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Abstract. The chemotherapeutic agent etoposide is a topoi-
somerase II inhibitor widely used for cancer therapy. Low-dose 
oral etoposide, administered at close regular intervals, has 
potent anti-tumor activity in patients who are refractory to intra-
venous etoposide; however, the mechanism remains unclear. 
Since endothelial cells may be more sensitive than tumor cells 
to chemotherapy agents, we determined the effects of etoposide 
alone and in combination with oral cyclooxygenase-2 inhibi-
tors and peroxisome-proliferator activated receptor  γ ligands 
on angiogenesis and tumor growth in xenograft tumor models. 
Optimal anti-angiogenic (metronomic) and anti-tumor doses 
of etoposide on angiogenesis, primary tumor growth and 
metastasis were established alone and in combination therapy. 
Etoposide inhibited endothelial and tumor cell proliferation, 
decreased vascular endothelial growth factor (VEGF) produc-
tion by tumor cells and suppressed endothelial tube formation at 
non-cytotoxic concentrations. In our in vivo studies, oral etopo-
side inhibited fibroblast growth factor 2 and VEGF-induced 
corneal neovascularization, VEGF-induced vascular perme-
ability and increased levels of the endogenous angiogenesis 
inhibitor endostatin in mice. In addition, etoposide inhibited 
Lewis lung carcinoma (LLC) and human glioblastoma (U87) 
primary tumor growth as well as spontaneous lung metas-
tasis in a LLC resection model. Furthermore, etoposide had 
synergistic anti-tumor activity in combination with celecoxib 
and rosiglitazone, which are also oral anti-angiogenic and 
anti-tumor agents. Etoposide inhibits angiogenesis in vitro and 
in vivo by indirect and direct mechanisms of action. Combining 
etoposide with celecoxib and rosiglitazone increases its effi-
cacy and merits further investigation in future clinical trials to 
determine the potential usefulness of etoposide in combinatory 
anti-angiogenic chemotherapy.

Introduction

Daily administered, low-dose, cytotoxic, chemotherapeutic 
drugs were initially shown by Browder et al to preferentially 
target the endothelium of the tumor vasculature (1). When 
cyclophosphamide was administered in low frequent doses, as 
opposed to the maximally tolerated dose every three weeks, 
potent tumor suppression was achieved as a result of endothe-
lial cell apoptosis. This anti-angiogenic, or metronomic, 
chemotherapeutic approach avoids the development of tumor 
cell resistance by targeting the proliferating endothelial cells 
required for tumor neovascularization (2-4). Furthermore, the 
greater sensitivity of endothelial cells in comparison to tumor 
cells allows for significantly lower doses of the drug to be 
effective, thus improving tolerability (5,6). Anti-angiogenic 
chemotherapy has entered clinical trials for various vascular 
tumors refractory to conventional chemotherapy (4,7-9). 
In our study, 40% of children with recurrent or progressive 
cancer, treated with daily low-dose oral etoposide alternating 
every 21 days with daily low-dose oral cyclophosphamide 
combined with daily oral thalidomide and celecoxib, exhibited 
a prolonged or persistent progression-free disease status (7). 

Etoposide (VP16), a topoisomerase II inhibitor, is a 
semisynthetic derivative of podophyllotoxin introduced in 
cancer clinical trials in 1971 and FDA-approved in 1983. 
It is an alkaloid cytotoxic drug that binds to and inhibits 
topoisomerase II -DNA function in ligating cleaved DNA 
molecules, resulting in the accumulation of single- or double-
strand DNA breaks and stops the cell cycle at the late S and 
G2 phases (10). Daily oral etoposide is effective for the treat-
ment of several tumors, including non-small cell lung cancer, 
recurrent medulloblastoma and neuroblastoma, after these 
tumors have developed resistance to the maximally tolerated 
doses of intravenous etoposide (11,12). Additionally, platinum-
resistant epithelial ovarian cancer, metastatic breast cancer and 
pediatric recurrent sarcomas have been successfully treated 
with oral etoposide (13-15). When compared to intravenous 
administration, treatment with oral etoposide increased the 
response rate in patients with small-cell lung and advanced 
breast cancers (16,17). However, the mechanism by which 
low-dose oral etoposide inhibits the growth of tumors resistant 
to maximally tolerated higher-dose intravenous etoposide has 
not been extensively studied.
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We hypothesize that tumor endothelium is a potential 
target of low-dose oral etoposide, since the primary tumor and 
metastatic growth are dependent on angiogenesis (18). This 
hypothesis is supported by observations that etoposide inhibits 
the proliferation of endothelial cells (19). In fact, endothelial 
cells were found to be more sensitive to etoposide than tumor 
cells in  vitro (20), suggesting that the anti-tumor effect of 
etoposide may, in part, be mediated through the endothelium. 
Therefore, we investigated the role of etoposide in tumor 
angiogenesis. We report that etoposide inhibits primary tumor 
growth and metastasis through anti-angiogenic and direct anti-
tumor effects. Oral administration of etoposide allows it to be 
easily incorporated into chemotherapy regimens and supports 
its addition to the growing class of oral anti-angiogenic drugs 
for cancer therapy.

Materials and methods

Cells and reagents. Bovine capillary endothelial (BCE) cells 
were maintained on gelatinized plastic in Dulbecco's modi-
fied Eagle's medium (DMEM) low glucose + 10% bovine calf 
serum. Human umbilical vein endothelial cells (HUVECs) 
were maintained in EBM-2 media. Lewis lung carcinoma 
(LLC), fibrosarcoma (T241), glioblastoma (U87), breast 
(MDA-MB 231) and K1000 [a tumor cell line that expresses 
and secretes high levels of fibroblast growth factor 2 (FGF2)] 
cells were cultured in DMEM + 10% heat-inactivated FBS + 
1% penicillin streptomycin glutamine. For in vitro studies, 
etoposide (VP-16) (Sigma, St. Louis, MO, USA) was used and 
for in vivo studies, clinical grade IV solution was utilized.

Vascular endothelial growth factor (VEGF) ELISA. Tumor 
cells that were known to secrete high levels of VEGF (U87 
glioblastoma and LLC) were plated at 15x103 cells per well 
(6-well plates), and 24 h later were treated with etoposide or 
vehicle. Medium containing the drugs was changed on Days 3 
and 5. On Day 6, the medium was collected, and VEGF was 
assayed by ELISA (R&D Systems Inc., Minneapolis, MN, 
USA). 

Angiogenesis assays. Endothelial cell proliferation was 
assayed as described (21) at 15x103 cells per well. For tumor 
cell proliferation, cells were plated at 5x103 cells per well. 
Endothelial cell tubes were formed by combining HUVECs 
(5x104 cells/well) with varying concentrations of etoposide 
or vehicle on matrigel- (Collaborative Biochemical, Bedford, 
MA, USA) coated 24-well plates. The animal experiments 
were performed in accordance with IRB-approved protocols 
at Children's Hospital Boston. 

For the corneal neovascularization assay, 80 ng FGF2 
or 160 ng VEGF pellets were implanted into C57BL/6 mice 
(Jackson Labs, Bar Harbor, ME, USA) (22). Etoposide 
was administered daily over 6 days by gavage in 0.5% 
methylcellulose, and control mice received vehicle (0.5% 
methylcellulose). 

For tumor studies, LLC was injected subcutaneously as 
described (21). Glioblastoma (U87) and T241 fibrosarcoma 
were injected subcutaneously (1x106 cells in 0.1 ml PBS) into 
6-week-old male severe combined immunodeficient (MGH, 
Boston, MA, USA) or C57BL/6 mice, respectively. Once 

tumors were 100-150 mm3, mice were randomized into treat-
ment and vehicle groups. Etoposide, celecoxib, rosiglitazone 
and/or cyclophosphamide were administered by daily gavage 
for 14-40 days. Tumors were measured every 3-7 days, and the 
volume was calculated as width2 x length x 0.52. 

For metastasis studies, LLC tumors were resected 15 days 
after implantation as described (21). After LLC resection, 
mice were treated with etoposide or vehicle for 16 days 
when control mice became terminally ill. On the last day of 
treatment, the statistical difference between the treatment 
and control groups was determined by the Student's t-test. A 
p-value <0.05 was accepted as significant.

Miles vascular permeability assay. One to two days prior to 
the experiment, mice were shaved to expose the skin. Mice 
were anesthetized with intraperitoneally injected Avertin and 
injected with 1% Evan's blue dye, either by tail vein or through 
the orbital plexus. VEGF (50 µl of 1 ng/µl) and 50 µl of saline 
or PBS with 0.05% gelatin were injected intradermally using 
a 30-gauge needle into the skin overlying the back. Similar 
experiments were performed by injecting 5 µl of VEGF, saline 
or PBS intra-dermally into the ears. After 10 min, the animals 
were euthanized, and the skin was opened and exposed to 
assess the intensity of Evan's blue dye extravasations. The 
areas of blue skin (vascular leak) were removed and placed 
into formamide for 5 days. The intensity of the reaction was 
quantified by reading the samples at a wavelength of 620 nm 
on a SpectraMax plate reader.

Immunohistochemistry. For PECAM1, the sections of 
tumors were treated with 40 µg/ml proteinase K (Roche 
Diagnostics Corp.) for 25 min at 37˚C. PECAM1 was ampli-
fied using tyramide signal amplification direct and indirect 
kits (PerkinElmer Life Sciences, Boston, MA, USA). For 
computer-enhanced imaging of tumors, histological sections 
were analyzed for vessel density by computerized densito-
metric imaging (Corel Photo Paint and IP Lab software). The 
degree of vascularization was quantified over the entire tumor 
section and expressed as a ratio of vessel area (PECAM1) to 
tumor area. Total fields scored per tumor were 67-70. For 
control and etoposide-treated tumors, 4 animals/group were 
evaluated.

Results

Etoposide has direct and indirect anti-angiogenic and anti-
tumor activity in vitro 
Direct effects. To investigate the effects of etoposide on 
endothelial cell proliferation, we stimulated the proliferation 
of BCE cells with FGF2, a potent mitogen for BCE cells, in 
a standard proliferation assay. Etoposide inhibited FGF2-
induced proliferation of BCE cells in a dose-dependent 
manner, with a maximal inhibition of 80% after a 72-h incu-
bation period at 2.5 µM, a concentration easily achieved orally 
in humans (Fig. 1A). Similarly, etoposide inhibited VEGF-
induced proliferation of HUVECs up to 80% at 2.5 µM (Fig. 
1B). We next determined whether etoposide inhibits tumor 
cells at similar doses as those applied to endothelial cells. 
Etoposide inhibited the proliferation of human tumor cells, 
including glioblastoma (U87) and breast (MDA-MB 231), 
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differentially because of the primary resistance of these cell 
lines (Fig. 1C and D). Murine tumor cell lines, LLC and T241 
fibrosarcoma demonstrated sensitivity to etoposide (Fig. 
1E-G). 

Indirect effects. To determine whether etoposide inhibits 
angiogenesis by down-regulating tumor-secreted growth 
factors, we measured VEGF levels in tumor-conditioned 
media via ELISA. The tumor cell lines glioblastoma (U87 
resistant to etoposide) and LLC (sensitive to etoposide) 
secreted substantial amounts of VEGF: 20,000 and 938 pg/106 
cells, respectively. Etoposide inhibited VEGF secretion in U87 
cells by 51% and in LLC cells by 36% (Fig. 1H). The inhibi-

tory effect of etoposide on VEGF secretion in vitro suggests 
a potential anti-angiogenic mechanism in vivo via decreased 
tumor cell production of this angiogenic mitogen. 

Etoposide inhibits endothelial cell tube formation and 
FGF2- and VEGF-induced corneal neovascularization. To 
investigate whether etoposide has an effect on vessel morpho-
genesis, we seeded HUVECs on Matrigel, where they formed 
branching, anastomosing tubes that mimicked capillary-like 
structures (Fig. 2A). Etoposide inhibited tube formation in a 
dose-dependent manner (Fig. 2B-D), consistent with previous 
studies (23). To optimize the anti-angiogenic doses of etopo-
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  E   F

  G   H

Figure 1. Etoposide has anti-angiogenic and anti-tumor cell effects in vitro. (A) The proliferation percentage of BCE cells was determined by comparing 
cells exposed to an angiogenic stimulus (FGF2) alone with those exposed to FGF2 and etoposide, relative to unstimulated cells (5% calf serum). (B) The 
proliferation percentage of HUVECs was determined by comparing cells exposed to an angiogenic stimulus (VEGF) alone with those exposed to VEGF and 
etoposide. (C) The proliferation percentage of tumor cells (glioblastoma U87) was determined by comparing cells grown in media + 10% FBS and etoposide 
to starved cells (0.5% FBS). The effect of etoposide on the proliferation of (D) breast carcinoma cells (MDA-MB 231), (E) LLC, (F) T241 fibrosarcoma and 
(G) K1000 cells. (H) VEGF levels (expressed as decreased percentage) in U87 and LLC cells 6 days after treatment with etoposide.
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side for daily administration in mice, we implanted 80 ng 
FGF2 pellets into the corneas of C57BL/6 mice to stimulate 
neovascularization over 6 days (Fig. 2E). Systemic oral admin-

istration of etoposide significantly inhibited FGF2-induced 
corneal neovascularization in a dose-dependent  fashion: 
20  mg/kg/day resulted in 17% inhibition (Fig. 2F); 40  mg/
kg/day resulted in 41% inhibition (Fig. 2G); 80 mg/kg/day 
resulted in 56% inhibition (Fig. 2H). To determine the effect 
of etoposide on VEGF-induced corneal neovascularization, 
VEGF pellets (160 ng) were implanted into the corneas of 
C57BL/6 mice. Systemic oral administration of etoposide (40 
and 80 mg/kg/day) inhibited VEGF-induced corneal neovas-
cularization by 38 and 59%, respectively (Fig. 2I and J). In 
summary, daily administration of etoposide exhibited dose-
dependent inhibition of both FGF2- and VEGF-stimulated 
corneal neovascularization (Fig. 2K).

Etoposide inhibits VEGF-induced vascular permeability 
and raises endostatin levels in vivo. We next determined 
whether etoposide (VP16) affects VEGF-induced vascular 
permeability, a standard test of in vivo VEGF activity (24). 
In response to VEGF, control mice displayed Evan's blue 
extravasation into the subcutaneous skin and ears (Fig. 3A) 
80-82% greater than that of etoposide-treated mice (Fig. 3B). 

Figure 2. Etoposide inhibits endothelial cell tube formation (HUVEC 
morphogenesis on Matrigel) and FGF2- and VEGF-induced corneal 
neovascularization. (A) Representative photomicrograph of control tubes 
documenting the formation of a network of tube-like structures in HUVECs 
grown on Matrigel for 48 h in the presence of VEGF, FGF, HGF and IGF-1. 
(B-D) After a 48-h exposure to etoposide, dose-dependent inhibitory effects 
of etoposide were observed at (B) 25 µM, (C) 50 µM and (D) 100 µM. 
(E)  FGF2-induced corneal neovascularization in control cornea on Day 
6. (F-H) Systemic oral treatment with etoposide at (F) 20 mg/kg/day, (G) 
40 mg/kg/day and (H) 80 mg/kg/day. (I) VEGF-induced corneal neovascu-
larization in control cornea on Day 5. (J) Systemic treatment with etoposide 
at 80 mg/kg/day. (K) Area of inhibition (%) by various doses of daily etopo-
side. Inhibition was determined on Day 6 by the formula 0.2 x π x neovessel 
length x clock hours of neovessels (n=5-6 eyes/group; the experiment was 
performed three times).

  A   B

  C   D

  E   G
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Figure 3. VEGF-induced vascular permeability is inhibited in mice treated 
with etoposide. (A and B) Evan's blue dye leakage in dorsal skin and ears after 
injection with VEGF or saline in control mice (n=10 mice/group) and etopo-
side (VP16)-treated mice (n=10 mice/group). (C and D) Spectrophotometric 
analysis of extravasated Evan's blue of the skin and ear is represented in bar 
graphs (average ± standard deviation). (E and F) H&E sections of skin from 
SCID mice treated with etoposide (VP16) or vehicle. (G) Etoposide, but not 
cyclophosphamide (cytoxan), elevated the endostatin level in vivo.
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There was also a decrease in vascular leakage between the 
two saline groups in the etoposide-treated mice, presum-
ably representing the inhibition of basal circulating VEGF. 
Spectrophotometric analysis of extravasated Evan's blue in 
both the skin and ear of etoposide-treated mice exhibited a 
dramatic reduction in VEGF-induced vascular permeability 
(Fig. 3C and D). Immunohistochemical analysis (H&E 
staining) revealed that the area of skin edema was greatly 

reduced in the etoposide-treated mice when compared to the 
vehicle-treated mice (Fig. 3E and F). Together, these results 
indicate that daily low-dose oral etoposide is a potent inhibitor 
of VEGF-dependent signaling. 

Since etoposide raises biologically active endostatin 
levels in vitro (25), we examined whether the administration 
of etoposide raises endostatin levels in vivo. Mice treated 
with etoposide exhibited a 75% increase in plasma levels of 
endostatin (Fig.  3G). Another oral chemotherapeutic agent, 
cyclophosphamide, had no effect on endostatin levels in the 
plasma (Fig. 3G). 

Systemic therapy with etoposide inhibits primary tumor 
growth and metastasis. In order to examine the anti-
angiogenic effect of daily, low-dose, oral etoposide (VP16) 
on the growth of primary tumors, we treated established 
subcutaneous tumors of 100-150 mm3 volume grown in mice. 
We utilized the optimal doses of etoposide identified in the 
corneal neovascularization assay. Oral etoposide at 40 and 
80 mg/kg/day inhibited the growth of LLC by 29 and 56%, 
respectively (Fig. 4A), and T241 fibrosarcoma by 55 and 79%, 
respectively (Fig. 4B); 80 mg/kg of etoposide inhibited glio-
blastoma (U87) by 95% (Fig. 4C). There was no evidence of 
significant weight loss or other drug-related toxicity in any of 
the mice. To determine whether etoposide inhibited primary 
tumor growth by inhibiting angiogenesis, we measured the 
microvessel density in the treated and control tumors. A 
decrease in the microvessel density during treatment with an 
angiogenesis inhibitor suggests an anti-angiogenic effect on 
tumor growth (18). Etoposide treatment reduced microvessel 

  A
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Figure 4. Systemic therapy with etoposide (VP16) inhibits primary tumor 
growth and metastasis by inhibiting angiogenesis. After the tumors reached 
100-150 mm3 in size, etoposide treatment (40 or 80 mg/kg/day) was initi-
ated (Day 0). On the last day of treatment, the statistical difference between 
the control and treated groups was determined by the Student's t-test. 
(A) LLC (P<0.05). (B) T241 fibrosarcoma (P<0.05). (C) Glioblastoma (U87) 
(P<0.001). (D) Representative immunostainings (PECAM1) of the vehicle-
treated and (E) etoposide-treated glioblastoma (U87) tumors. Brown color 
illustrates PECAM1-positive cells. (F) Vessel density in etoposide-treated 
Lewis lung carcinoma tumors as defined by the percentage of vessel area = 
PECAM1-positive area/tumor area in each field. (G) Etoposide inhibits lung 
metastasis, as represented by a significant decrease in lung weight, which 
correlates with metastatic tumor burden.

  A

  B

Figure 5. Etoposide (VP16) exhibits synergistic anti-tumor activity with oral 
anti-tumor and anti-angiogenic inhibitors. After the LLC tumors reached 
100-150 mm3 in size, low-dose etoposide treatment (10 mg/kg/day) together 
with celecoxib (30 mg/kg/day) or rosiglitazone (50 mg/kg/day) was admin-
istered. Oral etoposide or sub-optimal doses of oral cyclophosphamide 
(cytoxan) (10 mg/kg/day) were also administered in combination with (A) 
celecoxib or with (B) rosiglitazone and celecoxib (cyclophosphamide data 
not shown).
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density relative to that in the control tumors, thus indicating 
the presence of its anti-angiogenic efficacy (Fig. 4D-F). 

Etoposide, when administered in mice via liposomes, was 
found to inhibit the formation of lung nodules in a metastatic 
tail vein model (26). The tail vein model illustrates only the 
homing step of tumor cells from circulation to an organ. By 
contrast, the LLC metastasis model is a model of spontaneous 
lung metastasis with all of the steps involved in metastasis 
including the invasion of tumor cells from the primary tumor 
to the circulation. Removal of the primary LLC was found to 
decrease the circulating angiogenesis inhibitor angiostatin, 
resulting in rapid growth of lung metastasis (21). In the present 
study, mice were treated for 15 days with oral daily etoposide 
(80 mg/kg/day) or vehicle after removal of the primary LLC. 
In mice treated with vehicle, growing invasive metastasis 
almost entirely replaced the normal lung tissue, leading to 
lung weights in these mice of 505±42 mg. In marked contrast, 
mice treated with oral etoposide (80 mg/kg/day) had a lung 
weight of 216±19 mg vs. normal lung weights of 152±10 mg 
(Fig. 4G). 

Etoposide has synergistic anti-tumor activity with oral anti-
angiogenic drugs, including celecoxib and rosiglitazone. 
To determine whether combining other classes of drugs 
improves the anti-tumor efficacy of etoposide, we utilized 
the cyclooxygenase-2 (COX2) inhibitor, celecoxib and 
peroxisome-proliferator activated receptor (PPAR)γ ligand 
rosiglitazone, which are both orally administered and target 
endothelial and tumor cells (22,27). We administered cele-
coxib, rosiglitazone and either etoposide or cyclophosphamide 
at the lowest doses necessary for minimal anti-tumor effect. 
Oral celecoxib (30 mg/kg/day) significantly enhanced the anti-
tumor activity of low-dose oral etoposide (10 mg/kg/day) by 
42% (Fig. 5A). When combined, PPARγ agonist rosiglitazone 
(50 mg/kg/day) and celecoxib (30 mg/kg/day) enhanced the 
anti-tumor activity of low-dose oral etoposide (10 mg/kg/day) 
by 69% (Fig. 5B), with no evidence of drug-related toxicity.

Discussion

Most chemotherapy regimens are associated with significant 
toxicity when administered at maximum tolerated doses. 
There is now increasing evidence that multi-drug-resistant 
tumors are effectively targeted by anti-angiogenic chemo-
therapy (1,2), in which low doses of cytotoxic drugs are given 
at close, regular intervals, with minimal toxic side effects (4). 
Therefore, standard chemotherapeutic agents, when modified 
by frequency and dose, target tumor angiogenesis. The mech-
anism by which cytotoxic chemotherapy affects the tumor 
vasculature may include selective killing of endothelial cells, 
suppression of circulating endothelial precursor cells and/or 
increasing levels of the endogenous angiogenesis inhibitors, 
such as thrombospondin-1 (4,28-31), and decreasing levels of 
angiogenesis stimulators, such as VEGF.

Oral etoposide, a chemotherapeutic drug, is an active agent 
in the treatment of various malignancies, including recurrent 
brain tumors, leukemia, lymphoma, hepatocellular carcinoma, 
Kaposi's sarcoma, ovarian and testicular cancer (13,32-34). 
Patients with small-cell lung cancer treated with a prolonged 
maintenance of low serum etoposide concentrations (>1 

µg/ml) were found to have a high response rate (35), while 
tumoricidal doses usually require >10 µg/ml (36). Multiple 
pre-clinical and clinical studies have shown that the anti-
tumor activity of etoposide is schedule-dependent, as smaller 
doses over several days or small daily doses result in higher 
response rates than single large doses (12,14,32,37). 

In addition to its effect on tumor cells, etoposide has been 
reported to reduce tumor angiogenesis in one of two renal 
cell carcinoma cell lines (38). Our studies support the role of 
etoposide in inhibiting angiogenesis in vitro and in vivo by 
decreasing VEGF production by tumor cells and microvessel 
density and increasing endostatin levels in vivo, consistent with 
other studies showing that etoposide increases the expression 
of biologically active endostatin in vitro (25). This increase 
in endostatin may explain in part the anti-tumor efficacy of 
etoposide (5). Results from our studies suggest that etoposide 
is an addition to the growing class of drugs that increase 
systemic endostatin levels, including tamoxifen, celecoxib 
and prednisolone plus salazosulphapyridine (in joint fluid) 
(39-41). 

Tumor angiogenesis involves various pathways, thereby 
providing multiple molecular targets for anti-angiogenic 
drugs. Despite the potential efficacy of anti-angiogenic drugs, 
when used as single agents, resistance occurs by various 
mechanisms (6,42). Therefore, there is an urgent need for 
multi-drug regimens in treating drug-resistant cancer in the 
clinic. Anti-angiogenic ‘metronomic’ chemotherapy with 
cyclophosphamide was shown to be synergistic with the 
thrombospondin peptide ABT-510 in suppressing tumor 
growth (43). Recent studies show synergy between PPARγ 
ligands, such as rosiglitazone, and platinum-based chemo-
therapeutic agents in inhibiting tumor growth (44). The use 
of oral etoposide in a number of combinations, such as with 
other angiogenesis inhibitors, chemotherapy and/or radiation, 
has demonstrated activity in mouse tumor models and patients 
(19,25,45,46). Our results show that etoposide has synergistic 
anti-tumor activity with COX2 inhibitors and PPARγ ligands. 
COX2 inhibitors, such as celecoxib, have both anti-angiogenic 
and anti-tumor activities (27); we previously demonstrated that 
the PPARγ ligand rosiglitazone inhibits primary tumor growth 
and metastasis by targeting the tumor endothelium (22). The 
mechanism by which etoposide inhibits tumor angiogenesis 
may complement the anti-angiogenic effects of COX2 and 
PPARγ ligands resulting in greater inhibition of endothelial 
proliferation and a decrease in VEGF secretion. 

Already, several human studies support the clinical 
relevance of oral etoposide. We recently incorporated etoposide 
as part of a four-drug anti-angiogenic chemotherapy regimen 
(thalidomide, celecoxib, etoposide and cyclophosphamide), 
which showed prolonged disease-free status in pediatric patients 
with recurrent or progressive cancer (7). Similarly, etoposide 
was part of a four-drug regimen named COMBAT (combined 
oral maintenance biodifferentiating and anti-angiogenic 
therapy), which was effective in solid tumors in children which 
had relapsed (9). This regimen included celecoxib, cis-retinoic 
acid, metronomic temozolomide and low-dose etoposide. 
Anti-angiogenic ‘metronomic’ chemotherapy is significantly 
cost-effective in the treatment of metastatic breast cancer (47). 
Therefore, oral etoposide, which is very well tolerated, may 
result in increased patient compliance; it can also be adminis-
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tered on an outpatient basis, thereby reducing costs, which is 
becoming an important issue (48,49). 

Our studies suggest that etoposide may be beneficial in 
treating angiogenic diseases, such as cancer, because of its 
effect on the endothelium and on angiogenesis pathways. 
Moreover, the endothelium is also an important target in 
the treatment of non-neoplastic diseases, such as arthritis, 
psoriasis and endometriosis. In fact, suboptimal doses of 
etoposide were found to improve collagen II-induced arthritis 
without monocyte depletion (50). As an orally administered 
FDA-approved drug, etoposide is ideally suited for use in 
combination with other anti-angiogenesis regimes and can 
complement conventional cancer treatment modalities. 
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