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Abstract. Rheumatoid arthritis (RA) is an autoimmune 
disease that causes chronic inflammation in synovial tissues. 
Hyperplasia of synovial tissue leads to the formation of pannus, 
which invades joint cartilage and bone resulting in joint destruc-
tion. Tumor necrosis factor‑like ligand 1A (TL1A), a member of 
the tumor necrosis factor superfamily (TNFSF15), contributes 
to the pathogenesis of autoimmune diseases, including RA. In 
the present study, a cDNA microarray was used to search for 
genes whose expression in rheumatoid fibroblast‑like synovio-
cytes (RA‑FLS) were regulated by TL1A. Four individual 
lines of primary cultured RA‑FLS were incubated either with 
recombinant human TL1A protein or phosphate‑buffered 
saline, as an unstimulated control, for 12 h. Gene expression 
was then detected through the microarray assay. The results 
revealed the expression profiles of genes in RA‑FLS regulated 
by TL1A. The present study also demonstrated the functions 
of those genes whose expression in RA‑FLS was regulated 
by TL1A. Among the genes in this profile, the present study 
focused on the following genes: Spectrin repeat‑containing 
nuclear envelope 1, Fc receptor‑like  2, PYD (pyrin 
domain)‑containing 1, cell division cycle 45 homolog, signal 
transducer and activator of transcription 5B, and interferon 
regulatory factor 4. These genes may affect the pathogenesis 
of RA, including proliferation, regulation of B cells and 
T cells, inflammation, and cytokine processing. The present 
study revealed for the first time, to the best of our knowledge, 
the expression profile of genes in RA‑FLS regulated by TL1A. 

The data indicate that TL1A may regulate the gene expression 
of various key molecules in RA‑FLS, thus affecting the patho-
genesis of RA. Further investigations of the genes detected in 
the current profiles may provide a deeper understanding of the 
pathogenesis and a novel target for the treatment of RA.

Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that 
causes chronic inflammation in synovial tissues. Hyperplasia 
of synovial tissue leads to the formation of pannus, which 
invades joint cartilage and bone, resulting in joint destruc-
tion. Previous reports have indicated that a number of 
features of transformed long‑lived cells are observed in the 
hyperplastic synovial tissues of patients with RA, including 
oncogene expression, resistance to apoptosis and the presence 
of somatic mutations (1‑3). Several explanations for the resis-
tance of RA‑FLS to apoptosis have been suggested, including 
deregulation of the Bcl‑2 family of proteins critical to intrinsic 
pathway regulation, deregulation of the nuclear factor (NF)‑κB 
signaling pathway, p53 mutations and a low expression of 
PUMA, found in the RA synovium and FLS, which provides 
an explanation for the lack of p53‑induced FLS apoptosis (4).

Tumor necrosis  factor (TNF)‑l ike l igand 1A 
(TL1A)/TNFSF15, a member of the TNF superfamily, 
is expressed by endothelial cells  (5), macrophages  (6,7), 
T cells (8,9), monocytes (10,11), dendritic cells (11), chondro-
cytes (12) and synovial fibroblasts (12), and contributes to the 
pathogenesis of cancer and autoimmune diseases via the apop-
totic, stress, mitogenic and inflammation pathways by binding 
to death receptor 3 (DR3) and decoy receptor 3 (DcR3) (5,13). 
Previous studies have reported that the expression of TL1A 
is increased in the synovial fluid and serum from patients 
with RA (12,14), and that TL1A increases the production of 
interleukin (IL)‑6 on rheumatoid fibroblast‑like synoviocytes 
(RA‑FLS) (15). In a previous in vivo study, it was demon-
strated that TL1A treatment increased the severity of arthritis 
and destruction of bone in a collagen‑induced arthritis mouse 
model of RA (12).

DcR3/TR6/M68/TNFRSF6b, a member of the TNF 
receptor superfamily, binds to three ligands, Fas ligand 
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(FasL), LIGHT and TL1A, which are members of the TNF 
superfamily (16). The overexpression of DcR3 may benefit 
tumors by enabling them to avoid the cytotoxic and regula-
tory effects of FasL (17,18), LIGHT (19) and TL1A (5). In our 
previous studies, it was demonstrated that DcR3 is expressed 
in RA‑FLS (20), and that DcR3 binds to TL1A expressed on 
RA‑FLS, resulting in the negative regulation of cell prolifera-
tion induced by inflammatory cytokines (21). The expression 
profiles of genes regulated by DcR3 in RA‑FLS were further 
revealed, which were obtained through the use of a cDNA 
microarray (22). Based on these profiles, it was suggested 
that DcR3‑TL1A signaling is involved in the pathogenesis of 
RA (23‑25).

Although the gene expression profiles regulated by DcR3 
were revealed in our previous study, how TL1A, one of the 
ligands of DcR3, contributes to the pathogenesis of RA 
remains to be fully elucidated. As the functions of TL1A are 
diverse, it was hypothesized that TL1A controls the expression 
of genes potentially involved in the pathogenesis of RA.

In the present study, a search was performed to identify 
those genes whose expression in RA‑FLS is regulated by 
TL1A through use of a cDNA microarray. The gene expression 
profiles revealed a series of genes that may serve a significant 
role in the pathogenesis of RA in the TL1A‑DcR3/DR3 
signaling pathway.

Materials and methods

Isolation and culture of synovial fibroblasts. RA‑FLS 
were obtained from four patients (samples 1‑4) with RA 
who fulfilled the 1987 criteria of the American College 
of Rheumatology (formerly, the American Rheumatism 
Association) (26) during total knee replacement surgery. The 
patients were four women aged 73.0±11.2 years old. Their 
C‑reactive protein levels and erythrocyte sedimentation rates 
were 2.04±2.16 mg/dl and 60.0±22.1 mm/h, respectively. In 
terms of drug therapy for RA, two patients were administered 
oral methotrexate (MTX; average dose, 3.00±1.41 mg/week), 
one was administered salazosulfapyridine (1 g/day), and one 
was administered mizoribine (150  mg/day). Prednisolone 
(PSL) was used in the treatment of all four patients (average 
dose, 3.63±2.14 mg/day). The patients had never been treated 
with biological disease‑modifying anti‑rheumatic drugs or 
Janus kinase inhibitors.

Synovial samples were collected from the patients, who 
provided informed written consent to their involvement in 
the study in accordance with the World Medical Association 
Declaration of Helsinki Ethical Principles for Medical 
Research Involving Human Subjects. The protocol, including 
consent procedures, was approved by the Ethics Committee 
of Kobe University Graduate School of Health Sciences 
(Kobe, Japan; approval no. 308). The tissue specimens were 
minced and digested in Dulbecco's modified Eagle's medium 
(DMEM; Merck KGaA, Darmstadt, Germany) containing 
0.2% collagenase (Merck KGaA) for 2 h at 37˚C with 5% CO2. 
The dissociated cells were cultured in DMEM supplemented 
with 10% fetal bovine serum (Merck KGaA) and 100 U/ml of 
penicillin/streptomycin (Meiji Seika Pharma Co., Ltd., Tokyo, 
Japan). Following incubation overnight and the removal of 
non‑adherent cells, the adherent cells were further incubated 

in fresh medium. All experiments were performed using cells 
from passages 3‑4 (20).

RNA extraction. Four individual cell lines (samples 1‑4) of 
primary cultured RA‑FLS (2x106 cells/well) were incubated 
with 1.0 µg/ml of recombinant human TL1A protein (R&D 
Systems, Inc., Minneapolis, MN, USA) or were left untreated 
with OPTI‑MEM medium (Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) for 12 h at 37˚C with 5% CO2. 
Following incubation, RNA was extracted with QIAshredder 
(Qiagen GmbH, Hilden, Germany) and RNeasy Mini kit 
(Qiagen GmbH) according to the manufacturer's protocol. 
The extraction of total RNA was performed for each sample 
separately.

Gene expression profiling and data analysis. Gene expression 
was detected by microarray assay (Human Genome U133 Plus 
2.0, GeneChip® 3' Expression Array; Thermo Fisher Scientific, 
Inc.). The labeling of RNA probes, hybridization and washing 
were performed according to the manufacturer's protocol.

Avadis 3.3 Prophetic software (Strand Life Sciences, 
Bangalore, India) was used for statistical analysis  (27). 
Differentially expressed genes were extracted using a paired 
t‑test with P<0.05 considered to indicate a statistically 
significant difference and fold-change >1.4, and ordered into 
hierarchical clusters using the Euclidean algorithm as the 
distance measure and the complete algorithm as the linkage 
method. Values are expressed as the mean ± standard deviation 
unless otherwise indicated.

Results

Microarray analysis for gene expression profiling of RA‑FLS 
stimulated by TL1A. The microarray analysis performed in 
the present study (Human Genome U133 Plus 2.0, GeneChip® 
3' Expression Array) detected the expression of 54,613 genes. 
The entire microarray data obtained were deposited in the 
NCBI Gene Expression Omnibus (GEO) and are accessible 
through GEO series accession no. GSE118958 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse118958).

The microarray analysis revealed that TL1A upregulated 
or downregulated the expression of various genes in RA‑FLS. 
The NCBI UniGene database (https://www.ncbi.nlm.nih.
gov/UniGene/clust.cgi?ORG=Hs&CID=55682) was used to 
identify the gene names, with gene symbols representing abbre-
viations of the gene names. The fold change is the ratio of each 
gene expression in the TL1A‑stimulated group compared with 
that in the control group. Among the 100 most differentially 
upregulated genes by TL1A, 67 genes were annotated in the 
database, and 21 of these 67 genes upregulated by TL1A are 
shown in Table I. Gene annotations of 58 of the 100 most differ-
entially downregulated genes by TL1A were also annotated in 
the database, and 21 of the 58 genes downregulated by TL1A 
are shown in Table II. The results of hierarchical clustering 
analysis for the 100 most upregulated genes and the 100 most 
downregulated genes are illustrated in Figs. 1 and 2, respectively.

Functional annotation. The 100 genes most regulated by 
TL1A were significantly classified into 14 categories registered 
in the Database for Annotation, Visualization and Integrated 
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Table I. List of the 21 genes upregulated by tumor necrosis factor‑like ligand 1A.

Gene symbol	 Fold-change	 P‑value	 Gene name

SYNE1	 15.3	 0.013391	 Spectrin repeat‑containing, nuclear envelope 1
PDE11A	 14.40000186	 0.013724	 Phosphodiesterase 11A
MGC15705	 12.6299996	 0.006738	 Hypothetical protein MGC15705
COG2	 12.61445783	 0.016001	 Component of oligomeric golgi complex 2
FCRL2	 11.97633136	 0.000003	 Fc receptor‑like 2
RAD21L1	 11.82758621	 0.007302	 RAD21‑like 1 (S. pombe)
PPP4R1L	 10.1975316	 0.005913	 Protein phosphatase 4, regulatory subunit 1‑like
MIER3	 9.72072035	 0.048129	 Mesoderm induction early response 1, family member 3
LOC100505801	 9.711538484	 0.029304	 Hypothetical LOC100505801
C12orf74	 9.576924282	 0.008377	 Chromosome 12 open reading frame 74
CCNE2	 9.118012422	 0.039656	 Cyclin E2
LOC100288507	 9.064056744	 0.009929	 Hypothetical protein LOC100288507
USH2A	 8.986842105	 0.048673	 Usher syndrome 2A (autosomal recessive, mild)
SEZ6L	 8.7578125	 0.002512	 Seizure related 6 homolog (mouse)‑like
LOC100133308	 8.376812174	 0.026850	 Ras suppressor protein 1 pseudogene
MLL	 8.357512953	 0.007109	 Myeloid/lymphoid or mixed‑lineage leukemia (trithorax homolog,
			   Drosophila)
SYTL3	 8.348148148	 0.038552	 Synaptotagmin‑like 3
GAGE12F///GAGE12G///	 8.124137931	 0.018128	 G antigen 12F///G antigen 12G///G antigen 12I///G antigen 5///
GAGE12I///GAGE5///GAGE7			   G antigen 7
FRMD4A	 7.891089109	 0.044768	 FERM domain‑containing 4A
LOC404266	 7.725807116	 0.003327	 Hypothetical LOC404266
PYDC1	 5.42662116	 0.006955	 PYD (pyrin domain)‑containing 1

Table II. List of the 21 genes downregulated by tumor necrosis factor‑like ligand 1A.

Gene symbol	 Fold-change	 P‑value	 Gene name

CDC45	 0.08	 0.006927	 Cell division cycle 45 homolog (S. cerevisiae)
STAT5B	 0.10	 0.019873	 Signal transducer and activator of transcription 5B
BEND4	 0.11	 0.026734	 BEN domain‑containing 4
ALAS2	 0.11	 0.004251	 Aminolevulinate, δ‑, synthase 2
LOC728743	 0.11	 0.031562	 Similar to GLI‑Kruppel family member HKR1
LOC100130815	 0.12	 0.037456	 Hypothetical LOC100130815
LOC255130	 0.12	 0.020509	 Hypothetical LOC255130
RBM25	 0.12	 0.032102	 RNA‑binding motif protein 25
PARP15	 0.12	 0.028820	 Poly (ADP‑ribose) polymerase family, member 15
SUFU	 0.12	 0.025031	 Suppressor of fused homolog (Drosophila)
MUC7	 0.12	 0.045462	 Mucin 7, secreted
VPS35	 0.12	 0.013976	 Vacuolar protein sorting 35 homolog (S. cerevisiae)
GKN1	 0.13	 0.013159	 Gastrokine 1
KRT77	 0.13	 0.030364	 Keratin 77
GOT1L1	 0.14	 0.047977	 Glutamic‑oxaloacetic transaminase 1‑like 1
DEFA5	 0.14	 0.005483	 Defensin, α5, Paneth cell‑specific
SLC13A3	 0.14	 0.041769	 Solute carrier family 13 (sodium‑dependent dicarboxylate transporter), member 3
C10orf137	 0.15	 0.030915	 Chromosome 10 open reading frame 137
PRTN3	 0.15	 0.001312	 Proteinase 3
RASGRP1	 0.15	 0.038526	 RAS guanyl‑releasing protein 1 (calcium and DAG‑regulated)
IRF4	 0.22	 0.027305	 Interferon regulatory factor 4
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Discovery bioinformatics database (https://david.ncifcrf.gov/) 
according to their biological functions; alternative splicing, 
splice variant, coenzyme A, regulation of cytokine production, 

Cyclin; N‑terminal, Cyclin, Pleckstrin homology‑type, 
CYCLIN, transcription from RNA polymerase II promoter, 
cyclin, compositionally biased region:Ser‑rich, postsynaptic 

Figure 1. Cluster analysis and heat map of 100 probe sets significantly upregu-
lated by TL1A. The heat map shows expression values mapped to a color 
gradient from low (green) to high expression (red). Experiments are arranged 
according to a hierarchical clustering dendrogram. The horizontal dendrogram 
shows the similarity of functions between neighboring genes. The vertical 
dendrogram shows the similarity of gene expression between neighboring 
samples. TL1A, tumor necrosis factor‑like ligand 1A; CTL, control.

Figure 2. Cluster analysis and heat map of 100 probe sets significantly down-
regulated by TL1A. The heat map shows expression values mapped to a color 
gradient from low (green) to high expression (red). Experiments are arranged 
according to a hierarchical clustering dendrogram. The horizontal dendrogram 
shows the similarity of functions between neighboring genes. The vertical 
dendrogram shows the similarity of gene expression between neighboring 
samples. TL1A, tumor necrosis factor‑like ligand 1A; CTL, control.
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membrane, positive regulation of transcription from RNA poly-
merase II promoter, and synapse. The regulated genes belonging 
to each cluster are listed in Table III.

Discussion

Genome‑wide gene expression cDNA microarrays provide a 
useful way of investigating the pathophysiology of a variety 
of diseases, including tumors  (28‑30), immune‑mediated 
diseases  (31,32), and inflammatory diseases  (33‑35). Using 
microarrays, our previous study revealed the expression profiles 
of genes in RA‑FLS regulated by DcR3 (22). Subsequently, 
based on that profile, the significance of the regulation of IL‑12B 
p40 (23), tryptophan hydroxylase 1 (24), and centrosomal protein 
70 kDa (25) by DcR3 in RA‑FLS was investigated in detail.

The present study is the first, to the best of our knowledge, 
to demonstrate the expression profiles of genes in RA‑FLS 
regulated by TL1A. Among the genes in this profile, the 
following genes were of note: Spectrin repeat‑containing 

nuclear envelope 1 (SYNE1), Fc receptor‑like 2 (FCRL2), 
PYD (pyrin domain)‑containing 1 (PYDC1), cell division 
cycle 45 homolog (CDC45), signal transducer and activator of 
transcription 5B (STAT5B), and interferon regulatory factor 4 
(IRF4), as these genes were highly regulated by TL1A and 
belong to major functional clustering categories.

SYNE1 in RA‑FLS was upregulated by TL1A in this gene 
expression profile. SYNE1 is a member of the spectrin family 
that is expressed in various tissues (36,37). It is reported to 
be associated with cytokinesis in HeLa cells  (38), and the 
proliferation and apoptosis of mesenchymal stem cells (39).

FCRL2 was upregulated in this profile and is a member of 
the Fc receptor‑like molecules superfamily. It is predominantly 
expressed by memory B cells and can influence B‑cell signaling 
due to having both immunoreceptor tyrosine‑based activa-
tion and inhibitory motifs (40‑42). Jackson et al suggested that 
FCRL2 may serve as a negative regulator of the memory B cell 
response (43). FCRL2 has been reported to be expressed at high 
levels in B‑cell chronic lymphocytic leukemia cells, affecting 

Table III. Functions of the 100 most regulated genes classified into 14 categories with statistical significance.

Term	 P‑value	 Genes

Alternative splicing	 0.004007	 KIAA0913, ELF5, C17ORF56, FCRL2, PDE11A, FGF12, CNGB1, LGR5, 
		  GLYATL1, C10ORF137, CCNE2, PPP4R1L, ATAD3B, GSN, MIER3, 
		  KLHL22, MRPL39, USH2A, ANKS1B, BEND4, CCNJ, AVL9, CCNL1, 
		  TRIM40, SEZ6L, UBN2, PARP15, LRMP, WFDC2, PLA2G2F, EMCN, 
		  RAD21L1, DNAH14, OFCC1, EPB41L4B, SUFU, CALCA, RASGRP1, 
		  MS4A6A, C1ORF96, RBM25, NGEF, MLL, TMCO5A, PHF12, SHANK2, 
		  VSX1, SYNE1, ARL17B, ARL17A, WDR62, STAB1, RGS7, SLC13A3, 
		  SYTL3, IRF4, APBB2, DNAJB5, SLC5A12
Splice variant	 0.00425	 KIAA0913, ELF5, C17ORF56, FCRL2, PDE11A, FGF12, CNGB1, LGR5, 
		  GLYATL1, C10ORF137, CCNE2, PPP4R1L, ATAD3B, GSN, MIER3, 
		  KLHL22, MRPL39, USH2A, ANKS1B, BEND4, CCNJ, AVL9, CCNL1, 
		  TRIM40, SEZ6L, UBN2, PARP15, LRMP, WFDC2, PLA2G2F, EMCN, 
		  RAD21L1, DNAH14, OFCC1, EPB41L4B, SUFU, CALCA, RASGRP1, 
		  MS4A6A, C1ORF96, RBM25, NGEF, MLL, TMCO5A, PHF12, SHANK2, 
		  VSX1, SYNE1, ARL17B, ARL17A, WDR62, STAB1, RGS7, SLC13A3, 
		  SYTL3, IRF4, APBB2, DNAJB5, SLC5A12
Coenzyme A	 0.011118	 SAT1, ALAS2, SUCLG2
Regulation of cytokine production	 0.013645	 CALCA, STAT5B, GATA4, IRF4, PYDC1
Cyclin, N‑terminal	 0.01396	 CCNE2, CCNJ, CCNL1
Cyclin	 0.020121	 CCNE2, CCNJ, CCNL1
Pleckstrin homology‑type	 0.025198	 ANKS1B, NGEF, PLEKHA6, FRMD4A, EPB41L4B, APBB2
Cyclin	 0.025934	 CCNE2, CCNJ, CCNL1
Transcription from RNA	 0.031469	 ATOH1, MLL, ELF5, GATA4, HOXD13
polymerase II promoter
Cyclin	 0.033221	 CCNE2, CCNJ, CCNL1
Compositionally biased region:	 0.036248	 SYNE1, SRRM4, KIAA0913, FRMD4A, C17ORF56, C5ORF20, UBN2
Ser‑rich
Postsynaptic membrane	 0.036429	 ANKS1B, GABRG3, SYNE1, SHANK2
Positive regulation of transcription	 0.04068	 ATOH1, MLL, STAT5B, GATA4, HOXD13, IRF4
from RNA polymerase II promoter
Synapse	 0.042545	 ANKS1B, GABRG3, RAD21L1, SYNE1, APBB2, SHANK2
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disease progression and survival rates (42,44,45), and is associated 
with the inflammatory marker and disease activity of RA (46).

PYDC1 was upregulated in this profile. PYD‑containing 
proteins have been reported to be involved in the activation of 
NF‑κB and caspase‑1, which regulates the processing of IL‑1β and 
IL‑18, and is associated with inflammation and apoptosis (47‑49).

CDC45 was downregulated in this profile. CDC45 serves a 
critical role in DNA replication (50), and has been reported to 
be overexpressed in cancer cells (51) and cancer‑derived cell 
lines (52). The expression of CDC45 is significantly suppressed 
by the knockdown of IL‑1 receptor‑associated kinase 1 in endo-
metrial carcinoma (53). The expression of CDC45 is closely 
associated with proliferating cell populations in cancer (52).

STAT5B was downregulated in this profile. STATs regulate 
gene transcription to influence cellular functions, including 
proliferation, apoptosis, differentiation, reproduction and lipid 
metabolism, and have biological roles in several diseases, 
including autoimmune disease (54‑60). The expression and 
activity of STATs can contribute to the onset, progression and 
severity of RA (61).

IRF4 was downregulated in this profile. IRF4 has been 
reported to be an RA risk locus, as identified by GWAS data 
analysis (62). IRF4 is an IRF family member of transcription 
factors and is associated with the development and function of 
immune cells (63). Previous studies have found that IRF4 regu-
lates autoimmunity (63,64). In addition, IRF4 regulates Th17 cell 
differentiation and the production of IL‑17, which are important 
for modulation of autoimmunity, including RA (63,65).

Although neither SYNE1 nor CDC45 are reported to be 
associated with RA directly, SYNE1 is associated with cytoki-
nesis, proliferation and apoptosis, and CDC45 serves a critical 
role in the cell cycle of proliferating cells, which are important 
factors in the pathogenesis of RA.

The limitations of the present study included its small 
sample size and that it examined microarray data only, without 
detecting mRNA or protein expression. The results of the 
present study revealed a series of genes whose expression is 
regulated by TL1A in RA‑FLS using microarray analysis, 
however, each gene revealed through microarray analysis 
requires confirmation one by one with mRNA or protein 
analysis in a future study. In addition to the expression analysis 
of each genes, how these genes regulated by TL1A in RA‑FLS 
are involved in combination in the pathogenesis of RA also 
requires investigation in a future study.

In conclusion, the present study is the first, to the best of 
our knowledge, to report the expression profile of genes in 
RA‑FLS regulated by TL1A. The data demonstrate that TL1A 
may regulate the gene expression of various key molecules 
in RA‑FLS, thus affecting the pathogenesis of RA, including 
proliferation, regulation of B cells and T cells, inflammation, 
and cytokine processing. Further investigations of the genes 
detected in this profile may provide a deeper understanding 
of the pathogenesis and novel targets for the treatment of RA.
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