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Abstract. The GATA binding protein 3 (GATA3) is a member 
of a family of 6 GATA dual zinc finger transcription factors 
(GATA1‑6), which are required for the development and 
morphogenesis of the mammary gland. GATA3 is considered 
to play a dual role in oncogenesis and cancer development, 
whereas somatic GATA3 mutations have been reported in 
breast cancer. Variants of the GATA3 genetic 3' untranslated 
region (3'UTR) microRNA (miRNA) binding sites have been 
associated with breast cancer risk. However, the roles of genetic 
variants in the GATA3 gene 3'UTR and its post‑transcriptional 
regulation have not been fully elucidated. We discovered that 
rs1058240 in the GATA3 3'UTR displayed potential miRNA 
binding sites and this variant was found to be significantly 
associated with GATA3 mRNA expression (P=2.36E‑07), 
suggesting that rs1058240 may be a putative variant mediating 
the post‑transcriptional regulation of the GATA3 target gene. 
Further studies investigating the regulatory mechanism of 
GATA3 transcriptional activity are required to design novel 
strategies against breast cancer cell growth and differentiation.

Introduction

The GATA binding protein 3 (GATA3) is a member of the 
GATA family of zinc finger transcription factors that bind 
to the consensus 5'‑(A/T)GATA(A/G)‑3' motif  (1). Human 
GATA3 exhibits 85% amino acid homology with human 
GATA1 in the DNA‑binding domain, with no homology 
elsewhere in the protein, located on the 10p15 band of the 
human genome (2). GATA3, similar to other GATA family 
members, plays important roles in vertebrate embryonic 
organogenesis, including the mammary gland, sympathetic 

nervous system, parathyroid gland, kidney, inner ear, skin and 
T‑cell lineages (3‑9). Each GATA family member exhibits 
a distinctive pattern of expression in tissues and cell lines. 
The GATA3 protein is highly expressed in T‑lymphoid cells 
and was suggested to be involved in the regulation of T‑cell 
receptor α‑ and β‑chain genes (2). GATA3 was identified in 
the luminal cells of mammary ducts and the body cells of 
terminal end buds, suggesting that GATA3 actively maintains 
luminal epithelial differentiation in the adult mammary gland, 
which suggests important implications in the pathogenesis of 
breast cancer (10). The majority of breast cancers arise from 
luminal epithelial cells; therefore, GATA3 appears to control 
a set of genes involved in the differentiation and proliferation 
of breast cancer cells. The expression of GATA3 is strongly 
associated with estrogen receptor (ER) expression in breast 
cancer (11) and there is accumulating evidence that GATA3 
may be used as a clinical marker to determine response to 
hormonal therapy and refine the prognosis of breast cancer 
patients (12,13). The GATA3 gene was recently identified as 
a potential tumor marker and putative tumor suppressor gene 
in breast cancer, whose expression may be associated with a 
more fvorable prognosis and prolonged disease‑free survival 
in breast cancer patients (14). A meta‑analysis reported that 
GATA3 was one of the most significant genes exhibiting low 
expression in invasive carcinomas of the breast with poor clin-
ical outcome, whereas low GATA3 expression was associated 
with a higher histological grade, positive nodes, larger tumor 
size, negative ER and progesterone receptor and HER2‑neu 
overexpression (15).

To the best of our knowledge, microRNAs (miRNAs) may 
act as tumor suppressors and oncogenes by genetic variations 
in the 3'  untranslated region (3'UTR) binding sites, regu-
lating the target‑gene expression post‑transcriptionally (16). 
Chou et al (17) demonstrated that GATA3 increased the level 
of expression of miRNA (miR)‑29b, which in turn repressed 
a network of prometastatic microenvironmental components, 
including angiopoietin-like 4, lysyl oxidase, matrix metal-
loproteinase  9 and vascular endothelial growth factor  A, 
through binding to specific sequence motifs in their 3'UTR. 
The realisation that the GATA3‑miR‑29b axis regulates the 
tumor microenvironment and inhibits metastasis may open up 
novel possibilities for therapeutic intervention in breast cancer. 
However, the role of genetic variations in the miRNA binding 
sites of GATA3 has not been fully elucidated. Therefore, we 
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tested our hypothesis that the GATA3 3'UTR variants may 
be associated with its mRNA expression by performing a 
bioinformatics analysis and genotype‑phenotype association 
analysis based on the HapMap database.

Materials and methods

Bioinformatics and selection of polymorphisms. We identi-
fied the single‑nucleotide polymorphisms (SNPs) in the 
GATA3 gene and coding region by searching the National 
Center for Biotechnology Information online database (http://
www.ncbi.nlm.nih.gov/SNP/). We limited the SNPs to those 
with a minor allele frequency (MAF) of >0.05 among different 
populations and used the SNP Function Prediction bioinfor-
matics tool (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm) 
to predict the potential miRNA binding sites. We then calcu-
lated the genotype distributions of all the selected GATA3 
3'UTR SNPs among different populations according to the 
database. In addition, the pairwise linkage disequilibrium 
(LD) values of all the SNPs in the same gene were calculated 
and the SNPs not in LD (r2<0.8) were selected. Subsequently, 
we plotted LD maps of those SNPs in GATA3 gene with the 
LD TagSNP Selection online program (http://snpinfo.niehs.
nih.gov/snpinfo/snptag.htm).

Genotype and mRNA expression data of lymphoblastoid 
cell lines from the HapMap database. We used the data 
on GATA3 genotypes and mRNA levels available online 
(http://app3.titan.uio.no/biotools/tool.php?app=snpexp) to 
analyse the genotype‑phenotype association (18). The gene 
expression variation was analysed by using genome‑wide 
expression arrays (47,294  transcripts) from Epstein‑Barr 
virus‑transformed lymphoblastoid cell lines from 270 HapMap 
individuals (128 females and 142 males) (19). The genotyping 
data from the HapMap phase II release 23 dataset consisted of 
3.96 million SNP genotypes from 270 individuals belonging 
to 4 populations (20). The SNPexp v1.2 web tool (Norwegian 
PSC Research Center, Clinic for Specialized Surgery and 
Medicine, Rikshospitalet, Oslo University Hospital, Oslo, 
Norway) was used to analyse and visualize the correlation 
between HapMap genotypes and gene expression levels. The 
probe GI_4503928‑S, representing the gene ‘GATA3’ was 
found in the file ‘illumina_Human_WG‑6_array_content.csv’ 
and a correlation analysis was then performed between the SNP 
genotype and expression levels for the probe GI_4503928‑S 
(additive model assumed).

Statistical methods. We analysed the SNP genotype and 
phenotype correlation with the Chi‑square test. The statistics 
test were two‑sided and P<0.05 was considered to indicate a 
statistically significant difference.

Results

GATA3 3'UTR selected variants and putative miRNA binding 
sites. In total, we identified 685 SNPs in the GATA3 gene 
region and 73 in the coding region (http://www.ncbi.nlm.nih.
gov/projects/SNP/snp_ref.cgi). Among these SNPs, 30 were 
located in the 3'UTR, of which 4 (rs2229360, rs58582188, 
rs9746 and rs1058240) exhibited a MAF of >0.05. The only 

SNP with putative miRNA binding sites revealed by SNP 
Function Prediction was rs1058240 (Table I). As presented in 
Table I, rs1058240 has three potential mRNA binding sites, 
including hsa‑miR‑1299, hsa‑miR‑182 and hsa‑miR‑95. We 
listed the genotype frequencies of 3 SNPs among different 
populations. rs58582188 was excluded, as it was not found in 
the database (Table II). We calculated the pairwise LD values 
of all the SNPs in the GATA3 gene with a MAF of >0.05 and 
selected the SNPs not in LD (r2<0.8) to plot LD maps with 
the online SNP Function Prediction bioinformatics tool. The 
color of each SNP spot changing from red to white reflects the 
decrease in its D' value (Fig. 1).

GATA3 mRNA expression by genotype in lymphoblastoid 
cell lines. For the mRNA expression of the GATA3 gene, 
we used the available HapMap‑cDNA expression database 
for the correlation analysis of the GATA3 genotype and 
mRNA expression level in Epstein‑Barr virus‑transformed 
lymphoblastoid cell lines from 270 HapMap individuals. For 

Table I. Selected SNPs of 3'UTR and putative miRNA binding 
sites.

			   Putative miRNA
SNPs	 Alleles	 MAF	 binding sites

rs2229360	 C/T	 0.0845	 NA
rs58582188	 -/A/T	 0.0964	 NA
rs9746	 A/G	 0.1915	 NA
rs1058240	 A/G	 0.1488	 hsa-miR-1299,
			   hsa-miR-182, hsa-miR-95

SNP, single‑nucleotide polymorphism; 3'UTR, 3'untranslated region; 
MAF, minor allele frequency; NA, not available.

Table II. Frequency distributions of selected variables among 
different populations.

Genotypes	 European	 Asian	 African

rs2229360
  CC	 0.982	 0.453	 0.957
  CT	 0.018	 0.453	 0.043
  TT	 0.000	 0.093	 0.000
  T alleles	 0.009	 0.320	 0.022
rs9746
  AA	 0.726	 0.453	 0.699
  AG	 0.257	 0.453	 0.265
  GG	 0.018	 0.093	 0.035
  G alleles	 0.0146	 0.320	 0.168
rs1058240
  AA	 0.619	 1.000	 0.584
  AG	 0.336	 0.000	 0.363
  GG	 0.044	 0.000	 0.053
  G alleles	 0.212	 0.000	 0.235
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rs2229360, 268 cell lines with available values were collected. 
A total of 6 (2.2%) cell lines had the TT genotype, 42 (15.7%) 
had the TC genotype and 220 (82.1%) had the CC genotype. 

After excluding one cell line with unavailable values for 
rs1058240, 5 (1.9%) cell lines had the GG genotype, 62 (23.0%) 
had the GA genotype and 202 (75.1%) had the AA genotype. 
The GATA3 mRNA expression levels of the cell lines with 
rs2229360 and rs1058240 are illustrated in Fig. 2. There was 
no significant difference in GATA3 mRNA expression among 
the cell lines carrying rs2229360 variants (P=0.6012; Fig. 2A). 
The AA genotype of rs1058240 exhibited a significantly higher 
GATA3 mRNA expression level compared to the GG and GA 
genotypes (P=2.36E‑07; Fig. 2B).

Discussion

The zinc finger transcription factor GATA3 was first identi-
fied in the early 1990s and is considered to be a marker of 
luminal breast cancers. GATA3 was confirmed to be neces-
sary for the differentiation and maintenance of the luminal 
epithelium in the adult mammary gland (10). Usary et al (21) 
demonstrated that mutations in the second zinc finger may 
affect DNA binding, indicating its crucial role in the develop-
ment and progression of breast cancer. GATA3 was identified 
as one of the most significantly mutated genes in breast cancer 
by whole‑exome sequencing and GATA3 gene mutations 
were identified in 4 patients with luminal tumors, including 
3 previously unknown frameshift mutations near the 3'‑end 
of the coding sequence  (22). GATA3 mutations in breast 
cancer may be associated with loss of DNA binding, aberrant 
nuclear localization, decrease in transactivational activity and 
alterations in invasiveness, but not cell proliferation (23). It is 
well known that miRNAs may function as tumor suppressors 
and oncogenes through interactions with the 3'UTR of their 
mRNA targets and may control the target‑gene expression 
post‑transcriptionally (16). For example, GATA3 may promote 
differentiation, suppress metastasis and alter the tumor 
microenvironment in breast cancer by inducing miR‑29b 

Figure 1. Linkage disequilibrium plot of the GATA3 region using SNP Function Prediction (FuncPred). The color of each SNP spot reflects its D' value, which 
changes from red to white as the D' value decreases. SNP, single‑nucleotide polymorphism; MAF, minor allele frequency.

Figure 2. Genotype‑phenotype association analysis of GATA3 variants. 
(A)  rs2229360 and (B)  rs1058240 mRNA expression in Epstein‑Barr 
virus‑transformed lymphoblastoid cell lines from the HapMap database.
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  B
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expression (17). It was also demonstrated that miR‑30c was 
transcriptionally regulated by GATA3 in breast tumors (24). 
However, the roles of genetic variants in GATA3 gene 3'UTR 
and its post‑transcriptional regulation has not been fully 
elucidated. Our data demonstrated that rs1058240 located in 
the GATA3 3'UTR displays 3 putative miRNA binding sites 
by using bioinformatics analysis; this SNP is significantly 
associated with the mRNA expression level, suggesting it may 
be partly involved in GATA3 post‑transcriptional regulation. 
Our findings may enable a better understanding of the roles 
miRNA variants in GATA3 3'UTR play in its mRNA expres-
sion and open up novel possibilities for therapeutic intervention 
in breast cancer.

In conclusion, our results indicated the vital role of GATA3 
variants in 3'UTR in the post‑transcriptional regulation of 
mRNA expression. However, the association of the regulation 
of GATA3 transcription with variations in the 3'UTR requires 
further validation to facilitate the development of novel thera-
peutic strategies.
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