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Abstract. Schizophrenia (SCZ) is a severe complex psychi-
atric disorder that generates problems for the associated family 
and society and causes disability with regards to work for 
patients. The aim of the present study was to assess the contri-
bution of 10 genetic polymorphisms to SCZ susceptibility. 
Meta-analyses were conducted using the data without a limita-
tion for time or language. A total of 27 studies with 7 genes 
and 10 polymorphisms were selected for the meta-analyses. 
Two polymorphisms were found to be significantly associ-
ated with SCZ. SNAP25 rs3746544 was shown to increase 
the SCZ risk by 18% [P=0.01; odds ratio (OR), 1.18; 95% 
confidence interval (CI), 1.05-1.34] and GRIK3 rs6691840 
was found to increase the risk by 30% (P=0.008; OR, 1.30; 
95% CI, 1.07‑1.58). Significant results were found under the 
dominant (P=0.001; OR, 1.36; 95% CI, 1.13-1.65) and additive 
(P=0.02; OR, 1.45; 95% CI, 1.06-1.98) model for the SNAP25 
rs3746544 polymorphism and under the additive model for 
the GRIK3 rs6691840 polymorphism (P=0.03; OR, 1.73; 
95% CI, 1.04‑2.85). There were no significant results observed 
for the other eight polymorphisms, which were CCKAR 
rs1800857, CHRNA7 rs904952, CHRNA7 rs6494223, CHRNA7 
rs2337506, DBH Ins>Del, FEZ1 rs559668, FEZ1 rs597570 and 
GCLM rs2301022. In conclusion, the present meta-analyses 
indicated that the SNAP25 rs3746544 and GRIK3 rs6691840 

polymorphisms were risk factors of SCZ, which may provide 
valuable information for the clinical diagnosis of SCZ.

Introduction

Schizophrenia (SCZ) is a common severe psychiatric 
disorder that affects <1% of the population. SCZ patients lose 
the ability to work or interact socially (1) and require assis-
tance from the government (2). SCZ is a complex disorder. 
Environment and genetic factors play significant roles in 
SCZ (3-5). Environmental factors, including redox imbal-
ance (4), inflammation (6) or obstetrical complications (7), 
have been reported to be associated with SCZ. Family, twin 
and adoption studies have shown that the genetic compo-
nents increased the risk of SCZ (8,9). The lifetime risk for 
twins was >40%, which was much higher compared to 6.5% 
in first‑degree relatives (10) and 1% in the general popula-
tion (9). Multiple polygenic components have been shown 
to contribute to the risk of SCZ (11). In addition, epigenetic 
modification, such as DNA methylation, indicated that aber-
rant gene methylation may also influence the development of 
SCZ (12,13).

Dysfunction of the dopaminergic system has been 
accepted as an associated factor for SCZ (14). CCKAR 
encodes cholecystokinin type A receptor (CCKAR), which 
is a receptor of CCK. CCK can regulate the release of 
dopamine and dopamine-related behaviors (15). The activa-
tion of CCKAR in caudal nucleus accumbens can stimulate 
dopamine release, and therefore influence the process of 
SCZ (16,17). DBH encodes an enzyme that can catalyzes 
the conversion of dopamine to norepinephrine (18,19). The 
genetic association between DBH and SCZ has been shown 
in a previous study (20). CHRNA7 is located on chromo-
some 15q13-q14, which is a susceptible SCZ locus. A low 
expression of CHRNA7 was found in postmortem human 
hippocampus, reticular thalamic nucleus and frontal cortex 
of SCZ cases (21-23). The association between CHRNA7 
and SCZ has been found in numerous studies (24-26). FEZ1 
encodes fasciculation and elongation protein ζ-1 (FEZ1), 
which participates in the neurite extension machinery 
through an interaction with disrupted in schizophrenia 1, a 
candidate SCZ gene (27‑29). A significant association has 
been demonstrated between FEZ1 and SCZ (30). A number of 
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studies have indicated that oxidative stress is a risk factor for 
SCZ (31‑33). Glutathione (GSH) is one of the key redox regu-
lators that can protect the nervous tissue from reactive oxygen 
species (34). GCLM encodes glutamate-cysteine ligase modi-
fier (GCLM), which is a key enzyme of the GSH pathway 
that may be associated with SCZ (35). Glutamate receptors 
may be involved in the pathophysiology of SCZ (36). GRIK3 
encodes a protein that is a member of the glutamate receptors. 
A higher expression of GRIK3 has been found in SCZ cases 
compared to controls (37). SNAP25 encodes a protein that is 
implicated in the docking priming and fusion of the vesicles, 
which has been shown to be associated with SCZ (38,39).

Association studies between the genetic polymorphisms of 
the aforementioned 7 genes and SCZ have been performed in 
different populations (Table I). The discrepancies in the asso-
ciation studies of these genetic loci may be due to the different 
ethnic background and insufficient power. Meta‑analysis can 
enhance the power by combining data from different individual 
studies and can draw a more comprehensive conclusion than a 
single association study. The aim of the present meta-analysis 
was to assess the associations between the 7 genes and the 
SCZ risk.

Materials and methods

Systemic search. A systemic search was performed using 
the PubMed database. The following keywords were used to 
identify the available studies: Schizophrenia, polymorphism 
and association. The studies included in the meta-analysis 
met certain criteria: i) The study was an original human 
case-control study on the association between gene polymor-
phisms and SCZ; ii) the study had sufficient information to 
obtain the odds ratios (ORs) and 95% confidence intervals 

(CIs); iii) genotype distribution of each polymorphism in 
the controls met the Hardy‑Weinberg equilibrium (HWE); 
iv) each polymorphism contained more than three datasets 
from the studies; and v) there was no previous meta-analysis on 
the association between the selected polymorphism and SCZ. 
The following information was carefully extracted or calcu-
lated from each selected study: Gene name, polymorphism, 
first author's name, year of publication, country, ethnicity, the 
numbers of cases and controls, HWE for controls, results of 
the association in certain polymorphism with SCZ and the 
power of individuals.

Statistical analysis. The Arlequin program was used to test 
HWE (40). The power of each study was calculated by the 
Power and Sample Size Calculation program. The statistical 
heterogeneity across the studies included in the meta-analysis 
was assessed by Cochran's Q statistic and I2 test (41) to decide 
the type of analysis. The fixed‑effects model was used for 
the analysis with an I2<50%, whereas the random-effects 
model was used for the analysis with an I2>50%. In addi-
tion to the allelic analysis model, the meta-analyses were 
also performed under the dominant, recessive and addi-
tive models. The statistical analyses of the meta-analyses 
were performed by Review Manager 5 (42). Funnel plots 
were generated to observe the potential publication bias. 

Results

Meta-analysis and associations. As shown in Fig. 1, a search 
in the online PudMed database was performed. A total of 
3,456 studies were retrieved by using the aforementioned 
keywords. Among them, 1,774 studies were removed that had 
a previous meta-analysis, and 1,446 studies with a limited 

Figure 1. Flowchart of selection process in the meta-analyses. SCZ, schizophrenia.
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number of studies on the same gene were subsequently 
excluded. Another 209 studies were excluded as they did not 
meet the included criteria. In total, 27 studies of 10 polymor-
phisms for 7 genes were involved in the meta-analyses. All 
the genotype distributions in the involved studies met HWE 
(Table I).

No significant heterogeneity was observed between SCZ 
and rs1800857 of CCKAR (I2=31%), rs904952 (I2=6%) and 
rs2337506 (I2=0%) of CHRNA7, rs559668 (I2=0%) and 
rs597570 (I2=0%) of FEZ1, rs3746544 of SNAP25 (I2=0%), 
rs6691840 of GRIK3 (I2=16%), rs2301022 of GCLM (I2=53%). 

Significant heterogeneity was found in the meta‑analyses 
for rs6494223 of CHRNA7 (I2=84%) and DBH Ins>Del 
(I2=61%) with SCZ. No publication bias was found in all the 
meta-analyses due to the symmetrical shape of the funnel 
plots (Fig. 3).

The meta‑analyses demonstrated a significant association 
between rs6691840 of GRIK3 and SCZ at the allelic level 
(P=0.008; OR, 1.30; 95% CI, 1.07-1.58; Table II and Fig. 2) 
and additive model (P=0.03; OR, 1.73; 95% CI, 1.04-2.85; 
Table II; Fig. 2). A significant association was also found in 
rs3746544 of SNAP25 in the allelic analysis (P=0.01; OR, 1.18; 

Table I. Characteristics of the case-control studies in the current meta-analyses.

Gene Polymorphism Authors Year Country Ethnicity Cases/controls HWE Result Power (Refs.)

CCK rs1800857 Zheng et al 2012 China Asians 508/519 NA S 0.416 (50)
  Minato et al 2007 Japan Asians 290/290 Yes NS 0.321 (51)
  Sanjuan et al 2004 Spain Europeans 105/93 Yes NS 0.103 (52)
  Tachikawa et al 2001 Japan Asians 87/100 Yes NS 0.138 (53)
CHRNA7 rs904952 Bakanidze et al 2013 German Europeans 224/224 Yes S 0.275 (54)
  Bakanidze et al 2013 Georgian Europeans 50/51 Yes S 0.099 (54)
  Cabranes et al 2013 Spain Europeans 152/95 Yes NS 0.166 (55)
  Ancin et al 2010 Spain Europeans 508/793 Yes NS 0.618 (56)
  Iwata et al 2007 China Asians 188/188 Yes NS 0.363 (57)
 rs6494223 Cabranes et al 2013 Spain Europeans 153/95 Yes NS 0.161 (55)
  Joo et al 2010 Korea Asians 254/349 NA S 0.426 (58)
  Ancin et al 2010 Spain Europeans 510/793 Yes NS 0.613 (56)
 rs2337506 Bakanidze et al 2013 German  Europeans 224/222 Yes NS 0.189 (54)
  Joo et al 2010 Korea Asians 254/349 NA NS 0.365 (58)
  Iwata et al 2007 China Asians 188/186 Yes NS 0.206 (57)
DBH Ins>Del Hui et al 2013 China Asians 195/304 Yes NS 0.280 (59)
  Zhou et al 2013 China Asians 747/625 Yes S 0.655 (60)
  Yamamoto et al 2003 Canada Europeans 106/120 Yes NS 0.162 (61)
FEZ1 rs559668 Koga et al 2007 Japan Asians 1,913/1,911 Yes NS 0.688 (62)
  Hodgkinson et al 2007 USA Europeans 159/173 Yes NS 0.193 (63)
  Yamada et al 2004 Japan Asians 356/359 Yes NS 0.164 (30)
 rs597570 Koga et al 2007 Japan Asians 1,913/1,911 Yes NS 0.697 (62)
  Hodgkinson et al 2007 USA Europeans 159/170 Yes NS 0.172 (63)
  Yamada et al 2004 Japan Asians 360/359 Yes NS 0.166 (30)
SNAP25 rs3746544 Lochman et al 2013 Czech Europeans 183/193 Yes S 0.212 (47)
  Carroll et al 2009 British Isles Europeans 650/712 Yes S 0.615 (48)
  Kawashima et al 2008 Japan Asians 372/367 NA S 0.340 (49)
GRIK3 rs6691840 Kilic et al 2010 Turkey Europeans 256/242 Yes S 0.240 (64)
  Ahmad et al 2009 India Asians 100/100 Yes NS 0.138 (65)
  Lai et al 2005 Taiwan Asians 160/160 Yes NS 0.086 (66)
  Begni et al 2002 Italy Europeans 99/116 Yes S 0.136 (67)
GCLM rs2301022 Hanzawa et al 2011 Japan Asians 358/359 Yes NS 0.769 (68)
  Ma et al 2010 China Asians 427/415 NA S 0.334 (69)
  Kishi et al 2008 Japan Asians 742/817 Yes NS 0.344 (70)
  Matsuzawa et al 2009 Japan Asians 214/220 Yes NS 0.623 (71)

HWE, Hardy‑Weinberg equilibrium; NA, not applicable; S, significant; NS, not significant.
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95% CI, 1.05-1.34; Table II and Fig. 2), and under the domi-
nant (P=0.001; OR, 1.36; 95% CI, 1.13-1.65; Table II; Fig. 2) 
and additive models (P=0.02; OR, 1.45; 95% CI, 1.06-1.98; 
Table II; Fig. 2). No significant association was demonstrated 
in the meta-analyses of the other polymorphisms (P>0.05; 
Table II).

Power analyses. All the power analyses in the meta-analyses 
were tested under a moderate risk of SCZ (OR, 1.2) (Tables I 
and II). The results showed that the power of the meta-analyses 
was much higher compared to the previous studies (Tables I 
and II). The power of the majority of the meta-analyses was 
sufficient (Power>0.730; Table II), except for the meta-analysis 
of rs6691840 (Power=0.471).

Discussion

The present meta-analyses performed a systemic overview of 
the association between gene polymorphisms and SCZ. A total 
of 7 selected genes (CCKAR, CHRNA7, DBH, FEZ1, SNAP25, 
GRIK3 and GCLM ) and 10 polymorphisms (rs1800857, 
rs904952 rs6494223, rs2337506, DBH Ins>Del, rs559668, 

rs597570, rs3746544, rs6691840 and rs2301022) were used to 
identify the association between the genetic factors and SCZ. 
rs6691840 was demonstrated to be a risk factor for SCZ on the 
allelic level. rs3746544 was found to increase the SCZ risk by 
18% on the allelic level, 34% under the dominant model and 45% 
under the additive model. The meta-analyses could not identify 
the significant associations between the remaining polymor-
phisms and SCZ (Table II). To the best of our knowledge, this 
is the first meta‑analyses for all the 10 polymorphisms.

Glutamate receptors in the frontal cortex play a signifi-
cant role in the memory system that may be associated with 
SCZ (43). GRIK3 encodes a key subtype of glutamate receptors 
that is expressed with a higher level in SCZ cases compared 
to controls (37). The GRIK3 rs6691840 polymorphism can 
affect the primary structure of human ionotropic glutamate by 
changing serine to alanine (Ala) at position 310 in extracellular 
N‑terminus (44,45). Previous case‑control studies showed that 
rs6691840-Ala may increase the risk of SCZ in Turkish, Italian 
and Indian populations. By contrast, there was no association 
between rs6691840 and SCZ in the Chinese population. The 
present meta-analysis of GRIK3 rs6691840 combined the data 
from the four studies and demonstrated that rs6691840-Ala 

Figure 2. Forest plots of SNAP25 rs3746544 and GRIK3 rs6691840 polymorphisms with schizophrenia. CI, confidence interval.
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increased the SCZ risk by 30% (P=0.008). There was no 
ethnic difference evaluated in rs6691840 [fixation index 
(Fst), 0.053; HapMap‑CEU, 0.757; HapMap‑HCB, 0.952; 
HapMap‑GIH, 0.784] and low heterogeneity was also observed 

(allelic level, I2=16%; additive model, I2=0%). Notably, the 
power of the meta-analysis was relatively small (Power=0.471), 
indicating that larger scale replication studies are required to 
confirm the strong association in the present meta‑analysis.

Figure 3. Funnel plots of 10 relative polymorphisms with schizophrenia. SE, standard error; OR, odds ratio.
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Soluble N‑ethylmaleimide‑sensitive factor attachments 
receptor (SNARE) is involved with the pathophysiology of 
SCZ, as it is associated with the neurotransmitter exocytotic 
machinery (46). SNAP25 encodes a protein that is a key part 
of the SNARE complex. SNAP25 can deliver neurotrans-
mitter-containing vesicles to the inner plasma membrane. 
Human and animal studies indicate that SNAP25 is a risk 
factor for mental illness, such as SCZ (38,39). For the SNAP25 

rs3746544 polymorphism, there have been two previous studies 
with positive results (47,48) in Europeans (Czechs and British 
populations) and one negative result (49) in Asians (Japanese). 
The present meta-analysis of rs3746544 found a strong asso-
ciation with SCZ on the allelic level (P=0.006), and under the 
dominant (P=0.001) and additive models (P=0.02). The power 
was sufficient for the allelic level (Power=0.850) and domi-
nant model (Power=0.759), and no significant heterogeneity 

Table II. Meta-analyses of 10 relative polymorphisms with schizophrenia.

Genetic model Polymorphism Cases/controls S OR (95% CI) P-value I2 (%) Power

Overall CCKAR rs1800857 990/1,002 4 0.93 (0.80-1.07) 0.29 31 0.736
 CHRNA7 rs904952 1122/1351 5 0.97 (0.87-1.09) 0.63 6 0.891
 CHRNA7 rs6494223 916/2055 3 1.10 (0.80-1.53) 0.56 84 0.881
 CHRNA7 rs2337506 665/1304 3 1.00 (0.86-1.18) 0.95 0 0.737
 DBH Ins>Del 1048/1049 3 1.16 (0.92-1.46) 0.20 61 0.832
 FEZ1 rs559668 2428/2443 3 0.96 (0.84-1.09) 0.54 0 0.827
 FEZ1 rs597570 2432/2440 3 0.98 (0.86-1.11) 0.73 0 0.819
 SNAP25 rs3746544 1205/1272 3 1.18 (1.05-1.34) 0.006a 0 0.850
 GRIK3 rs6691840 615/618 4 1.30 (1.07-1.58) 0.008a 16 0.471
 GCLM rs2301022 1741/1811 4 1.02 (0.86-1.20) 0.83 53 0.921
Dominant CCKAR rs1800857 482/483 3 1.03 (0.79-1.33) 0.85 0 0.514
 CHRNA7 rs904952 1122/1351 5 1.07 (0.89-1.28) 0.50 0 0.800
 CHRNA7 rs6494223 663/888 2 0.90 (0.73-1.11) 0.33 0 0.664
 CHRNA7 rs2337506 412/408 2 1.17 (0.81-1.68) 0.40 0 0.362
 DBH Ins>Del 1048/1049 3 1.24 (0.87-1.77) 0.23 63 0.798
 FEZ1 rs559668 2428/2443 3 0.94 (0.81-1.08) 0.38 0 0.960
 FEZ1 rs597570 2432/2440 3 0.94 (0.81-1.09) 0.40 0 0.958
 SNAP25 rs3746544 833/905 2 1.36 (1.13-1.65) 0.001a 0 0.759
 GRIK3 rs6691840 615/618 4 1.68 (0.86-3.28) 0.13 84 0.593
 GCLM rs2301022 1314/1396 3 0.91(0.79-1.07) 0.25 0 0.917
Recessive CCKAR rs1800857 482/483 3 1.20 (0.82-1.78) 0.35 0 0.260
 CHRNA7 rs904952 1122/1351 5 0.71 (0.46-1.11) 0.13 68 0.795
 CHRNA7 rs6494223 663/888 2 1.00 (0.75-1.33) 0.99 0 0.459
 CHRNA7 rs2337506 412/408 2 0.95 (0.68-1.34) 0.78 0 0.426
 DBH Ins>Del 1048/1049 3 1.11 (0.89-1.38) 0.36 0 0.645
 FEZ1 rs559668 2428/2443 3 1.13 (0.73-1.75) 0.57 47 0.260
 FEZ1 rs597570 2432/2440 3 1.40 (0.89-2.21) 0.15 39 0.188
 SNAP25 rs3746544 833/905 2 1.09 (0.60-1.98) 0.78 66 0.403
 GRIK3 rs6691840 615/618 4 1.14 (0.50-2.59) 0.75 57 0.197
 GCLM rs2301022 1314/1396 3 0.92 (0.67-1.26) 0.60 0 0.407
Additive CCKAR rs1800857 297/288 3 1.17 (0.77-1.77) 0.47 0 0.242
 CHRNA7 rs904952 537/700 5 0.91 (0.72-1.16) 0.44 45 0.612
 CHRNA7 rs6494223 341/442 2 0.94 (0.68-1.28) 0.68 0 0.387
 CHRNA7 rs2337506 241/251 2 1.18 (0.67-2.11) 0.56 0 0.291
 DBH Ins>Del 543/567 3 1.20 (0.94-1.54) 0.15 48 0.537
 FEZ1 rs559668 2010/1990 3 1.15(0.74-1.87) 0.54 45 0.222
 FEZ1 rs597570 2016/1985 3 1.38 (0.87-2.18) 0.17 39 0.188
 SNAP25 rs3746544 425/512 2 1.45 (1.06-1.98) 0.02a 22 0.457
 GRIK3 rs6691840 391/432 4 1.73 (1.04-2.85) 0.03a 0 0.186
 GCLM rs2301022 840/869 3 0.89 (0.65-1.22) 0.47 0 0.394

aP≤0.05. S, number of studies; OR, odds ratio; CI, confidence interval.
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was found on the allelic levels and under the dominant model 
(I2=0%). Due to the limited study number, more studies are 
required to confirm the positive findings in other ethnic popula-
tions, including Asian and African populations.

The present meta‑analyses did not find a significant asso-
ciation of other polymorphisms with SCZ (P>0.05; Table II). 
A low heterogeneity and ethnic difference were found in the 
meta-analyses for rs904952 of CHRNA7 (I2=6%, Fst=0.06), 
rs559668 (I2=0%, Fst=0.0054) and rs597570 (I2=0%, 
Fst=0.0059) of FEZ1. This indicated the stability of the 
meta-analyses. Additionally, although a high heterogeneity was 
found for the rs6494223 of CHRNA7 (I2=84%) and rs2301022 
of GCLM (I2=53%) with SCZ, a low ethnic difference was 
observed (rs6494223, Fst=0.018; rs2301022, Fst=0.010). No 
significant heterogeneity was found in the two single‑nucleotide 
polymorphisms (rs1800857, I2=31%; rs2337506, I2=0%) and 
no publication bias was found according to the symmetrical 
shapes in the funnel plots.

There are certain limitations of the study that require 
clarification. Firstly, the amount of studies was limited. Thus, 
a subgroup analyses by ethnicity could not be performed, and 
further studies in different ethnic background are required. 
Secondly, publication bias may exist, as the studies with a 
negative result are harder to publish than those with a positive 
result. Thirdly, there are numerous polymorphisms for each 
gene (CCKAR, n=1,049; CHRNA7, n=11,139; DBH, n=4,673; 
FEZ1, n=4,133; SNAP25, n=11,694; GRIK3, n=18,554; 
and GCLM, n=2,348). The meta-analyses only focused on 
10 polymorphisms among those 7 genes, which may not fully 
represent the function of the genes. Future studies with more 
polymorphisms are required. Fourthly, SCZ is a complex 
disorder that a number of factors may participate in. Different 
statuses of SCZ patients, such as redox imbalance and inflam-
mation, may influence the result. More genes with a larger 
number of polymorphisms should be considered, although 
7 genes were analyzed that participate in several mechanisms, 
including the dopamine system, neurite extension machinery, 
oxidative stress and the GSH pathway.

In conclusion, the present meta-analyses indicated that the 
SNAP25 rs374654 and GRIK3 rs6691840 polymorphisms are 
risk factors for SCZ. Future studies with larger scale sample 
sizes and different ethnicities are required to confirm the 
present findings.
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