurs 
when excessive levels of extracellular neurotransmitters, 
particularly glutamate, overstimulate excitatory recep-
tors. Glutamate is used by a variety of neuronal pathways, 
including hearing, vision, somatosensory function, learning 
and memory, which may account for the disruptive effect of 
HIE on subsequent development (38). AMPAR-mediated exci-
totoxicity is involved in selective motor neuron death (36,39). 
In some culture models, motor neurons were shown to be 
selectively vulnerable to AMPAR agonists due to the Ca2+ 
influx through Ca2+-permeable AMPARs. Since the absence 
of GluR2 in AMPARs renders them highly permeable to Ca2+, 
it was hypothesized that the selective vulnerability of motor 
neurons is due to their relative deficiency in GluR2 (40). The 
AMPAR properties correlated well with each other and with 
the selective vulnerability of neurons, since neurons surviving 
an excitotoxic event exhibited characteristics similar to those 
of dorsal horn neurons. The presence of a GluR2 subunit 
renders the AMPARs impermeable to Ca2+. The approximate 
time of peak sensitivity of excitotoxicity in rats is 9-10 days 
for AMPA, corresponding to human premature and term 
newborn, respectively (41). The majority of principal neurons 
of the neonatal hippocampus express AMPARs that exhibit 
a low permeability to Ca2+. In these cells, an acute reduc-
tion in GluR2 expression may lead to enhanced toxicity of 
endogenous glutamate (42-44). Those data indicated that 
Ca2+-permeable AMPARs may be a major determinant of 
selective neuron vulnerability to excitotoxicity in vitro.

4. Ca2+‑permeable AMPARs and Ca2+ influx

During the ischemic episode, the cells depolarize and exhibit 
an increase in intracellular Ca2+ levels. Following reperfu-
sion, the cells appear morphologically normal, exhibit normal 
intracellular Ca2+ levels and are again able to generate action 
potentials for 24-72 h after the ischemic insult (16,45). 
Ultimately, intracellular Ca2+ increases again in vulnerable 
neurons and cell death ensues, exhibiting a number of the 
hallmarks of apoptosis. Previous studies provided evidence 
that Ca2+-permeable AMPARs are mediators of HIE (26,46). 
AMPAR antagonists, but not NMDA antagonists, protect 
against ischemic neuronal death. The relevance of this 
finding, however, is unclear, as protection may be the result 
of antagonist-induced hypothermia, rather than blockade 
of Ca2+-permeable AMPARs in vulnerable neurons (47). 
Hypoxia-ischemia has been shown to induce downregulation 
of GluR2 mRNA and protein expression in vulnerable neurons 
prior to cell death (48). In sections from postischemic animals, 
CA1 neurons with robust action potentials exhibited signifi-
cantly enhanced AMPA-elicited increases in intracellular 
Ca2+ levels compared to those in cells obtained from control 
animals (49,50). Excitatory postsynaptic currents in postisch-
emic CA1 neurons exhibited an enhanced Ca2+-dependent 



BIOMEDICAL REPORTS  1:  828-832,  2013830

component that appeared to be mediated by Ca2+-permeable 
AMPARs. Those studies provided evidence of Ca2+ influx 
through AMPARs in neurons programmed to die.

5. Ca2+‑permeable AMPARs and Zn2+ translocation

Recent studies suggested that the synaptic release of Zn2+ 
and its translocation into postsynaptic neurons probably 
contribute to neuronal injury in neonatal HIE (16,51). Zn2+ 
is sequestered at high concentrations in the presynaptic 
boutons of numerous excitatory synapses, exhibiting particu-
larly high levels in the hippocampus. When released with 
neuronal activity, Zn2+ is estimated to achieve peak synaptic 
concentrations of several hundred micromoles per liter (52). 
In vivo, hypoxia-ischemia has been associated with a deple-
tion of presynaptic Zn2+ and concomitant Zn2+ accumulation 
in degenerating postsynaptic neurons. Additional support for 
a direct injurious role for Zn2+ under these conditions was 
provided by the observation that extracellular Zn2+ chelators 
decrease the release of Zn2+ in postsynaptic neurons with 
resultant selective neuronal death (53-55). Since presynaptic 
Zn2+ is released with glutamate from excitatory terminals 
and appears to gain direct entry into certain postsynaptic 
neurons, it is reasonable to consider that Zn2+ may permeate 
postsynaptic glutamate-activated channels. Previous in vitro 
studies indicated that Zn2+ is potently neurotoxic and is able 
to gain entry to neurons through voltage-sensitive Ca2+ chan-
nels, NMDA receptors and Ca2+-permeable AMPARs (56). 
However, neurotoxicity and imaging findings suggested that, 
of these routes, Ca2+-permeable AMPARs exhibit the highest 
permeability to Zn2+ (56). Neonatal hypoxia-ischemia leads to 
selective and delayed neuronal cell death, particularly of the 
hippocampal CA1 neurons. The delayed cell death following 
ischemia requires an initial translocation of Zn2+, which may 
be mediated by Ca2+-permeable AMPARs (57). Previous 
studies revealed that OGD for 15 min resulted in marked 
reactive Zn2+ in CA1 and CA3 pyramidal neurons. Although 
strong Zn2+ labeling persisted if both the NMDA antagonist 
MK-801 and a voltage-sensitive Ca2+ channel blocker were 
present, the presence of the Ca2+-permeable AMPA channel 
blocker Naspm significantly decreased Zn2+ accumulation in 
the pyramidal neurons of these two subregions (58-60).

6. Ca2+‑permeable AMPARs and delayed cell death

It has been established that neuronal death escalates disease 
progression in ischemia. AMPARs lacking GluR2 are highly 
permeable to Ca2+ and it was previously suggested that they 
may potentially contribute to Ca2+-mediated excitotoxic cell 
death in disease (21). Hippocampal cells normally express 
GluR2 and changes in the expression levels may affect the 
Ca2+-permeability of AMPARs (15). It was demonstrated that 
24-72 h following an ischemic insult, the expression of the 
GluR2 protein is downregulated, particularly in the CA1 region 
of the hippocampus, where cell death is prominent (27,30). 
The internalization of AMPARs following OGD, a model 
of ischemia, was shown to lead to a subsequent delivery of 
Ca2+-permeable AMPARs to the synapse. This process is 
regulated by the gene silencing transcription factor neuronal 
repressor element-1 silencing transcription factor (REST). 

Hypoxia-ischemia increases the expression of REST in the 
CA1 region of the hippocampus, which in turn suppresses 
GluR2 gene expression. In addition, the suppression of REST 
expression by the use of antisense oligodeoxynucleotides was 
shown to increase neuronal survival 72 h post OGD (21,22). 
An important unresolved issue is the source of free Zn2+ in 
CA1 neurons that appears long after ischemia (61). Consistent 
with this mechanism, exposure of neurons in culture to 
oxidative stress promotes the release of Zn2+ from metallo-
thioneins and other intracellular stores, an event that may be 
critical to the initiation of neuronal apoptosis. It was previ-
ously suggested that Ca2+-permeable AMPARs, when in the 
diseased state, potentially contribute to Zn2+ accumulation, 
despite such receptors also being required for maintenance of 
synaptic plasticity (62).

7. Ca2+‑permeable AMPARs and long‑term effects

A central concept in the field of learning and memory is that 
GluRs are essential for synaptic plasticity and memory forma-
tion. Blocking by GluR1 antagonists results in a decrease in 
AMPAR transmission. A certain time period is required 
for memory reconsolidation, which is potentiated by fear 
conditioning (63,64). This reversal in potentiation is due to 
the selective removal of Ca2+-permeable AMPARs, compared 
to complete extinction. Those findings suggested that the 
presence of Ca2+-permeable AMPARs renders the memory 
trace labile and allows full memory erasure or modification. 
To assess the contribution of Ca2+-permeable AMPARs to 
the learning process, mutant mice were engineered with a 
conditional genetic deletion of GluR2 in the CA1 region of 
the hippocampus. Electrophysiological experiments in those 
animals revealed a novel form of long-term potentiation that 
was mediated by GluR2-lacking Ca2+-permeable AMPARs. 
Behavioral analyses revealed that NMDAR-independent 
learning was normal and required the activation of 
Ca2+-permeable AMPARs. Those results suggested that 
GluR2-lacking AMPARs play a functional and previously 
unidentified role in learning (65,66).

8. Conclusions

HIE is one of the most serious birth complications affecting 
infants. The evidence reviewed above demonstrates overex-
pression of Ca2+-permeable AMPARs during the early stages 
of hypoxic-ischemic brain damage, suggesting an important 
role for Ca2+-permeable AMPAR-dependent signaling in HIE. 
The expression of Ca2+-permeable AMPARs may be crucial for 
temporal precision of signaling and is also a necessary measure 
to avoid neuronal excitotoxicity resulting from an overload of 
AMPAR-gated Ca2+ influx, Zn2+ accumulation, apoptosis and 
autophagy, which constitute critical steps in the pathology of 
ischemia‑induced neuronal death. Therefore, our final aim is 
an individualized strategy regarding Ca2+-permeable AMPARs 
for neuroprotection against perinatal hypoxic-ischemic insults.
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