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Abstract. Cutaneous malignant melanoma (MM) is rooted 
in the dermal connective tissue, which consists of apparently 
unremarkable stromal cells as they appear upon regular 
histopathological examination. However, a number of in vitro 
studies have shown that these cells produce diverse types of 
cytokines, growth factors and enzymes in excess. In addition, 
they store and probably release various structural components 
of the extracellular matrix (ECM). Most of the current informa-
tion comes from in vitro experiments, and these findings do not 
always correlate with investigations carried out using excised 
human MM tissue. The MM-stroma connection appears crucial 
to the regulation of neoplastic growth, invasiveness and initial 
metastatic spread. However, little is known about the in vivo 
intracellular storage and extracellular deposits of specific ECM 
macromolecules located inside and around MM lesions. This 
review summarizes various distinct features of the peri-MM 
stroma, which shows an intracytoplasmic abundance of Factor 
XIIIa, versican and various α (IV) collagen chains. The area 
exhibiting such changes corresponds to the location where 
neoangiogenesis commonly develops and where extravascular 
unicellular metastatic MM lesions are possibly found. Some 
of these inconspicuous migratory malignant melanocytes may 
actually correspond to MM stem cells. Their presence was 
found to be significantly associated with an increased risk for 
distant metastases, particularly in the sentinel lymph nodes. 
Although much remains to be learned, active intervention of 
the ECM appears likely in the inconspicuous early dermal 
metastatic migration of MM cells.
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1. Introduction

Cutaneous malignant melanoma (MM) is basically an uncon-
trolled overgrowth of neoplastic melanocytes. At some stage of 
its progression, the neoplasm exhibits a high metastatic poten-
tial. It proves to be resistant to drug-induced apoptosis, which 
is believed to underlie the resistance of MM to conventional 
chemotherapy and radiotherapy (1,2). Various interactions 
exist between MM cells and other biological systems, including 
immune cells, vascularity, contiguous stromal cells and 
the dermal extracellular matrix (ECM). Certain aspects of 
MM-stroma interactions are thought to be associated with 
disease prognosis (3). In addition, environmental influences, 
including ultraviolet (UV) light, are probably responsible for 
MM initiation and may support its progression along with the 
intervention of diverse autocrine and paracrine factors (4). In 
particular, a number of growth factors and specific enzymes 
are released in the MM microenvironment (5-7).

The participation of the host in the ‘cancer micro
ecosystem’ basically involves the microvasculature, stromal 
cells and specific immune reactions (8-10). Angiogenesis is 
a typical host-mediated response to many cancers. It appears 
crucial for cancer progression, as blood vessels deliver nutrients 
and oxygen to neoplastic cells (11). Furthermore, the microvas-
culature likely allows communication between the primary MM 
and its metastases. Pro-angiogenic molecules originate from 
cancer cells as well as from the stroma. The relative contribu-
tion of both compartments is likely to change with MM type 
and site, and is balanced by other factors as well (11,12). 

Cross-talk between MM and stromal cells may be mediated 
through direct heterotypic cell-cell contacts, adhesion 
molecules, signaling factors, and other secreted molecules 
consisting of growth factors, cytokines, chemokines, ECM 
proteins, proteinases, proteinase inhibitors and lipid products 
(13). Conceptually, the MM microenvironment is crucial for 
the maintenance of cellular functions and tissue integrity, 
suggesting that a cancer-induced change in the ECM may 
contribute to cancer invasion (14). Any alteration in the MM 
stroma may be due to an imbalance in the cytokine profile, 
resulting from oncogenic changes in the cancer cells. In 
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particular, experimental animal models have demonstrated 
that cancer invasion is stimulated by the wound-healing 
stroma (15).

Both stromal cells and the ECM located beneath primary 
MM lesions are therefore likely involved in the process of 
invasion of the neoplasm and in the early dissemination of 
micrometastases associated or not with neoangiogenesis 
(2,10,16-19). These characteristics are possibly associated with 
phenotypic changes in the stromal cells in the MM vicinity. In 
recent years, tumor growth regulation by ECM components 
has been one of the main topics of neoplastic biology research.

2. Materials and methods

This study is a review of current peer-reviewed publica-
tions admixed with personal original findings from a series 
of 400 MM cases with a thickness ranging between 0.4 and 
1.0 mm (median 0.83) that were retrieved from our files. The 
microscopic diagnosis was previously established by a group 
of three dermatopathologists. Immunohistochemistry was 
performed as previously described (20-23). In short, samples 
were fixed in buffered formalin and embedded in paraffin. A 
series of 6-µm sections were prepared for immunohistochem-
istry. The avidin-biotin peroxidase method was used with the 
antibodies listed in Table I. After 1 h of incubation with each 
primary antibody, the slides were washed in Tris-buffered 
saline (TBS) and incubated for 30 min with the secondary 
antibody (biotinylated swine anti-rabbit, 1:300; Dakopatts 
Glostrup, Denmark). Slides were rinsed in TBS and covered 
by the EnVision (Dakopatts) polymer-based revelation system. 
After TBS washings, Fast Red (Dakopatts) was used as the 
chromogen substrate. The final steps consisted of counter-
staining with Mayer's hemalum and mounting in glycerin 
mounting medium (Dakopatts). Negative immunohistochem-
ical controls were performed by omitting or substituting the 
primary and the secondary antibodies from the laboratory 
procedure. 

3. Malignant melanoma micrometastases

A typical biological feature of human MM is the tremendous 
impact of the primary lesion thickness on prognosis. Primary 
MM <1 mm in thickness is associated with a high cure rate, 
sharply contrasting with thicker lesions associated with poorer 
prognosis. The apparent breakpoint beyond an ~1-mm thick-
ness is a discouraging factor in disease outcome. One possible 
reason appears to be linked to vascularization patterns of MM 
(11,12). Such an anatomic argument is persuasive, but it is by 
no means the only one. 

MM cells apparently fail to form metastases unless 
they present the genotypic and phenotypic information 
allowing them to effectively migrate in the ECM, intravasate, 
extravasate, cross interstitial basement membranes and prolif-
erate in distant tissue sites. These characteristics are expressed 
by variant subpopulations of metastatically competent MM 
cells present in primary neoplasms (2). These subpopula-
tions probably acquire a growth advantage at the primary 
site over time, so that they become a dominant proliferating 
population. At this stage, the MM truly expresses overt 
malignancy. As a result of this process of clonal dominance 

of metastatically competent cells, it is possible that most thin 
primary MM lesions contain very few, if any, metastatically 
competent cells, whereas thicker MM lesions may contain 
significant proportions of such cells. It is possible that the 
stromal microenvironment plays a role in such a shift in the 
biological profile of MM (24).

The four metastatic routes. In order to form metastases at 
distant sites, MM cells must acquire certain functions and 
properties in an ordered sequence referred to as the MM 
metastatic cascade. In order to form overt metastasis, this 
process must encompass hyperproliferation, detachment 
from the primary neoplasm, invasion into the peritumoral 
stroma and possibly penetration into blood and lymphatic 
vessels, survival in the circulation, adhesion to a vessel wall 
at the site of the final metastatic deposition, extravasation and 
proliferation (3).

The specific function involved in the metastatic cascade 
combines intrinsic characteristics of various MM cells and regu-
latory influences from the miroenvironment. Indeed, MM cells 
and their surrounding stroma jointly form a microecosystem 
receptive or not to early inconspicuous metastatic spread.

Early MM micrometastases are not discernable upon regular 
clinical or dermoscopic examination. They are disclosed under 
the microscope, particularly after highlighting their presence 
using immunohistochemistry (2,17). They are found in four 
distinct locations, namely i) inside lymph vessels, ii) inside 
blood vessels, iii) in a perivascular location just adjacent to the 
outer area of the endothelial lining, and iv) dispersed inside 
the stroma (10,16,18). The latter eventuality is not infrequently 
associated with neoangiogenesis, and an enhanced neoplastic 
germinative pool is commonly found (10,19).

The active migration of metastatic MM cells in the peri-
tumoral stroma is probably a complex process. It involves the 
active mobility of MM cells and changes in the neoplastic cell 
adherence systems with ECM components.

Melanoma stem cells. The presence of MM stem cells is an 
important consideration when investigating the characteristics 
of MM micrometastases and their relationship with the peritu-
moral stroma (10,22,25-27). Similar to physiological stem cells, 
cancer stem cells are capable of self-renewal and differentiation, 
and have the potential for indefinite proliferation, a function 
linked to MM growth (2,22,28). Although conventional anti-
cancer treatments may eradicate most malignant cells, they are 
potentially ineffective against chemoresistant cancer stem cells, 
which are ultimately responsible for tumor recurrence and 

Table I. Panel of antibodies.

Antigen	D ilution	 Source

α1 (IV) collagen	 1:25	A rnold I Caplan
α5 (IV) collagen	 1:25	 Weiselab
Elafin	   1:500	 Santa Cruz Biotechnology
Factor XIIIa	   1:100	N eomarkers
Lysozyme	   1:300	D ako
Versican	   1:500	 Seikagaku Corp.
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progression (2,10,25). MM shows tumor heterogeneity, undif-
ferentiated molecular signatures and increased tumorigenicity 
of MM subsets with embryonic-like differentiation plasticity. 
This strongly suggests the presence and involvement of MM 
stem cells in the initiation and propagation of this malignancy 
(25-27,29‑32). The ECM structure and biologic activity may 
influence the invasiveness and propagation of MM stem cells.

Micrometastases and the peri-melanoma stroma. When 
present, interstitial unicellular MM micrometastases are 
frequently found and confined to the perineoplastic stroma. 
Their presence is significantly correlated with the risk of 
involvement of the sentinel lymph node (17).

4. Stroma immunohistochemistry beneath malignant 
melanoma

Upon standard histopathological examination, stromal cells 
appear normal underneath primary MM lesions when partial 
regression is not operative. However, their differentiation as 
revealed by immunohistochemistry appears altered when 
compared to the surrounding skin. In particular, phenotypic 
changes are noted when identifying the transglutaminase 
Factor XIIIa, α (IV) collagen chains, as well as elafin and 
versican. It is possible, although not yet proven, that trans-
forming growth factor (TGF)-β1 and platelet-derived growth 
factor (PDGF) may play a role in the alteration of the stromal 
host compartment in MM.

Factor XIIIa-enriched stromal cells. Factor XIIIa-enriched 
stromal cells are commonly identified as dermal dendrocytes 
(DDs). They are preferentially found adjacent to superficial 
microvasculature (24,33-35). Increased numbers of Factor 
XIIIa-positive DDs are often found in the vicinity of most 
invasive cutaneous neoplasms. In our experience, Factor XIIIa-
positive DDs are numerous; they neighbor and infiltrate most 
thin MM lesions (24). By contrast, they are present in few 
numbers or even absent in thick primary MM lesions and their 
metastases (36-38). Circumstantial evidence indicates that the 
density of Factor XIIIa-positive DDs is correlated with a low 
proliferative rate of MM cells. Thus, Factor XIIIa-positive DDs 
may not be passive bystanders in MM (24,34,36). Their function 
may differ based on whether they are located in the stroma or 
inside the neoplasm (24). Intratumoral DDs may be associated 
with a growth-restricting role. By contrast, stromal DDs may 
help in the invasiveness and metastatic spread of MM cells.

Collagen IV-enriched stromal cells. In malignant neoplasms, 
basement membranes (BMs) are composite structures synthe-
sized by tumor cells or stromal cells; either by one of these 
two cell types yet dependent on the interactions between 
them, or a mixture from both origins. These tumoral BMs 
are often abnormal in their composition and ultrastruc-
tural features (39,40). BM material appears to accompany 
malignant cells rather than to prevent invasion as a physical 
barrier. Nevertheless, active interactions between neoplastic 
cells and stroma, in particular the ECM, play a key role in 
neoplastic progression leading to invasion and metastasis (41). 
Several BM components have been identified surrounding 
MM cells, including collagen IV (39,42-44). In the skin, 

collagen I V represents an assembly of α1 (IV) and α5 (IV) 
collagen chains. In MM, some neoplastic and stromal cells 
exhibit intracytoplasmic immunolabeling for α1 (IV) chains 
(44). The pattern is heterogeneous. BM components, including 
collagen IV, gradually disappear during the dermal ingrowth 
of MM cells. Notably, a minority of MM cases without any 
identifiable micrometastasis and a majority of MM with cuta-
neous micrometastasis show discrete cytoplasmic positivity 
for the α5 (IV) collagen chain (44).

Distribution of the α1 (IV) collagen chain in MM high-
lights the heterogeneity in both cell differentiation and 
stroma-MM interactions. Thus, MM cells appear to have 
their own individual potential to be enclosed by a BM and to 
interact with the stroma. This biological aspect may be related 
to neoplastic progression and may influence inconspicuous 
metastatic potential.

Versican-enriched stromal cells. Versican is a large proteo-
glycan normally present inside the stromal cells of the skin. 
The molecule belongs to the chondroitin sulfate family of 
the hyalectan group, named for its ability to bind hyaluronan 
(45). In mammals, versican appears as four possible spliced 
isoforms, V0 to V3. Little is known concerning the differential 
regulation of the isoforms or about their respective roles in 

Figure 1. Versican immunoreactivity in stromal cells adjacent to MM.

Figure 2. Versican immunoreactivity in a nest of MM cells.
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the ECM either normal or peritumoral. Versican production 
is deregulated in several types of human cancer (46). As it is 
largely expressed in rapidly growing neoplastic cells, it has 
been suggested that versican plays a direct role in cell prolifera-
tion and other cell functions (45). It appears to be particularly 
abundant in the stromal cell population underlying MM (Fig. 1) 
(46-49). Versican overexpression was found to sharply circum-
scribe to a cup-shaped structure cuffing the bottom of MM 
lesions. In addition, some nests of MM cells were found to be 
strongly labeled with the anti-versican antibody (Fig. 2). This 
finding contrasts with another study reporting the absence of 
versican immunoreactivity in neoplastic melanocytes (49). In 
addition, versican expression is not correlated with Breslow 
tumor thickness and Clark's level (49).

Elafin-, versican- and lysozyme-loaded ECM. Elastic fibres 
are coated with distinct molecules following chronic UV 
exposure (50-53). The serine anti-leukoprotease elafin, as well 
as versican and lysozyme, bind to elastin preventing elastolytic 
degradation by elastases on sun-exposed areas exhibiting solar 
elastosis (51,53,54). Under these conditions, the labeling was 
found to range from partial, moderate to strong. In addition, 
inhibition of elastase may decrease the adhesion of cancer 
cells to endothelial cells (55).

In addition, elafin was reported to elicit p53-dependent 
apoptosis in cultured MM cells transfected by a plasmid-
producing elafin under doxycycline boosting (56). In contrast 
to these in vitro experiments, immunohistochemistry did not 
disclose an intratumoral cell presence of elafin in human MM. 
Rather, keratinocytes covering MM overexpressed elafin in 
their cytoplasm. Of note, Western blotting and reverse tran-
scription analyses indicated transcriptional elafin repression 
in MM cells (56).

The implication of elafin in other diseases, such as 
psoriasis and graft-versus-host reaction, indicates its distinct 
importance in skin biology (57,58).

5. Discussion

This review highlights the existence of a distinct region of the 
dermis adjacent to the base of a primary MM lesion. Stromal 
cells exhibit particular phenotypic features suggesting altered 
functionality. The involved territory appears to be conducive 
to micrometastatic spread. Some of these cells survive singly, 
and due to their manner of migration to other organs may 
represent MM stem cells.

In addition to the importance of MM vascularization for 
tumor growth, invasiveness and metastatic spread (10-12,19,59), 
numerous other roles are ascribed to the tumoral stroma. This 
structure is involved in a constant remodeling following degra-
dation and repair of the ECM. Notably, immunohistochemistry 
highlights the direct implication of MM cells in the synthesis 
and/or storage of certain ECM molecular components.

The immunohistochemical characterization of MM cells 
is important (20,22,60-64), yet should be extended to the 
peritumoral stroma, including the microvasculature (10-12,59) 
and other ECM components. A comprehensive mapping of 
MM immunohistochemical characteristics should aid in iden-
tifying relevant targeted therapies (63-66).

Inflammatory cells and immunocytes represent another 
class of host cells that are regulated by the balance of cytokines. 
They perform counter-current invasion, from the circulation 
into the tumor, and provide routes for MM cell invasion. It is 
important for our understanding of MM stroma turnover that 
tumor-infiltrating leukocytes produce proteinases.

6. Conclusion

Interaction between MM and its stroma is evident during the 
invasive and metastatic stages of disease progression. Stromal 
cells are known to secrete metalloproteinases and their inhibi-
tors, growth factors, the scatter factor/hepatocyte growth 
factor and other factors, as well as participate in the growth 
and mobility of MM cells. In addition, other molecules are 
synthesized and overexpressed by stromal cells and/or MM 
cells. Immunohistochemistry has identified Factor XIII-a, α1 
and α5 (IV) collagen chains, versican, elafin and lysozyme. 
These possibly influence the migration of MM cells, including 
their stem cells.

While MM cell motility cannot be directly assessed, there 
is circumstantial evidence indicating that motility is essential 
to MM progression and possibly of prognostic significance. 
Apart from the secretion and activation of enzymes altering 
the ECM, a variety of stromal alterations occur following 
overexpression of diverse ECM components. Molecular 
morphology yields evidence suggesting that the MM stroma 
plays an integral role in MM. Although much remains to be 
determined, the findings as described in the present review 
may have diagnostic and prognostic significance, which 
warrant further investigation.
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