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Abstract. The causative agent of acquired immune deficiency 
syndrome (AIDS) is human immunodeficiency virus (HIV). 
Since its discovery before 30 years, a number of drugs known 
as highly active antiretroviral therapy have been developed to 
suppress the life cycle of the virus at different stages. With the 
current therapeutic approaches, ending AIDS means providing 
treatment to 35 million individuals living with HIV for the rest 
of their lives or until a cure is developed. Additionally, therapy 
is associated with various other challenges such as potential of 
drug resistance, toxicity and presence of latent viral reservoir. 
Therefore, it is imperative to search for treatments and to identify 
new therapeutic approaches against HIV infection to avoid daily 
intake of drugs. The aim of the current review was to summarize 
different therapeutic strategies against HIV infection, including 
stem cell therapy, RNA interference, CRISPR/Cas9 pathways, 
antibodies, intrabodies and nanotechnology. Silencing RNA 
against chemokine receptor 5 and other HIV RNAs have been 
tested and found to elicit homology‑based, post‑transcriptional 
silencing. The CRISPR/Cas9 is a gene editing technology that 
produces a double‑stranded nick in the virus DNA, which is 
repaired by the host machinery either by non‑homology end 
joining mechanism or via homology recombination leading 
to insertion, deletion mutation which further leads to frame 
shift mutation and non‑functional products. Intrabodies are 

intracellular‑expressed antibodies that are directed towards the 
targets inside the cell unlike the naturally expressed antibodies 
which target outside the cell. Different nanotechnology‑based 
therapeutic approaches are also in progress against HIV. HIV 
eradication is not feasible without deploying a cure or vaccine 
alongside the treatment.
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1. Introduction

Acquired immunodeficiency syndrome (AIDS) was identified 
in 1981 (1). Subsequently, it was found that the causative agent 
of AIDS was HIV. Currently, over 35 million individuals are 
HIV infected worldwide with the highest prevalence being 
in Sub‑Saharan African countries (2,3). HIV type 1 is the 
most prevalent type of this virus (4). Since the year 2000, 
there has been a reduction in the number of new cases of HIV 
infection from 3.1 to 2 million globally (3). Moreover, the 
number of HIV infected subjects on antiretroviral therapy has 
increased from 1 to 15 million. The main reason behind this 
achievement was raising the fund against HIV infection from 
$4.9 to $21.7 billion (5). Thus, throughout there is struggling 
to manage HIV infection and to a greater extent there has been 
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success in achieving this target. Nevertheless, the eradication 
of HIV remains a target.

Human immunodeficiency virus attacks the immune 
system and leads to the development of AIDS. The natural 
history of HIV infection is diverse. The average duration 
required for infection to reach the stage of AIDS is 8‑10 years. 
Approximately 5‑10% of HIV‑exposed subjects remain asymp-
tomatic even though they do not take any retroviral drugs, and 
are known as long‑term non‑progressors (6,7). The presence 
of such groups of HIV‑infected subjects highlights the fact 
that there is natural resistance to the virus. The exploration 
of the host natural resistance against the virus may lead to the 
development of novel therapeutic approaches.

Drug development against HIV infection is a challenging 
task. HIV is a retrovirus with high variability in its genome 
due to a lack of proofreading exo‑nuclease activity in its 
reverse transcriptase enzyme. The high genome variability 
of HIV genome in a patient results in the production of 
quasi‑species and drug resistance against previously effective 
drugs (8). Therefore, researchers are seeking better therapeutic 
approaches against HIV infection. These approaches are 
discussed below.

2. Stem cell therapy

The first step of HIV life cycle is its binding and entry into the 
host cell. The HIV envelop protein (Env) binds with its receptor 
and co‑receptor on the target cell. The HIV Env protein is a 
heavily glycosylated trimer of gp120 and gp41 proteins. CD4 
is a member of the immunoglobulin superfamily and acts as 
a receptor, while chemokine receptor (CCR) 5 or chemokine 
X receptor 4 (CXCR4) acts as a co‑receptor for viral entry 
into the host cell. The viruses that exploit CCR5 or CXCR4 
are termed R5 and X4 HIV virions, respectively, while those 
using both CCR5 and CXCR4 as co‑receptors are known as 
R5X4 HIV virions (9,10). However, HIV viruses that are trans-
mitted by sexual contact, percutaneous inoculation or maternal 
routes, are R5 viruses (11). Thus CCR5 plays an important 
role in HIV entrance into the host cell. The deletion mutation, 
Δ 32 CCR5 results in the production of defective protein. The 
homozygous condition of Δ 32 CCR5 prevents HIV infection 
as the virus cannot enter the host cell. Furthermore, the stem 
cell therapy from a homozygous Δ 32 CCR5 deletion mutated 
donor to the HIV‑infected patients demonstrated a successful 
therapeutic option (12‑14). However, the duplication of this 
experiment was failed in six other patients highlighting that this 
therapeutic approach is extremely difficult (13). Furthermore, 
the problem with allogeneic stem‑cell transplantation from an 
HLA‑matched donor, is the low availability of donors and high 
risk associated with allogeneic stem‑cell transplantation.

Another approach of gene therapy is to permanently disable 
CCR5 by zinc finger nuclease (NCT00842634). Zinc finger 
nucleases are genomic scissors comprising DNA binding and 
cleaving domains (15). The main limitation of this genome editing 
technology is the overlapping of individual zinc finger specificity. 
In a clinical trial commencing in 2014, SB-728mR-T treatment 
was delivered using many ex vivo adenovirus expanded trans-
duced autologous CD4+ T cells into 12 HIV‑infected patients. No 
severe side effects of transduction were reported. For substantial 
effects of transduction, biallelic transduction of CCR5 is required. 

However, in the majority of circulating autologous CD4+ T cases, 
there was knockdown of one CCR5 allele. The study is currently 
ongoing (NCT00842634) and is to be completed in June, 2018 (16).

3. RNAi

Preclinical studies have shown that small interfering RNAs 
are less immunogenic than protein‑based agents and potent 
inhibitors (14). Silencing RNA (siRNAs) against CCR5 (17,18) 
and other HIV RNAs (19‑22) have been tested and found to 
elicit homology‑based, post‑transcriptional silencing. Taken 
together, it was concluded that the efficacy of this technique 
is highly dependent on various factors including the use of 
vectors and promoters for the expression of siRNAs and selec-
tion cassette combinations for controlling HIV infection (23).

4. CRISPR/Cas9

The most previously used gene editing technology for 
targeting HIV infection is clustered regularly interspaced short 
palindromic repeats (CRISPR)‑associated protein‑9 nuclease 
(Cas9). The technology comprises CRISPR RNA (crRNA) 
and trans‑activating CRISPR RNA (tracr RNA). crRNA and 
tracr RNA are collectively known as guide RNA (gRNA) 
which directs caspase‑9 to the target site (24). The target site 
is 20 nucleotide DNA sequences, which is complementary to 
crRNA and is followed by protospacer adjacent motif (PAM) 
of 3 nucleotides (NGG). Caspase‑9 produces double‑stranded 
nick just before PAM sequence. The double‑stranded 
nicks produced in DNA are repaired by host machinery 
via non‑homology end joining mechanism or homologous 
recombination leading to insertion, and deletion mutation, 
which further leads to frame shift mutation and non‑functional 
products (25). To avoid off‑target sites of this technology 
alternation in caspase‑9 nuclease is induced, resulting in the 
production of single‑strand nick in DNA (26). The repair 
mechanism requires two target sites in close proximity and 
the likelihood of off‑target sites are substantially reduced. 
The technology is limited to only those target sequences that 
are 20 nucleotides in length and followed by PAM. Moreover, 
certain target sequences are problematic due to the formation 
of secondary RNA structures. Most previously engineered 
RNA‑guided FokI‑nucleases have been used to improve the 
cleavage efficacy and broader genome targetibility (27).

Previous studies of 1‑cell mouse embryos demonstrated 
that the cytoplasmic microinjection of gRNA and CAS9 
mRNA to generate enhancer knockout mouse lines possessed 
a range of putative off‑target sites (28). However, sequencing 
of amplified products showed that there were no off‑target 
effects in the genomes (28). The study results suggested that 
the potential off‑target effects of CRISPR/CAS9 technology 
are exaggerated. Thus, this technology is highly effective and 
accurate for deleting putative gene enhancer sequences from 
the mouse genome (28).

5. Antibody-based therapeutic approaches against HIV 
infection

Antibody‑based therapeutic approaches against HIV infection 
have had limited success thus far. The main reason behind 
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this therapeutic approach is its transient effect and specificity. 
Recently recombinant adenoassociated virus (rAAV) vector is 
used as a delivery mechanism of broadly neutralizing (bnAbs) 
anti‑HIV antibodies in monkeys and mice and it demonstrated 
long‑lasting immune responses (29). The genetically modified 
rAAV persists in the cell and only produces the gene of interest 
for the entire life of cell (30,31). However, some unwanted 
immune responses which limit the efficacy of these bnAbs have 
also been identified (29).

6. Antibodies inside the cell

Intrabodies are intracellular‑expressed antibodies that are 
directed towards the targets inside the cell unlike the natu-
rally expressed antibodies which target the outside of the 
cell. An intrabody approach functions with single antigen 
binding fragment or may even contain a single domain (nano-
bodies). However, the cytosolic expression of intrabodies may 
lead to the production of non‑functional antibodies due to 
misfolding (32,33). To overcome the problem, such intrabodies 
are produced that are, not only specific towards their targets 
(functional knockdown of membrane protein or some other 
protein), but may also possess an endoplasmic reticulum (ER) 
retention signal, the amino acid signal (34). Thus, the intrabody 
is retained with its target inside the ER (34).

7. Nanotechnology against HIV infection

Nanotechnology is an emerging field of science and tech-
nology that is revolutionizing the medical field. Typically, 
nanoparticles range from 1 to 100 nm in size in at least one 
dimension (35). Nanoparticles are more commonly referred 
to as nanomedicines and are used for the prevention and 
diagnosis of infections (36). In some cases, the healing 
and therapeutic potential of nanomedicines have also been 
reported (37,38). Most of its applications are reported in the 
field of cancer. Multiplte nanosystems are either Food and 
Drugs Authority approved or in clinical trials for the treatment 
of systematic cancer (38,39). The success of nanomedicines are 
attributed to improved delivery of poor water soluble drugs, 
targeted delivery to cells or tissues, intracellular delivery of 
macro molecules and controlled release of drug at its target 
site (35,39,40).

Nanomedicines against HIV infection have also been 
previously investigated. Experiments on mice have shown 
that nanosuspension of indinavir (a retroviral drug against 
HIV infection) was stabilized by a surfactant system for effec-
tive delivery to various tissues (40,41). The nanosuspension of 
indinavir was loaded on macrophages and its uptake was identi-
fied in different tissues including spleen, liver, lungs and brain. 
Moreover, the half life of conventionally delivered indinavir in 
rodents was 2 h, while a single dose of intravenously injected 
nanoindavir suspension in rodents was measurable in the blood 
up to 14 days post‑treatment (41). It was observed that the 
cellular uptake of satuvudine (HIV nucleoside analog reverse 
transcriptase inhibitor) encapsulated in various liposomes and 
conjugated with mannose and galactose was also increased as 
compared to plain liposomes or free drugs (41,42).

In addition to delivery agents, nanomaterials as thera-
peutic agents have also been reported. It has been shown 

that the capsid structure of HIV may be used as a target 
for structure‑based drugs to inhibit viral replication (43,44). 
The in vitro anti‑HIV activity of various fullerene‑based 
structures including dendrimers and inorganic particles 
such as gold and silver have already been previously 
reported (45‑47).

8. Conclusions

The only available solution of HIV‑infected subjects is 
highly active antiretroviral therapy and the drugs are used in 
combination to suppress the virus at any stage of its life cycle. 
These drugs only increase the life span of the subjects and 
do not provide a permanent cure. Therefore, different novel 
therapeutic approaches against HIV, which include stem cell 
therapy, genome editing, antibodies, and nanotechnology are 
under investigation. Among these technologies, CRISPR/Cas9, 
genome editing technology seems to be the most potential 
therapeutic approach against HIV infection.
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