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Abstract. Hypertension is a significant cause of morbidity 
and mortality worldwide. It is defined as systolic and diastolic 
blood pressures (SBP/DBP) >140 and 90 mmHg, respectively. 
Individuals with an SBP between 120 and 139, or DBP between 
80  and 89  mmHg, are said to exhibit pre‑hypertension. 
Hypertension can have primary or secondary causes. Primary 
or essential hypertension is a multifactorial disease caused by 
interacting environmental and polygenic factors. Secondary 
causes are renovascular hypertension, renal disease, endocrine 
disorders and other medical conditions. The aim of the present 
review article was to examine the different animal models that 
have been generated for studying the molecular and physiolog-
ical mechanisms underlying hypertension. Their advantages, 
disadvantages and limitations will be discussed.
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1. Introduction

Hypertension is one of the most important risk factors for the 
development of cardiovascular disease and is responsible for 
>50% of the 17 million deaths per year worldwide (1). It is 
a heterogeneous condition with a number of etiologies and 
multiple, interacting genetic and environmental factors (2). Its 
incidence varies with age, plasma renin activity and sodium 
sensitivity  (3). The use of pre‑clinical animal models has 
significantly increased our understanding of disease processes, 
as these permit the control of the different contributing factors. 
However, no single system is ideal, as there are species differ-
ences and other limitations of these model systems  (4,5). 
Species, including mice, have been popular for the study of 
cardiometabolic disorders due to their amenability to genetic 
and pharmacological modification (6‑12). It is not the aim of 
the present review to provide an exhaustive list of the different 
models, but to discuss historically important model systems 
whose use has significantly advanced our understanding of 
hypertension.

2. Overview of different animal models

Animal models of hypertension can be categorised 
according to aetiology  (13)  (Fig.  1). Renal diseases, 
including renal arterial stenosis (RAS), are major causes 
of secondary hypertension. RAS has been modelled 
by the 2 kidneys‑1 clip hypertension model (2K‑1C), 1 
kidney‑1 clip hypertension model (1K‑1C) and 2 kidney‑2 
clip hypertension model (2K‑2C). Other systems have 
been devised to examine the pathophysiology of renal 
parenchymal hypertension, renal ischemia and perinephric 
fibrosis. A deoxycorticosterone acetate (DOCA)‑induced 
model imitates the effects of mineralocorticoid‑ and 
glucocorticoid‑induced hypertension. Pharmacological 
approaches using a nitric oxide synthase (NOS) inhibitor 
or by activating the renin‑angiotensin‑aldosterone‑system 
(RAAS), or introduction of environmental stresses, 
including stress, cold temperature and diet, have also been 
performed to induce hypertension. Essential hypertension 
has been investigated using spontaneously hypertensive 
rats (SHRs), Dahl salt‑sensitive and other rat strains (14). 
Other molecular models, transgenic strains, consomic and 
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congenic strains, combined with gene knockout techniques 
have been used to examine the mechanistic basis of essential 
hypertension.

3. Advantages and disadvantages of these model systems

Initial experiments for the investigation of hypertension were 
performed in dogs. Such experiments included the renovascular 
models developed by Goldblatt et al (15) in 1934. Subsequent 
models using rats, rabbits, sheep and cats were developed (16). 
Pigs have also been used, in particular, the Yucatan model for 
the study of DOCA‑induced hypertension (17).

Of the different species, rat has been a popular model 
as a result of the availability of different inbred strains and 
characteristics, including the SHR, Dahl salt‑sensitive rats, 
New Zealand and Milan strains (18). Numerous justifications 
for using rats to model hypertension exist. Firstly, its genome 
has been completely mapped, with a 99% sequence homology 
to humans (19). Secondly, the pathogenesis of hypertension 
in rats and humans are largely similar in terms of arterial 
pressure development from childbirth, response to environ-
mental stressors, haemodynamic factors (including vascular 
resistance), mechanisms regulating arteriolar and venous 
constriction, neural modulation (including sympathetic nerve 
activity) and renal vascular dynamics (including perfusion 
parameters), as well as humoral influences by RAAS and 
NOS (20). The advantages are that they are low cost, with 
wide availability and easy to handle, maintain and breed. 
However, these models also have their limitations. Firstly, the 
identical genotype may not induce the same phenotype in all 
animals (21) due to contributions from numerous genes and 
the additional environmental influences (22,23). Secondly, the 
same gene mutations and deletion observed in rats may not 
induce to the identical phenotypic effects in humans (24).

Larger animals have closer anatomical, physiological and 
haemodynamic properties to humans when compared with 
small animals, including rats and mice, making them particu-
larly suitable for the study of flow characteristics  (25,26). 
However, the major disadvantage is the high costs required for 
their maintenance. Additionally, the domestication of dogs has 
led to their decreasing use for research (27).

4. Renal models

Renovascular hypertension. The kidney‑clip models 
mimicking renal arterial stenosis were first performed in 
dogs  (15), which have been gradually replaced by smaller 
animals. In the 2K‑1C model, one of the two renal arteries is 
constricted by a clip (28). Initially, decreased renal arterial 
pressure in the clipped kidney leads to increased plasma renin 
activity (PRA) with higher circulating levels of renin and 
aldosterone (29). This is followed by the return of the PRA 
to a near normal level, and finally by chronically elevated 
PRA (30). Patients with renovascular hypertension exhibit 
similar patterns of PRA  (31). The underlying mechanism 
involves RAAS activation, increased renin production and 
subsequent angiotensin (Ang)‑I release and conversion by 
Ang converting enzyme (ACE) to Ang‑II. The net effects are 
further vasoconstriction and increased production of aldoste-
rone level, which together lead to water and salt retention, and 

an increased blood pressure. In addition, the model also reveals 
increased sympathetic nerve activity that further drives renin 
production (32). The 2K‑2C model, where both renal arteries 
are constricted, resemble bilateral renal arterial stenosis in 
humans and the mechanism involved is similar to the 2K‑1C 
model, but with a more severe phenotype (33).

In the 1K‑1C model, unilateral nephrectomy is performed 
with a constricting clip on the renal artery of remaining 
kidney (34). This resembles patients who suffer from RAS of 
the solitary kidney (35). Similar to the previous renal models, 
initial elevation of blood pressure is due to RAAS activation. 
However, because of the absence of a functional kidney, no 
compensatory rise in sodium and water excretion is observed. 
Consequently, more fluid is retained inside the body. In other 
words, this is more volume‑ rather than RAAS‑dependent. 
This is consistent with the experimental findings that ACE 
inhibition was unable to prevent chronic hypertension in renal 
artery stenosis of a solitary kidney, however, was successful in 
doing so where a normal functioning kidney is present (36).

Renal parenchymal hypertension. Renal parenchymal hyper-
tension is the commonest cause of secondary hypertension and 
is responsible for up to 5% of all cases (37). Subtotal nephrec-
tomy ablation, in which up to 5/6 of the kidney is removed, 
has been performed to induce chronic renal disease  (38). 
This model demonstrates glomerular, tubular and interstitial 
injury, loss of nephrons and the development of hypertension. 
It can be combined with the introduction of excess salt into 
the diet to increase the severity and speed of onset of this 
hypertension. The mechanism is dependent on the RAAS and 
the hypertension can be reduced by ACE inhibition. Renal 
ischemia has been produced by microembolisation, which led 
to the development of nephrosclerosis and hypertension (39). 
Perinephric fibrosis has been induced by wrapping the kidney 
in cellophane, mimicking fibrosis that occurs after kidney 
transplantation (40).

5. Pharmacological models

Mineralocorticoids or their synthetic derivatives, including 
DOCA, are used with sodium chloride in unilateral nephrect-
omised rats to induce hypertension (41,42). Renin is suppressed 
and fluid reabsorption is increased, thereby producing a low 
renin‑volume overload model of hypertension (43). Using this 
model, key sodium‑independent mechanisms for mediating 
hypertension, including upregulation of Ang‑II receptors in 
the central nervous system (44), elevated vasopressin (45), 
increased oxidative stress (46) and endothelin (47), have been 
identified. Aside from elucidating the molecular mechanisms 
underlying renal hypertension, it provides a useful platform 
for investigating the natural history of disease, including 
any complications, such as glomerulosclerosis, proteinuria, 
impaired endothelium‑dependent relaxation of the vascula-
ture and cardiac hypertrophy can be investigated (42). In the 
DOCA‑hypertensive Yucatan miniature swine model, excess 
dietary salt is not required for sustaining hypertension due 
to enhanced SNS activity at baseline, as evidenced by the 
increased plasma norepinephrine level (48). Glucocorticoids 
can also be used to induce hypertension (49). Although hyper-
tension is produced via RAAS activation, this approach is 
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less effective than the DOCA‑salt method. An alternative is 
chronic infusion of RAAS components, including Ang‑II (50).

Nitric oxide (NO), a potent vasodilator derived from the 
intact endothelium, is produced by NOS. This production is 
triggered by vasoactive messengers, including acetylcho-
line  (51). A NO‑deficient model was produced by chronic 
infusion of N‑nitro‑L‑arginine methyl ester (L‑NAME), a 
NOS inhibitor (52). A low dose produced a volume‑dependent 
increase in blood pressure predominantly due to renal vasocon-
striction and decreased glomerular filtration (53). A high dose 
led to both salt‑ and volume‑independent hypertension since 
the mechanism is renal and systemic vasoconstriction (54).

6. Environmental models

Environmental stress, including separate or simultaneous 
introduction of flashing lights, loud noises and oscillating 
cages  (55‑57), or long‑term exposure to high salt, fat or 
sugar in the diet, can be used to induce hypertension (58). 
Extremes of temperature, particularly coldness, also induces 
a hypertensive phenotype, as observed in rats exposed to 5˚C 
for 3 weeks (59). In these animals, increases in plasma and 
urine catecholamines were observed (60). These findings are 
consistent with findings in humans, where those who work 
chronically in cold areas develop hypertension (61) and higher 
values of blood pressure recorded in winter compared with in 
the summer (62). Increased activity of the sympathetic nervous 
system and RAAS activation appear to be the common 
physiological mechanisms responsible for hypertension in the 
models described above (60,63,64).

7. Genetic models

Genetic factors are estimated to influence up to 50% of blood 
pressure variability in essential hypertension (65). The millen-
nium genome project for hypertension was initiated in 2000 
to identify genetic variants that predispose individuals to 
hypertension. This has involved a combination of techniques, 
including a gene linkage approach using single nucleotide 
polymorphisms, microsatellite markers and systematic 
candidate gene analysis (66). In parallel with this has been 
the development of genetic models using different animal 

species, which have provided insights into the physiological 
mechanisms of hypertension. These can be categorised into 
inbreeding, consomic, congenic and subcongenic strains (18), 
which will be considered in turn.

8. Inbreeding

The inbreeding method involves sibling mating of hypertensive 
rats over several generations to produce strains with genetic 
homogeneity when compared with the reference control group.

Spontaneous hypertension models. SHR and stroke‑prone 
SHR strains closely simulate essential hypertension (20,67). 
Both development impaired endothelium‑dependent relax-
ation, cardiac hypertrophy and failure, as well as renal 
dysfunction, are involved (68). These represent normal renin, 
sodium‑independent models of hypertension (69). SHRs were 
produced by breeding brother Wistar rats with their sisters and 
selecting the offspring with the highest blood pressures (70). In 
SHRs, increases in systolic blood pressures to 180‑200 mmHg 
after 4 weeks of growth were observed, compared with the 
Wistar‑Kyoto rats (WKY) that remain normotensive. It is 
worthwhile to note that WKY strains are not inbred, and 
therefore there is substantial genetic heterogeneity between 
these strains and between colonies within each strain (71). 
Consequently, no specific genetic components are associated 
with hypertension in the control WKY group.

SHRs have been used to determine the genes responsible 
for hypertension, to evaluate complications of target organs and 
the screening potential pharmacological agents for treatment. 
In stroke‑prone SHRs, it was shown that dietary potas-
sium supplementation decreases the risk of cerebrovascular 
accidents, even when blood pressure was not lowered (72). 
At least three genetic loci have been implicated in the early 
development of hypertension, with an additional gene identi-
fied on chromosome 10 contributing to its maintenance with 
aging (73). The New Zealand hypertensive rats are similar to 
Japanese SHRs in developing spontaneous hypertension (74), 
as do the Milan (20) and Lyon (75,76) strains.

Salt‑sensitive hypertension models. Dahl salt‑sensitive (DS) 
rat strains are prone to hypertension following administration 

Figure 1. Different types of animal models for primary and secondary hypertension.
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of a low‑salt diet (0.4% NaCl), unlike Dahl salt‑resistant (DR) 
rat strains, which remain normotensive (77). DS strain rats fed 
with a high‑salt diet (8% NaCl) develop particularly severe 
hypertension (78). The reason is that the certain alleles at the 
genetic loci for ACE and guanylyl cyclase A, causing DS rats 
to have increased ACE and decreased atrial natriuretic factor 
(ANF, the ligand for guanylyl cyclase A) (79). The Sabra strain 
also demonstrates salt‑sensitive hypertension (80).

Other inbred models. The Fawn hooded hypertensive rats 
develop hypertension due to glomerular sclerosis, and there-
fore serve as a model for renal parenchymal disease  (81). 
Sprague‑Dawley rats, obese Zucker, Wistar fatty rats have 
been used to assess the effects of diet‑induced obesity on the 
development of hypertension (82).

9. Transgenic strains

Transgenic technology can be used to investigate the specific 
role of different genes in the regulation of blood pressure (83). 
Broadly, the approaches are generation of consomic and 
congenic strains, and gene knockout.

Congenic and consomic strains. A congenic strain refers to 
one in which a defined chromosome segment is introduced 
to another by backcrossing with appropriate selection (84). 
In the case of a consomic strain, the entire chromosome is 
transferred (85). For example, the mutant renin gene from 
mouse was transferred to rats, producing elevated Ang‑II 
levels and hypertension (86), which were prevented by ACE 
inhibition (87). Similarly, insertion of the human renin gene 
into mice also consistently demonstrated activation of genes 
involved in the RAAS (88,89).

Gene knockout. Gene targeting permits targeted disruption, 
including deletion, overexpression or subtle mutations, of a gene 
product. Conditional knockout with tissue‑ and time‑depen-
dent specificity is also possible, allowing investigation of the 
loss of a particular gene at specific time points or in particular 
organs. Gene knockout is often performed in mice because of 
the relative ease in introducing genetic mutations, and this has 
led to an increased understanding of different cardiovascular 
disorders with potential for translational application (90‑99). 
Knockout of the angiotensinogen gene provided protection 
in delaying the development of hypertension and increasing 
NO availability compared with wild‑type, thereby implicating 
the RAAS as being critical in blood pressure regulation (100). 
However, each group demonstrated similar extents of cardiac 
hypertrophy, suggesting RAAS‑independent mechanisms for 
this response. Knockout of genes encoding for endothelial 
NOS (101) and atrial natriuretic peptide develop hypertension, 
whereas Ang‑II type 1a receptor knockout rats demonstrate 
hypotension (102). The importance of the aldosterone pathway 
was shown in a mineralocorticoid receptor mutation conferring 
constitutive receptor activity led to early onset hyperten-
sion (103). Liddle syndrome, an autosomal dominant cause 
of pseudoaldosteronism, leading to human hypertension, was 
shown to involve a mutated epithelial sodium channel (104).

Certain limitations of genetic knockout models require 
addressing. Firstly, the expression of certain gene deletions 

may result in embryonic lethality so there is lack of time 
to study the pathogenesis; secondly, redundancy among 
isoforms causes phenotypic expression to be masked so 
sometimes double or triple gene knockout is required. It 
is also important to note that same gene deletion or over-
expression in animals may lead to different expression in 
phenotypes (24).

10. Concluding remarks

Different pharmacological, environmental and genetic 
models using different animal species have provided useful 
and valuable information on the aetiology, pathophysiology 
and complications of human cardiovascular and metabolic 
disorders, and a platform to examine the efficacy of phar-
macotherapy (105‑118). However, a major limitation of these 
experimental models is the anatomical differences between 
these animal species and humans (119). Although the common 
mechanism is RAAS activation across different species, 
species differences must be carefully taken into consideration 
to ensure the safety of newly developed pharmacological 
agents.
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