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Abstract. Mitochondria and Fas (CD95) play a role in 
tumorigenicity and apoptosis. In the present study, the 
functional relationship of mitochondria to Fas in mediating 
apoptosis was investigated. Glioblastoma cells (DBTRG-
O5MG, U87) were depleted of mitochondrial DNA (mtDNA) 
by treatment with ethidium bromide (Rho- cells). Compared 
to Rho+ cells, Rho- cells showed enhanced expression of Fas 
at the cell surface. Indeed, when Rho+ cells were treated with 
mitochondrial respiratory chain complex inhibitors, Fas cell 
surface expression was noted to increase in a similar fashion 
to the depletion of mtDNA in both cell lines. However, 
when cells were evaluated for sensitivity to apoptosis using 
Fas-engagement, there was no difference between the Rho+ 
and Rho- cells in either cell line. By contrast, sensitivity to the 
cytotoxic agent cis‑diammine-dichloroplatinum (cisplatin) was 
markedly increased in the Rho- cells, which expressed higher 
levels of cell surface Fas. Expression of Fas is increased with 
the depletion of mtDNA and respiratory complex inhibitors. 
However, this increase in expression does not necessarily 
translate to an increase in sensitivity to Fas-engagement, 
although there is an increase in the sensitivity of depleted 
cells to cytotoxic agents such as cisplatin.

Introduction

The role of mitochondria in the initiation of apoptosis in a 
number of studies is well documented (1-4). A reduction in 
mitochondrial transmembrane potential (ΔΨm) has been 
observed before the manifestation of nuclear apoptosis in 
certain cell types (2,6-11), and nuclear apoptosis is inhibited 
by the stabilization of ΔΨm (12-16). Additionally, mitochon-
dria have been shown to harbor apoptogenic molecules, such 
as SMAC/DIABLO, HTRA2, cytochrome c, caspases and AIF 
(apoptosis-inducing factor), liberating such molecules into 
the cytosol to participate in the apoptotic process (13,17-22). 

By contrast, there are also reports of non-ΔΨm‑dependent 
apoptosis (23), and studies indicating that mitochondria may 
be implicated in cell death suppression (24).

Fas (CD95), a type I transmembrane protein, consists of 
a cell surface receptor which transduces death signaling in a 
wide variety of cells upon stimulation by the Fas ligand or 
agonistic Fas antibodies (25-32). Changes in sensitivity to 
apoptosis mediated by Fas have been linked to a lack of cell 
surface Fas, overexpression of Bcl-2 family members, altera-
tion in Fas intracellular signaling pathways, existence of Fas 
as a soluble protein, and expression of inhibitory factor(s) 
(28,33-39). However, it has been revealed that mere expression 
of Fas and Bcl-2 (or Bcl-2-like molecules) is not predictive of 
biological responsiveness (40). Insensitivity of the Fas receptor 
to anti-Fas antibodies has been suggested to be a consequence 
of mitogen-activated protein kinase activation by the Fas 
receptor, which in turn interferes with caspase activation (41). 
It has also been demonstrated that Fas activates cells to die 
with or without the involvement of mitochondria (42).

Proteins encoded by mitochondrial DNA (mtDNA) are also 
implicated in the sensitivity to and execution of apoptosis, and 
may be critical in the initiation of growth arrest and apoptosis 
(43). By contrast, it has been shown that neither the apoptosis 
nor the protective effect of Bcl-2-type proteins depend on 
mitochondrial respiration (44-48). The elimination of mito-
chondrial oxidative metabolism has been found to inhibit not 
only tumor necrosis factor (TNF)-mediated cytotoxicity, but 
also to reduce the TNF-mediated gene regulatory signaling 
pathways (49). However, in cells depleted of mtDNA, a dimin-
ished tumorigenic phenotype and an increased sensitivity to 
cytotoxic drugs was noted (50-52). Other studies have reported 
that anti-mitochondrial agents chemosensitized glioblastoma 
(GBM) cells to cytotoxic agents (52).

The present study was undertaken to investigate the rela-
tionship between Fas and mitochondria in mediating apoptosis 
in GBM cells. The cell surface expression of Fas was evalu-
ated in GBM cells upon the depletion of mtDNA, and in cells 
treated with mitochondrial respiratory chain complex inhibitors. 
Sensitivity to Fas antibodies and cis-diammine-dichloroplatinum 
(cisplatin) was determined in order to evaluate whether altera-
tions in Fas expression lead to changes in response to the death 
inducers upon mtDNA depletion. The results suggest that the 
expression of cell surface Fas is not necessarily predictive 
of biological responsiveness. In addition, the response of 
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cells to cytotoxic agents, such as cisplatin, is distinct to that 
of anti-Fas antibodies, despite similar alterations at the mito-
chondrial level.

Materials and methods

Cell culture. The GBM cell line DBTRG-O5MG was a gift 
from Dr Carol Kruse (Sanford Burnham Institute). The U87 
cell line was purchased from ATCC (Rockville, MA, USA). 
The DBTRG-O5MG and U87 cell lines were cultured in 
RPMI-1640 supplemented with 10% FBS, 10,000 U/1 of 
penicillin-streptomycin, 4.5 g/1 glucose, 50 µg/ml uridine and 
1 mM pyruvate. Cells were maintained at 37˚C in 5% CO2. 
All culture mediums and supplements were obtained from 
Life Technologies Inc., Gaithersburg, MD, USA.

Generation of Rho- cells. Rho- cells were generated from 
DBTRG-05MG and U87 cells by depletion of their mtDNA in 
culture medium containing 30 ng/ml EtBr (Sigma Chemical 
Company, St. Louis, MO, USA). After at least 30 cell divisions, 
the Rho- status of the cells was established by determining the 
loss of mtDNA by PCR and by the auxotrophic dependence of 
the cells on pyruvate and uridine. Cells were harvested and total 
DNA was subjected to PCR (25 cycles) using the following set 
of primers: MT-B (forward) 5'-GGAACAAGCATCAAG 
CAC-3' and MT-B' (reverse) 5'-GGCCATGGGTATGTTGTT-3' 
(Genosys Biotechnologies Inc., The Woodlands, TX, USA) as 
previously described (47). Auxotrophy on uridine and pyruvate 
for survival, a characteristic feature of Rho- cells (53), also 
confirmed the Rho- status of the cells.

Anti-Fas and cisplatin-mediated apoptosis. Cells were plated in 
96-well plates at 2x104 (DBTRG-O5MG) or 4x104 (U87). After 
the cells were allowed to adhere for 2-4 h, media were replaced 
with fresh complete medium, and cells were incubated with 
various concentrations of mouse monoclonal anti-Fas antibodies 
(clone CH-11; Upstate Biotechnology, Lake Placid, NY, USA) 
for 24 h (U87) or 72 h (DBTRG-O5MG). Wells containing no 
treatment or mouse IgM (Sigma Chemical Company) served as 
controls. Cells were harvested, washed in PBS and incubated at 
4˚C overnight in hypotonic fluorochrome solution (0.1% sodium 
citrate, 0.1% Triton X-100 and 50 µg/ml propidium iodide). 
A FACScan flowcytometer (Coulter, Miami, FL, USA) was 
used to quantify the percentage of cells undergoing apoptosis 
as previously described (54). Nuclei that fluoresced below the 
G1 DNA represented apoptotic nuclei and are presented as the 
percentage of apoptosis (5,000 gated events). Death induced by 
cisplatin (Sigma Chemical Company) was analyzed as above by 
incubating 4x104 cells with 20 µM cisplatin for 42-48 h. Wells 
with vehicle alone served as controls.

Cell surface Fas expression. Fas expression at the cell surface 
was analyzed using flow cytometry. Adherent cells were 
disassociated into a single-cell suspension with 10 mM EDTA 
in PBS. The cells were then pelleted, washed once in PBS 
and resuspended in flow cytometry buffer (PBS containing 
1% FBS). Cells (106) were incubated with anti-Fas antibodies 
or an isotype (20 µg/ml) in flow cytometry buffer for 30 min 
on ice. Cells were then washed with  flow cytometry buffer, 
incubated with FITC-conjugated anti-mouse IgG for 30 min 

on ice, washed once with flow cytometry buffer, resuspended 
in flow cytometry buffer and analyzed using a FACScan flow 
cytometer. A minimum of 20,000 gated events per sample 
was analyzed.

Treatment of cells with mitochondrial respiratory chain 
complex inhibitors. DBTRG-O5MG and U87 cells were incu-
bated with non-lethal concentrations of rotenone (0.098 µM), 
thenoyltrifluoroacetone (31.25 µM), antimycin  A (12.5 µM), 
sodium azide (500 µM), oligomycin B (1.56 µM) and membrane 
potential disrupting agent valinomycin (0.0037 µM). After 24 h, 
Fas expression on the cell surface was determined as noted. 
A non-lethal concentration of these inhibitors was previously 
determined by clonogenic survival assay of the cells treated 
with various concentrations of each of the inhibitors (data not 
shown). To assess the inhibition of the mitochondrial function 
by mitochondrial complex inhibitors, cytochrome c oxidase 
activity was measured by treating the isolated mitochondria 
with one of the complex inhibitors (500 µM sodium azide). All 
chemicals used were from Sigma Chemical Company.

Isolation and purification of mitochondria. Mitochondria were 
isolated as described (4). Briefly, cells were harvested, washed 
and stored at -70˚C until use for the isolation of mitochondria. 
Cells were then resuspended in ice-cold buffer (250  mM 
sucrose, 20 mM HEPES-NaOH, 10 mM KCl, 1.5 mM MgCl2, 
1 mM EDTA, 1 mM DTT, 17 µg/ml phenylmethylsulfo-
nylfluoride, 8 µg/ml aprotinin, 2 µg/ml leupeptin, 1  µg/ml 
chymostatin, 1 µg/ml pepstatin and 1 µg/ml  antipain). Cells 
were homogenized using a tight fitting dounce homogenizer, 
20-30 strokes on ice. After pelleting the nuclei and unlysed 
cells at 100 x g for 10 min at 4˚C in a refrigerated microcen-
trifuge (Savant Instruments, Inc., Farmingdale, NY, USA), the 
mitochondria were pelleted at 10,000 x g for 25 min at 4˚C 
in an ultracentrifuge (Beckman Instruments Inc., Palo Alto, 
CA, USA). Mitochondria that banded at a density of 1.035 (as 
monitored by density marker beads) were collected.

SDS PAGE and Western blotting. Proteins of mitochondria and 
the whole cell homogenate were estimated using bicinchoninic 
acid (Sigma Chemical Company). Crude mitochondria, whole 
cell homogenate and aliquots of purified mitochondria (50 µg) 
were boiled in Laemmli sample buffer and separated using 
12% SDS PAGE. Proteins were blotted onto nitrocellulose, 
and the Fas protein was detected using rabbit polyclonal 
anti-Fas antibody (C-20; Santa Cruz Biotechnology, Inc., 
Santa Cruz, CA, USA) at a 1:1,000 dilution. A goat anti-rabbit 
antibody conjugated with horseradish peroxidase (Santa Cruz 
Biotechnology) was used at a 1:10,000 dilution to detect 
immunoreactive proteins, which were visualized by enhanced 
chemoluminescence (Amersham Pharmacia Biotech Inc., 
Piscataway, NJ, USA).

Determination of ATP levels. ATP levels were determined 
using the Sigma kit 366 (Sigma Chemical Company) according 
to the manufacturer's instructions, with 106 cells.

Statistics. The results were calculated as the arithmetic mean 
± SEM. The student's t-test was used to compare the groups. 
p<0.05 was regarded as significant.
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Results

Characterization of Rho- cells 
PCR. DBTRG-05MG and U87 cells were depleted of the 

mtDNA by culturing in a medium containing 30 ng/ml EtBr. 
The Rho- status of the mtDNA-depleted DBTRG-05MG and 
U87 cells was determined by PCR using a mitochondrial-
specific DNA primer. A 2.6-kb mtDNA amplified from the 
DNA of Rho+ cells was not observed from the DNA of the 
mtDNA-depleted DBTRG-O5MG and U87 cells by PCR; 
the identity of the PCR-amplified products was confirmed by 
sequencing (data not shown). These results indicate that the 
Rho- DBTRG-05MG and U87 cells did not harbor mtDNA.

Auxotrophy to uridine and pyruvate. The mtDNA-depleted 
cells were evaluated for auxotrophic dependence on uridine 
and pyruvate. The mtDNA-depleted cells died after 7-10 days 
in the culture medium lacking uridine and pyruvate. The 
Rho+ cells continued to divide and propagate during the entire 
period when loss of viability was noted in the respective Rho- 
cells. Taken together, these results confirm the Rho- status of 
EtBr-treated DBTRG-05MG and U87 cells.

Measurement of ATP levels. In order to assess the effect of 
the loss of mtDNA on ATP levels, cellular ATP was measured 

in the DBTRG-05MG and U87 Rho+ cells and their respective 
Rho- cells (Table I). The ATP levels of DBTRG-05MG Rho+ 
and Rho- cells were 14.7±0.33 and 12.7±1.33 µg/106  cells, 
respectively, and the ATP levels of U87 Rho+ and Rho- cells 
were 16.3±1.20 and 14.3±1.45 µg/106 cells, respectively. No 
significant differences were detected in the amount of ATP in 
Rho- cells as compared to their respective Rho+ cells.

Evaluation of cell surface Fas. The cell surface expression 
of Fas was determined in the Rho+ and Rho- cells in order 
to assess its association with the depletion of mtDNA. Fas 
expression on the cell surface was found to be enhanced in 
the Rho- DBTRG-O5MG and U87 cells as compared to their 
respective Rho+ cells (Fig. 1). There was a 2.7-fold increase 
in the cell surface expression of Fas in the U87 Rho- cells 
(p<0.0001) and a 19% increase in surface Fas in the DBTRG-
O5MG Rho- cells (p<0.045) as compared to the Rho+ cells. 

DBTRG-O5MG and U87 Rho+ cells were then treated 
with mitochondrial respiratory chain complex inhibitors 
(Table  II ). Treatment with rotenone increased the level of 
Fas in the U87 cells by 70% (p<0.0001) and in the DBTRG-
O5MG cells by 35% (p<0.0161) as compared to the untreated 
cells. Valinomycin was also observed to increase Fas expres-
sion by over 30% in both cell lines (p<0.001, U87 cells; 
p<0.007, DBTRG-05MG cells) as compared to untreated cells. 
Moreover, antimycin A increased the level of Fas in the U87 
cells (48%, p<0.0012), and oligomycin B increased the cell 
surface Fas in the DBTRG-05MG cells (37%, p<0.001). These 
results suggest that the depletion of mtDNA and the inhibition 
of mitochondrial respiratory chain complex function alter the 
expression of Fas at the surface of glioma cells. 

Effect of anti-Fas antibodies on DBTRG-O5MG and U87 
cells. Fas-mediated apoptosis was evaluated in the Rho+ and 
mtDNA-depleted DBTRG-O5MG and U87 cells by FACS 
analysis after the cells were subjected to apoptosis-inducing 
anti-Fas antibodies (Fig. 2). Sensitivity of the DBTRG-O5MG 
cells to anti-Fas antibodies at a concentration ranging between 
15 and 1,000 ng/ml was similar in the Rho+ and Rho- cells 
(Fig. 2A). Similarly, in the U87 Rho- cells, the percentage of 
cells undergoing apoptosis when treated with anti-Fas anti-

  B

  A

Figure 1. Fas expression in the  (A) U87 and (B) DBTRG-O5MG glioma 
cell lines. Rho- cells expressed higher levels of Fas compared to the parental 
Rho+ cells, as determined by flow cytometry (*p<0.045, **p<0.0001). 

Table II. Effect of mitochondrial complex inhibitors on the 
surface expression of Fas. 

Treatment	 Mean % increase	 Significance (p-value
	 over control	 vs. untreated cells)
	 ------------------------------------	 ----------------------------------------
	U 87	D BTRG-	U 87	D BTRG-
		  O5MG		  O5MG

Rotenone	 70	 35	 0.0001	 0.0161
Antimycin A	 48	 -	 0.0012	N S
Oligomycin	 -	 37	 -	 0.0010
Valinomycin	 43	 32	 0.0070	 0.0010
 
NS, not significant.
 

Table I. Cellular ATP levels.

Cells	R ho+	R ho-

U87	 16.3±1.20	 14.3±1.45
DBTRG-O5MG	 14.7±0.33	 12.7±1.33 

Values expressed as µg/106 cells.
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bodies was not significantly different compared to the Rho+ 
cells (Fig. 2B). 

Sensitivity of DBTRG-O5MG and U87 Rho+ and their respec‑
tive Rho- cells to cisplatin. In order to assess the sensitivity of 
DBTRG-05MG and U87 Rho+ and their respective Rho- cells 
to cytotoxic agents, cells were treated with cisplatin (20 µM) 
and subjected to FACS analysis (Fig. 3). DBTRG-O5MG and 
U87 Rho- cells were more sensitive to the apoptosis-inducing 
effects of cisplatin; the U87 Rho- cells revealed a 4-fold and 
the DBTRG-O5MG cells a 2-fold increase in sensitivity 

to apoptosis compared to the Rho+ cells at 20   µM. Taken 
together, these results suggest that the depletion of mtDNA 
leads to an increased sensitivity of Rho- cells to cisplatin. 

Fas protein and mitochondria. Western blot analysis of the 
mitochondria and whole cell homogenate using Fas antibodies 
revealed a predominant 43-kDa Fas protein band (with associ-
ated glycoforms) in both the DBTRG-O5MG and U87 glioma 
cells (Fig. 4A). With percoll purification of mitochondria 
alone, similar bands were noted in the immunoblots when 
probed with the anti-Fas antibody (Fig. 4C); probes to cyto-
chrome c identified the mitochondrial fraction (Fig. 4B), while 
probes to actin did not reveal staining (data not shown).

Discussion

Previous studies suggest an involvement of mtDNA in 
sensitivity to apoptosis (43,50-52). The present study was 
undertaken to assess the relationship between mitochondria 
and Fas in mediating apoptosis. We found that, while the 
depletion of mtDNA was associated with an increase in surface 
Fas in both GBM cell lines, sensitivity to anti-Fas antibodies 
was not increased in the Rho- cells as compared to the Rho+ 
cells. However, the sensitivity to cisplatin was increased in the 
Rho- cells as compared to the Rho+ cells, in agreement with 
results from previous studies (50,51). There may be several 
reasons for this observation. The degree of sensitivity to 
Fas-mediated apoptosis is reported to be dependent on several 
factors, including expression of the functional Fas molecule 
on the cell surface (56,57), mutations in the death domain of 
Fas (33), expression of soluble Fas (34), reduced expression of 
Fas (27), intracellular signaling cascade activation upon Fas 
ligation (40,58), expression of the components of DISC and 
inhibition of essential signaling pathways (28,32,35‑39,41). 
It has been revealed that, although Fas antigen is expressed 
on numerous myeloma cell lines, only some respond to the 
anti-Fas/Fas-ligand (59,60). Indeed, although the mechanism 
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Figure 2. Fas-mediated apoptosis of the (A) U87 and (B) DBTRG-O5MG 
glioma cell lines. Rho+ and Rho- cells were treated with the anti-Fas anti-
body CH11 to induce apoptosis; no difference was noted in the apoptosis 
dose response between cells that harbored mtDNA and those that were 
depleted of mtDNA. 

Figure 3. Cisplatin (CDDP)-induced apoptosis of the (A) U87 and (B) 
DBTRG-O5MG glioma cell lines. Rho+ and Rho- cells were exposed to 
20  µM CDDP. Both Rho- cell lines revealed increased sensitivity to the 
effects of CDDP (*p<0.0001).
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Figure 4. Western blots of protein fractions obtained from glioma cells. 
Mitochondria were isolated and purified from glioma cell lines. (A) Crude 
homogenates including the mitochondrial fraction. (B) Percoll purified 
mitochondrial fraction probed with cytochrome c oxidase antibody. (C) 
Percoll-purified mitochondrial fraction probed with anti-Fas antibody. 
Prominent Fas staining was observed. 

  C
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for increased Fas expression with no concomitant increase in 
sensitivity to anti-Fas antibodies is not clearly understood, it 
is possible that the observed increases in Fas expression do 
not result in enhanced death due to saturation of signaling 
pathways or overexpression of functionally inactive Fas. It 
can also be speculated that the inhibition of mitochondria via 
Rho- status in these glioma cells also reduces the release of 
intrinsic factors, including SMAC/DIABLO and/or Htra2; in 
this way, the inhibition of XIAP is released, thus inhibiting 
caspase-3 and -7 either before or after Fas-induced activation 
via DISC/caspase-8 and -10. It would be anticipated that the 
linkage to the intrinsic pathway via truncated BID to BAK 
and BAX might be impaired at the level of mitochondria due 
to Rho- status. Nonetheless, the fact that cisplatin-induced 
apoptosis still occurs – and with higher levels of sensitivity 
in Rho- vs. Rho+ cells – suggests that the mechanism of at 
least the cytotoxic drug-induced apoptosis is intact, and the 
mitochondria, acting as a ‘rheostat’ to sensitivity at least at 
the level of the intrinsic pathway, continue to be maintained. 
The expression of components of the Fas signaling pathway 
in Rho- cells is being investigated in order to determine the 
mechanism of the observed ineffective death signaling by Fas 
in Rho- cells. 

Notably, in a functional model of Rho- cells, Leber hereditary 
optic neuropathy tissues with mutations at mtDNA positions 
11778 and 3460 were found to have increased sensitivity to the 
engagement of Fas compared to normal tissue controls (61). 
This suggests that mitochondrial dysfunction at the level of the 
tumor cell may not be sufficient to facilitate apoptosis in such 
cells per se, but may be in such mitochondrial diseases. This 
may be related to more complex factors, including the BAX/
BCL2 ratio (62) or the release of mitochondrial apoptosis 
factors (63). Furthermore, although the up-regulation of Fas 
was noted in cells treated with cisplatin and other cytotoxic 
agents (64-67), drug-induced apoptosis occurs independently 
of the Fas/Fas ligand system (68-70). The increased sensitivity 
to cisplatin of the Rho- DBTRG-O5MG and U87 cells appears 
to be independent of the enhanced Fas expression and, in these 
GBM cells, confirms previous studies in Rho- cells (50-52).

Treatment of Rho+ cells with mitochondrial respiratory 
chain complex inhibitors enhanced the levels of cell surface 
Fas expression. The variation of response, both at the level of 
the different degrees of Fas expression noted vs. Rho- cells and 
between the independent pharmacologic inhibitors, may be a 
result of the dose of complex inhibitors used, which allowed 
cells to survive. Moreover, differential effects of antimycin A 
and oligomycin B observed on the GBM cells may be due to 
the respective amounts of functional protein present and/or 
due to deletions and mutations in mtDNA. Nonetheless, these 
observations support the increased expression of Fas on the 
surface of Rho- cells, depleted of mtDNA. Indeed, cells with 
impaired mitochondrial function were found to have increased 
levels of Fas mRNA (71), corroborating the present observa-
tions.

Due to the relationship between mtDNA status and Fas 
surface expression, we evaluated the localization of Fas to the 
mitochondrial protein fraction as determined by whole cell 
homogenates and percoll-purified mitochondria. Notably, Fas 
was found to segregate with mitochondrial protein in the puri-
fied percoll fraction. While it is only speculated on the role 

of Fas therein, many proteins associated with apoptosis are 
found within the mitochondria (22). The ability of the mito-
chondria to regulate manifestations of the extrinsic pathway is 
related to the mitochondrial distribution of Fas; there is both 
supporting (42,71) and refuting (24,34) evidence to this effect. 
Further evaluation of the relationship(s) between the extrinsic 
and intrinsic pathways of apoptosis, particularly in relation to 
Fas protein expression, is of interest in this regard.

In conclusion, our studies show that the depletion of mtDNA 
alters the expression of cell surface Fas. This is supported by 
the results obtained upon treatment of the parental cells (Rho+) 
with mitochondrial respiratory chain complex inhibitors, 
wherein altered expression of cell surface Fas was observed. 
The sensitivity of Rho- cells to cisplatin, but not to anti-Fas 
antibodies, was found to be enhanced when compared to Rho+ 
cells, despite similar alteration at the mitochondrial level.
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