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Abstract. There are trace amounts of heavy metals in 
cosmetics. Heavy metals such as mercury (Hg), which is 
added to skin‑whitening cosmetics, may cause acute or chronic 
damage to human cells. The aim of this study was to inves-
tigate the cytotoxicity of mercury chloride (HgCl2) to human 
keratinocytes. The keratinocytes were treated with various 
concentrations of HgCl2 and the cell survival fractions were 
found to be 38.08, 17.59, 12.76, 3.29 and 0.77% when the cells 
were treated with 0.25, 0.5, 0.75, 1 and 1.5 µM of HgCl2, respec-
tively. Moreover, we observed that the greatest damage was to 
the cell membrane. The metallothionein (MT) protein expres-
sion was also investigated. MT expression levels increased with 
increasing concentrations of HgCl2. The results indicated that 
MT protects the keratinocytes against HgCl2-induced toxicity.

Introduction

There are trace amounts of heavy metals in cosmetics. Heavy 
metals such as mercury (Hg), which is added to skin‑whitening 
cosmetics, may cause acute or chronic damage to human 
cells. Hg, a divalent metal with no known biological function, 
may cause several deleterious effects in adults (1,2), as well 
as in  developing organisms (3,4), which primarily involve 
the central nervous system  (5‑7) and the kidneys  (1,8,9). 
Young animals seem to be more sensitive to Hg toxicity than 
adults, particularly during the first days following birth. Hg 
is also a widespread environmental and industrial pollutant 
that induces severe adverse effects in humans as well as the 
environment  (10). Its carcinogenic activity has been well-
documented. Hg is also known to alter the intracellular redox 

homeostasis  (11,12), which is recognized as a factor that 
determines cell fate (13). The outcome of cells exposed to 
Hg‑containing compounds depends on the chemical charac-
teristics of the compound, as well as on its dosage, accounting 
for the various results reported in the literature, ranging from 
improved cell survival to apoptosis and necrosis.

Keratinocytes have long been considered the structural 
backbone of the epidermis; however, there is increasing 
evidence that they play an active role in the pathogenesis of skin 
damage by heavy metals (14). Available histopathological (15) 
and cytotoxicological (16‑18) studies describing keratinocyte 
damage by mercury chloride (HgCl2) are currently limited. 
This underlines the importance of investigating the direct 
cytotoxic effects of the metals on keratinocytes, as well as 
intracellular damage, for which available data are limited.

Metallothioneins (MTs) are ubiquitous, low‑molecular 
weight proteins, rich in cysteine residues. Their high content 
of sulfhydrilic amino acids (~30%) gives these proteins unique 
metal‑binding properties (19,20). Factors such as exposure to 
toxic or essential metals (3,21‑23), stress (24,25), radiation (26) 
and other agents (27,28), promote the synthesis of these mole-
cules (29). With respect to their biological functions and due 
to the metal affinity of their sulfhydryl groups, it is believed 
that MTs possess antioxidant properties (26,30), are involved 
in the homeostasis of essential metals such as zinc (Zn) and 
copper (Cu) (20,29) and act as detoxifying agents from metal 
ions (20,31,32).

In this study, we investigated the cytotoxicity of HgCl2 
to human keratinocytes, using human keratinocyte‑derived 
HaCaT cells as an experimental model. In addition, we 
focused on HgCl2-induced HaCaT cell damage and examined 
the expression of MTs.

Materials and methods

Materials. Human keratinocyte-derived (HaCaT) cells were 
obtained from the Food Industry Research and Development 
Institute (Hsinchu, Taiwan). Dulbecco's modified Eagle's 
medium (DMEM), heat‑inactivated fetal calf serum (FCS), 
penicillin‑streptomycin solution and trypsin‑EDTA solution 
were purchased from Life Technologies Corporation (Carlsbad, 
CA, USA). Sterile dimethylsulfoxide (DMSO) 3‑(4,5‑dimeth-
ylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) and 
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HgCl2 were purchased from Sigma‑Aldrich (St. Louis, MO, 
USA).

Cell culture. HaCaT cells were grown in DMEM supplemented 
with heat‑inactivated FCS (10%; v/v), streptomycin (100 U/ml) 
and penicillin (0.1 mg/ml), in a humidified atmosphere of 
5% CO2 at 37˚C. The culture medium was changed three times 
a week. The cells were subcultured following trypsinization 
and seeded in 6‑well plate at a density of 1x105 cells per cm2.

Cells treated with HgCl2. The keratinocytes were treated with 
HgCl2 (0.25‑1.5 µM) at 37˚C for 24 h. When the non‑treated 
control cells were grown confluently, the cell groups were 
prepared for cell viability assay or MT western blot analysis.

MTT assay. The cell viability was monitored following treat-
ment with various concentrations of HgCl2. MTT was used to 
quantify the metabolically active living cells. Mitochondrial 
dehydrogenases metabolize MTT to a purple formazan dye, 
which was measured photometrically at 570 nm using a spec-
trophotometer (33).

Western blot analysis for MT protein expression. Cell 
homogenates were prepared by sonication of cells in 600 µl 
of ice‑cold lysis buffer, containing 50 mM Tris‑HCl (pH 8.0), 
150  mM  NaCl, 0.02%  sodium azide, 100  µg̸ml  PMSF, 
1 µg̸ml aprotinin and 1% NP‑40. Homogenates were clarified 
by centrifugation at 20,000 x g for 45 min at 4˚C. Total protein 
concentration was determined using the BCA (Bio‑Rad, 
Hercules, CA, USA) assay. Samples (50 µg of total protein) 
from HaCaT cells treated for 24 h with various concentra-
tions of HgCl2 were analyzed for human MT proteins, using 
sodium dodecyl sulfate‑polyacrylamide gel electrophoresis 
(SDS‑PAGE; Laemmli, 1970) in 10‑20% gradient gels. 
Proteins were electrophoretically transferred to nitrocellulose 
membranes. The resulting membranes were incubated in 2.5% 
glutaraldehyde for 1 h and then washed 3  times for 5 min 
in phosphate buffer (8.1 mM Na2HPO4, 1.2 mM KH2PO4, 
2.7  mM KCl, pH  7.4). Monoethanolamine (50 mM) was 
added to the third wash solution to quench residual glutaral-
dehyde reactivity. MT proteins were detected by Immun‑Star 
Chemiluminescent Protein Detection Systems (Bio‑Rad). A 
monoclonal antibody to polymerized equine renal MT (Dako, 
Carpinteria, CA, USA) was used for immunodetection.

Statistical analysis. Means ± standard error (SE) were calcu-
lated in triplicate. A statistical significance between the groups 
was determined by the Student's t‑test. P<0.05 was considered 
to indicate a statistically significant difference between the 
two groups.

Results

Cell survival fractions of HaCaT cells treated with HgCl2 at 
various concentrations. Comparison of cell survival fractions 
in HaCaT cells treated with HgCl2 at various concentrations 
from 0.25 to 1.5 µM is shown in Fig. 1. The cell survival fraction 
was 38.08% when the keratinocytes were treated with 0.25 µM 
of HgCl2. The cell survival fractions were 17.59, 12.76, 3.29 
and 0.77%, when the keratinocytes were treated with 0.5, 0.75, 

1 and 1.5 µM of HgCl2, respectively. For each concentration 
investigated, a linear characteristic concentration‑response 
curve was observed, with decreased cell survival at increasing 
concentrations of HgCl2 on a semi‑log scale.

Effect of HgCl2 on HaCaT cell morphology. Keratinocytes 
were treated with HgCl2 for 24 h or left untreated. The HaCaT 

Figure 1. Cell survival fractions of HaCaT cells treated with HgCl2 at dif-
ferent concentrations. The cell survival fractions were 38.08, 17.59, 12.76, 
3.29 and 0.77% when the keratinocytes were treated with 0.25, 0.5, 0.75, 1 
and 1.5 µM of HgCl2, respectively.

Figure 2. Morphology of HaCaT cells. (A) Control group of HaCaT cells (not 
treated with HgCl2). (B) HaCaT cells treated with 1.5 µM of HgCl2 for 24 h 
(magnification, x40).
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cell morphology is shown in Fig. 2. The cell membrane of 
untreated cells is clear and intact (Fig. 2A), whereas that of 
HgCl2-treated cells is unclear and interrupted (Fig. 2B).

Effect of HgCl2 on MT expression. MT expression levels in 
HaCaT cells treated with various concentrations of HgCl2 are 
presented in Fig. 3. MT expression levels increased signifi-
cantly with the increase in the concentrations of HgCl2.

Discussion

The purpose of this study was to assess the cytotoxicity 
of HgCl2 to the keratinocytes, as well as MT expression in 
HgCl2‑treated keratinocytes. The results demonstrated that 
exposure of HaCaT cells to HgCl2 resulted in dose‑dependent 
cell death and distinct cell membrane damage. Reports of Hg 
poisoning due to exposure to skin‑whitening creams, ointments 
and soaps have increased significantly over the past few years. 
Furthermore, since people with lighter skin tone may represent 
a higher status in certain cultures, skin‑whitening cosmetics 
are widely used by women to enhance their appeal (34‑36). 
Otto et al (36) detected high Hg concentrations in the blood 
and urine of Balkan refugees of varying ages who had been 
exposed to a Hg‑based skin‑bleaching ointment.

We have demonstrated that exposure of keratinocytes to 
HgCl2 resulted in cell membrane damage. Picoli et al (37) also 
investigated the effect of HgCl2 on gap junction intercellular 
communication (GJIC) in cultured human keratinocytes. 
They demonstrated that subcytotoxic concentrations of 

HgCl2, as low as 10 nM, may cause inhibition of the GJIC. 
In addition, they demonstrated that HgCl2‑treated keratino-
cytes exhibited a decrease in free thiols and accumulation of 
mitochondria‑derived reactive oxygen species, albeit no effect 
on the respiratory chain activity was observed.

This study has demonstrated that MT expression may be 
induced by HgCl2 in HaCaT cells. Kramer et al (38) demon-
strated that MT may be induced by Hg+2 in neuronal cells 
and induced MT decreases the rate of metal binding to other 
structures, providing protection against metal toxicity (39). 
Apart from Hg, MT also plays a role in the homeostasis of 
essential metals such as Zn and Cu, the detoxication of toxic 
metals such as Cadmium (Cd) and protection against oxidative 
stress (40‑42). Richards et al (43) and McCormick et al (44) 
demonstrated that plasma zinc concentrations were related 
to MT expression, further suggesting an association with 
cellular zinc homeostasis. Ogra  et  al  (41) demonstrated 
that cell viability was significantly decreased in MT‑null 
cells compared to wild‑type cells by Cu(I)‑specific chelator 
treatment (41). They also showed that MT expression levels 
were increased by Cu(I)‑specific chelator treatment in 
wild‑type cells. Thus, MT was induced under Cu‑deficient 
conditions, in order to maintain the activities of intracel-
lular cuproenzymes, such as cytochrome c oxidase and 
Cu/Zinc superoxidase dismutase. Urani et al  (42) showed 
that MT expression was upregulated following exposure to 
CdCl2, with a saturation curve at 48 as well as 72 h. High 
levels of MT possibly confer an acquired tolerance to stress 
and protection against cell injury, as demonstrated by the low 
cytotoxicity values.

In conclusion, our results demonstrated that exposure of 
HaCaT cells to HgCl2 resulted in significant dose‑dependent 
cell death and cell membrane damage. Moreover, MT expres-
sion may be induced by HgCl2 in HaCaT cells. This suggests 
that MT protects the keratinocytes against HgCl2-induced 
toxicity.
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