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Abstract. IQ‑domain GTPase‑activating proteins (IQGAPs) 
are evolutionary conserved multidomain proteins that are 
found in numerous organisms, from yeast to mammals. To 
date, three IQGAP proteins have been identified in humans, of 
which IQGAP1 is the best characterized. As a scaffold protein, 
IQGAP1 contains multiple protein‑interacting domains, 
which modulate binding to target proteins. Recent mounting 
studies demonstrated a role for IQGAP1 in tumor progression, 
supported by the altered expression and subcellular distribu-
tion of IQGAP1 in tumors. The contribution of IQGAP1 to 
tumor progression appears to involve a complex interplay 
of cell functions by integrating diverse signal transduction 
pathways and coordinating activities, such as cell adhesion, 
migration, invasion, proliferation and angiogenesis.
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1. Introduction

IQ‑domain GTPase‑act ivat ing proteins ( IQGAPs) 
belong to a recently identified protein family, which is an 
evolutionary conserved multistructural domain protein 
family, playing an important role in adjusting cell adhe-
sion, migration, signaling, division and other biological 
processes (1‑3). IQGAPs, bearing extensive sequences similar 
to those of the Ras GTPase‑activating proteins (GAPs), have 
4  isoleucine̸glutamine‑containing domains (IQ), which 
interact with multiple proteins. In mammals, the IQGAP 

protein family comprises three homologues: IQGAP1, 
IQGAP2 and IQGAP3, among which IQGAP1 is the most 
ubiquitously expressed and widely investigated (4).

IQGAP1 contains one calponin‑homology domain, one 
poly‑proline protein‑protein domain (WW), four IQ domains, 
one Ras GTPase‑activating protein‑related structure domain 
and one C‑terminal Ras GAP‑related structure domain. The 
traditional GTPase‑activating protein is a GTPase regulatory 
effector, which can improve GTPase activity and promote the 
conversion of the GDP‑binding state from active to inactive. 
However, IQGAP1, unlike a traditional GAP, can inhibit the 
endogenous GTPase activity and stabilize the GTP‑bound 
state of Rho GTPases Rac1 and Cdc42 (1).

As a scaffolding protein, IQGAP1 is able to bind several 
proteins to regulate cell functions. IQGAP1 binds to Rac1, 
Cdc42 and F‑actin to regulate the assembly of the actin 
cytoskeleton (5,6) and combines with microtubule‑associated 
protein CLIP170, adenomatous polyposis coli (APC) and 
S100B to regulate cell polarization and determine the direc-
tion of cell movement (7‑9). Furthermore, IQGAP1 may bind 
B‑Raf, ERK1/2 and MEK1/2 to activate the mitogen‑activated 
protein kinase (MAPK) signaling pathway to mediate cell 
proliferation and differentiation  (10,11) and combine with 
calmodulin, β‑catenin and E‑cadherin to regulate intercel-
lular adhesion and migration (12‑15). Certain proteins that 
combine with IQGAP1 play important roles in tumor biology, 
such as oncogenic β‑catenin and Src, tumor‑inhibiting factor 
E‑cadherin, Rho GTPase Cdc42 and Rac1, as well as members 
of the MAPK cascade, indicating that IQGAP1 may be 
involved in the generation and development of tumors (16,17). 
In addition, IQGAP1 may interact with neural Wiskott-Aldrich 
syndrome protein (N‑WASP), epidermal growth factor (EGF) 
receptor, receptor tyrosine kinases, Sec3/Sec8 and several 
other functional proteins (18‑21). Therefore, IQGAP1 may be 
considered as a molecular scaffold, connecting and integrating 
several components of the cytoskeleton, and may combine 
with cell signal transduction molecules, jointly constituting the 
complex signal transduction cellular network.

2. Research progress of IQGAP1 in tumors

Expression of IQGAP1 in tumor tissues. Several studies 
demonstrated that the expression of IQGAP1 in a number of 
tumor tissue samples and tumor cell lines is distinctly upregu-
lated. Research on clinical tumor specimens demonstrated 
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that IQGAP1 exhibits a high expression in colorectal, gastric 
and breast cancer, astrocytoma, squamous cell carcinoma of 
the head and neck and several other types of cancer, with its 
expression level being closely associated with tumor grade and 
metastatic potential (22‑27).

Immunohistochemical investigations demonstrated that, in 
addition to increased expression, there is also altered local-
ization of IQGAP1 in tumor tissues and certain cancer cell 
lines. Compared to central tumor regions and normal tissues, 
highly metastatic colorectal and ovarian cancers displayed 
intense IQGAP1 staining, particularly at the periphery of 
the tumor (24,28‑31). IQGAP1 staining is usually located in 
the cell membrane ruffles, particularly along the junctions 
of neighbouring cells or at the invasion front of aggressive 
tumors. The change in localization of IQGAP1 from the cyto-
plasm to the membrane exhibits a certain correlation with the 
pathological grading of the tumor. According to the statistical 
analysis, the altered staining pattern from cytoplasmic to 
membranous and the high expression of IQGAP1 exhibited 
a significant correlation with poor prognosis (28‑32). When 
IQGAP1 is highly localized in the cell membrane, it may 
decrease adherent junction stability and render tumor cells 
easily dissociable. Of note, the overexpression of IQGAP1 may 
be crucial for several tumors in order to achieve rapid growth, 
high invasive potential and angiogenesis (31).

IQGAP1 and intercellular adhesion. Epithelial‑derived 
cancer cells must undergo a transformation process from 
epithelial to mesenchymal to obtain the phenotype of mobility 
and invasiveness (33). The loss of adhesion function reduces 
intercellular adhesion and loosens the adhesion with the 
basal membrane, contributing to cell transformation. High 
IQGAP1 expression and translocation to the area of adhesion 
between the cells may affect the stability of the adherens 
junction (1,34). IQGAP1 also binds to certain catenins and 
regulates their function. It was demonstrated that IQGAP1 
may competitively bind to β‑catenin, causing α‑catenin to 
dissociate from the cell‑cell junctions. In this way, IQGAP1 
weakens cell‑cell adhesion (13). Therefore, there is a dynamic 
equilibrium between the E‑cadherin‑β‑catenin‑α‑catenin and 
E‑cadherin‑β‑catenin‑IQGAP1 complexes and the proportion 
of these two complexes determines the strength of adhe-
sion (1). The former complex stabilizes cell‑cell adhesion and 
the latter may promote cell migration. IQGAP1 also opposes 
the enzymatic activity of GTP. When IQGAP1 combines with 
Cdc42 and Rac1 and maintains their state of activation, it does 
not directly interact with β‑catenin or disassociate α‑catenin 
from the adhesion complexes, thereby sustaining the stability 
of actin filaments and leading to strong adhesions (1,34).

IQGAP1 and cell migration and invasion. Coordinated 
restructuring of microtubules and microfilaments is required 
for cell polarization and migration. IQGAP1 was shown 
to play a key role in organizing microtubule networks and 
the actin cytoskeleton. IQGAP1 may combine with actin to 
promote microfilament crosslinking, and may also directly 
combine with plus‑end APC proteins to tether the microtu-
bule plus‑ends of the actin network. In addition, IQGAP1 
may activate the cytoskeletal regulatory factors N‑WASP and 
Dia1 to promote Arp2/3‑dependent actin assembly (18,35‑37). 

Furthermore, IQGAP1 may interact with microtubule tip 
protein CLIP‑170 and modulate the transient capture of micro-
tubules at the cortical regions, inducing formation of polarized 
microtubule arrays and cell polarization (7). In addition to 
enhancing cell migration caused by rearrangements in the 
cytoskeleton, IQGAP1 stimulates cell invasion by promoting 
the degradation of extracellular matrix, which is essential for 
the metastasis of tumor cells (38). IQGAP1 may combine with, 
regulate and control the exocyst‑Sec3/8 complexes, causing 
anchoring of membrane type‑1 matrix metalloproteinase to 
invadopodia, a process also modulated by activated Cdc42 and 
RhoA (21). In addition, IQGAP1 may combine with hyaluronan 
receptor CD44 to induce recombination of the cytoskeleton to 
stimulate cell invasion through cell‑matrix signaling events, 
such as ERK‑2 signaling (39,40).

IQGAP1 and cell proliferation. Emerging evidence suggests 
that altering IQGAP1 expression levels may affect the rate of 
cell proliferation. The overexpression and silencing of IQGAP1 
may induce and abrogate cell proliferation, respectively. 
Jadeski et al (26) reported that the overexpression IQGAP1 
increased the proliferation of MCF‑7 breast epithelial cells and 
the reduction of endogenous IQGAP1 by RNA interference 
impeded anchorage‑independent and serum‑dependent growth 
of MCF‑7 cells. Wang et al (41) demonstrated that IQGAP1 
modulates cell proliferation, through its phosphorylation and 
binding to Cdc42, although different domains exhibited varied 
functions. The C‑terminal region of IQGAP1 was shown to 
reduce cell size, whereas the N‑terminus increased cell size 
by interacting with the mammalian traget of rapamycin, 
which is required for IQGAP1‑mediated cell proliferation. 
Chen et al  (42) reported that the growth of hepatocellular 
carcinoma cells was inhibited by the knockdown or mutation 
of the IQGAP1 gene and high IQGAP1 expression in vitro 
stimulated cell proliferation through Akt phosphorylation.

IQGAP1 and angiogenesis. Angiogenesis is crucial for the 
growth  and survival of tumors. The results from animal 
studies indicated that MCF‑7 human breast cancer cells 
overexpressing IQGAP1 formed invasive tumors in nude 
mice, whereas tumors derived from MCF‑7 cells with stable 
knockdown of IQGAP1 were smaller and less invasive (26). 
According to previous studies on the angiogenesis model, the 
expression of IQGAP1 is markedly increased in new vessels. 
In addition, interference with IQGAP1 may restrain vascular 
endothelial factor (VEGF)‑induced angiogenesis  (17,20). 
IQGAP1 may also regulate angiogenesis by binding to VEGF 
receptor (VEGFR)2, which is crucial for the recombination 
and migration of endothelial cells  (20,43). Furthermore, 
IQGAP1 may directly combine with proto‑oncogene c‑Src, 
promoting VEGFR2‑mediated proliferation of blood vessel 
endothelial cells through the B‑Raf signaling pathway (17). 
The above‑mentioned studies demonstrated that IQGAP1 
is involved in endothelial cell angiogenesis and represents a 
potential therapeutic target for anti‑angiogenesis treatments.

IQGAP1 and tumor‑related signaling pathways
MAPK signaling pathway. The MAPK signaling pathway 
is involved in multiple biological processes, such as cell 
proliferation, differentiation and migration and it is aberrantly 
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regulated during tumor development (44,45). IQGAP1 may 
combine with various components of the MAPK signaling 
pathway and plays an important role in the regulation of cellular 
processes when stimulated by certain growth factors (10,11). 
Under stimulation by EGF, the interaction between IQGAP1 
and different components of the MAPK pathway may be 
altered. EGF promotes the association between IQGAP1 and 
MEK‑1, while decreasing the interaction between IQGAP1 
and MEK‑2  (46). It was previously suggested that MEK‑1 
enhances cell proliferation, whereas MEK‑2 enhances 
differentiation and IQGAP1 may be more likely to activate 
the MEK‑1 signaling pathway  (11,47). Furthermore, the 
combination of IQGAP1 and MEK is crucial for the regula-
tion of ERK‑2 activation by EGF. Previous data demonstrated 
that IQGAP1 is required for B‑Raf activation by VEGF. The 
association of B‑Raf and IQGAP1 resulted in higher kinase 
activity and the knock‑out of IQGAP1 alleviated the B‑Raf 
activation stimulated by VEGF (10). However, whether it is 
the interaction between IQGAP1 and B‑Raf that increases the 
sensitivity of B‑Raf to EGF or IQGAP1 binds more readily to 
activated B‑Raf has not been fully elucidated.

IQGAP1 may bind to ERK‑2 through its WW functional 
domain and adjust the activity of ERK‑2. In cells lacking 
endogenous IQGAP1, ERK‑2 cannot be activated and the high 
expression of IQGAP1 may reduce the activity of ERK‑2. 
Therefore, only the proper expression of IQGAP1 can ensure 
maximum activation of ERK‑2  (46). It was demonstrated 
that the cell proliferation stimulated by IQGAP1 is inhibited 
through the downregulation of the MAPK signaling pathway in 
MCF‑7 breast cancer cells (26). Moreover, IQGAP1 silencing 
inhibits the ERK‑mediated phosphorylation of transcription 
factor Elk‑1, leading to the suppression of migration of tumor 
cells (39,46). The above‑mentioned findings demonstrated that 
IQGAP1 plays a vital role in MAPK signal transduction, regu-
lating cell proliferation and differentiation and contributing to 
tumorigenesis.

β‑catenin‑mediated signal transduction. β‑catenin, an 
oncogenic protein, is a crucial component of E‑cadherin 
adherens junction complexes and an important molecule 
of the Wnt pathway, participating in cell proliferation and 
adhesion  (48‑52). Under normal conditions, β‑catenin and 
E‑cadherin form complexes at cell‑cell junctions (53). When 
Wnt signaling is activated, the overexpression of IQGAP1 
may protect soluble β‑catenin against degradation by casein 
kinase I and glycogen synthase kinase 3β, promote β‑catenin 
nuclear localization and transcription factor activation accord-
ingly, inducing the expression of multiple oncogenes and cell 
cycle proteins (54‑56). Thus, it is clear that IQGAP1 is a crucial 
regulatory protein of β‑catenin.

IQGAP1 and Ca2+/calmodulin‑mediated signal trans‑
duction. The Ca2+/calmodulin‑mediated signal transduction 
system may interact with other signal transduction systems 
through IQGAP1 and the concentration of Ca2+ may also 
affect the IQGAP1‑calmodulin‑mediated cell‑cell adhesion. 
When the Ca2+ concentration is low, IQGAP1 binds to Rac1 
and Cdc42, promoting multimerization of actin and stabilizing 
cell‑cell adhesion; when its concentration is higher, Ca2+ binds 
to calmodulin and hinders the combination of Cdc42 and 
IQGAP1, leading to weakened cell‑cell adhesion mediated by 
E‑cadherin (13). In addition, the overexpression of IQGAP1 

in SW480 colon carcinoma cells was found to promote 
β‑catenin‑mediated transcriptional co‑activation and this 
stimulation was also shown to be regulated by calmodulin (54).

3. Conclusion

In conclusion, accumulating evidence indicates that overex-
pression and altered localization of IQGAP1 are commonly 
detected in certain types of cancer cells and tissues and exhibit 
a correlation with poor prognosis. This scaffolding protein, 
comprising multiple structural domains, may interact with 
different protein molecules, integrating diverse signaling path-
ways, and is involved in cell biological activities, including 
proliferation, migration and apoptosis. Moreover, some of the 
IQGAP1 binding partners are involved in tumorigenesis and 
tumor progression. The studies mentioned above indicated 
that IQGAP1 sits at the crossroad of different cell biological 
processes and may contribute to cancer progression. However,  
the mechanisms underlying the triggering of the abnormal 
expression of IQGAP1, whether IQGAP1 is an oncoprotein 
directly involved in tumor development and the stage of tumor 
cell transformation and invasion during which IQGAP1 is 
upregulated, have not been fully elucidated. Therefore, further 
investigations are required to dissect the function and mecha-
nism of IQGAP1 in tumor development and progression.
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