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Abstract. The unfolded protein endoplasmic reticulum stress 
response has emerged as a cellular physiological target to 
invoke tumor cell killing due to its homeostatic and cytopro-
tective functions. In this study, thapsigargin and tunicamycin, 
two endoplasmic reticulum stress inducers, were investigated 
for their efficacy on glioblastomas. We demonstrate that clini-
cally relevant concentrations of thapsigargin and tunicamycin 
eliminate the glioblastoma cell reproductive capacity as a 
consequence of cell death. The mode of glioblastoma‑induced 
cell death was determined to be via apoptosis as supported 
by increased C/EBP homologous protein (CHOP) levels and 
caspase 3 activity, two proteins with established roles in endo-
plasmic reticulum stress-induced cell death. In conclusion, this 
study provides evidence that glioblastomas are responsive to 
endoplasmic reticulum stress induction as a cellular program 
to eradicate this tumor via programmed cell death.

Introduction

Glioblastomas are among the most chemo-resistant types 
of human cancers to treat clinically. The refractiveness of 
glioblastomas to chemotherapy treatment regimens may be 
attributed in part to the activation of a number of cytoprotective 
mechanisms in response to chemotherapeutic agents (1,2). One 
such cytoprotective mechanism that has emerged and received 
considerable attention as a contributing factor to the therapeutic 
resistance of a number of types of human cancer in general, 
and in glioblastomas in particular, is the unfolded protein 
endoplasmic reticulum stress response (3,4). The unfolded 
protein endoplasmic reticulum stress response fundamentally 
functions as an adaptive cellular program essential for normal 
cellular function and survival, that is triggered by the accumu-

lation of unfolded proteins in the endoplasmic reticulum due to 
a number of stress inducers, such as hypoxia, oxidative injury, 
glucose deprivation and aberrant calcium levels. However, if 
the stress applied to the endoplasmic reticulum is excessive 
and exceeds its ability to maintain homeostatic control, apop-
totic cell death ensues (3,4). Therefore, assessing the efficacy 
of agents that invoke endoplasmic reticulum stress for their 
utility as potential chemotherapeutic drugs that promote glio-
blastoma cell death should be given practical consideration.  
In support of this, a number of investigational studies have 
demonstrated the anti-tumorigenic effects of novel endo-
plasmic reticulum stress inducers in leukemia (5), stomach (6) 
and prostate cancer  (7). Furthermore, recent studies have 
established that glucose regulated protein 78 (GRP78), an 
endoplasmic reticulum chaperone with anti-apoptotic proper-
ties and a significant role in the unfolded protein endoplasmic 
reticulum stress response signaling pathway, is overexpressed 
in malignant gliomas (8-10).

To this end, in the present study, we examined two endo
plasmic reticulum stress inducers, thapsigargin and tunicamycin, 
for their anti-tumor properties on glioblastomas. Thapsigargin, 
an active component found in root extracts of the umbelliferous 
plant, Thapsia garganica, acts as a stress inducer by increasing 
the intracellular calcium concentration via the inhibition of 
calcium uptake into the endoplasmic reticulum by blocking 
its ATP‑dependent calcium pump  (11), while tunicamycin, 
a nucleoside antibiotic produced by several Streptomyces 
species, imposes cellular stress by inhibiting protein N-linked 
glycosylation, the first step in protein glycosylation (12). This 
study reveals that the endoplasmic reticulum stress inducers, 
thapsigargin and tunicamycin, promote glioblastoma cell death 
as a consequence of inducing the pro-apoptotic proteins, C/EBP 
homologous protein (CHOP) and caspase 3. 

Materials and methods

Cells, conditions and reagents. U373 and A172 glioblas-
toma cells were purchased from the American Type Culture 
Collection (Manassas, VA, USA). All cell lines were main-
tained in Dulbecco's modified Eagle's medium (DMEM)
(Invitrogen, Carlsbad, CA, USA) containing 10% fetal 
bovine serum (Invitrogen), 2 mM L-glutamine (Invitrogen), 
100 nM MEM non-essential amino acids (Invitrogen) and 
penicillin‑streptomycin (Invitrogen) at 37˚C and 5% CO2. 
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Thapsigargin and tunicamycin were purchased from Tocris 
(Ellisville, MO, USA).

Crystal violet cell proliferation assay
Dose response. Cells were plated in 12‑well plates, treated 
with 1, 5 and 10 µM thapsigargin or tunicamycin and allowed 
to incubate for 48 h [vehicle controls were treated with dimeth-
yl sulfoxide (DMSO)]. The tissue culture medium was then re-
moved, and the cell monolayer was fixed with 100% methanol 
for 5 min and stained with 0.5% crystal violet in 25% methanol 
for 10 min. The cells were then washed three times for 5 min 
each with distilled water to remove excess dye and allowed 
to dry overnight at room temperature. The incorporated dye 
was then solubilized in 0.1 M sodium citrate (Sigma-Aldrich, 
St. Louis, MO, USA) in 50% ethanol. Subsequently, 100 µl of 
treated and control samples were transferred to 96‑well plates 
and optical densities were read at 540  nm using an X-mark 
microplate absorbance spectrophotometer (BioRad, Hercules, 
CA, USA). 

Time course analysis. Cells were plated in 96‑well plates 
for 24 h, treated with 1 µM thapsigargin or tunicamycin and 
allowed to incubate for 1, 3 and 6 days at 37˚C. At the end 
of each time-point the cells were stained with crystal violet, 
solubilized with sodium citrate, and the optical densities were 
read as described above.

Clonogenic survival. Cells were plated for 24  h, treated 
with 1 µM and 250 nM thapsigargin, tunicamycin or DMSO 
(vehicle) and allowed to incubate at 37˚C for 10-14 days. At 
the termination of the incubation period, cells were fixed with 
absolute methanol, stained with 1% crystal violet for 10 min, 
rinsed in tap water and allowed to dry. Colonies, consisting 
of ≥50 cells, were then counted to determine the surviving 
fraction. 

Cell motility. Motility assays were conducted according to the 
manufacturer's instructions (Cell Biolabs Inc., San Diego, CA, 
USA). A cell suspension containing 0.5-1.0x106 cells/ml was 
prepared in serum‑free medium with the vehicle (DMSO), 
1 µM thapsigargin or 1 µM tunicamycin, while 500 µl of 
medium containing 10% fetal bovine serum were added to 
the lower chamber of the migration plate. A total of 300 µl 
of cell suspension containing vehicle, 1  µM thapsigargin 
or tunicamycin was then added to the inside of each insert 
and allowed to incubate for 24  h at 37˚C and 5% CO2. 
Subsequently, non‑migratory cells were removed from plate 
inserts (according to the manufacturer's instructions) and 
migratory cells were counterstained with cell staining solution 
(Cell Biolabs Inc.).

Western blotting. Cells were plated in serum‑free DMEM for 
24 h, treated with 1 µM thapsigargin, 1 µM tunicamycin or 
the vehicle, and allowed to incubate for 24 and 48 h. The cells 
were then lysed in lysis buffer (pH 6.8) containing 60 mM 
Tris and 2% SDS. Protein concentrations were determined 
using the Bradford method. Subsequently, protein samples 
were electrophoresed in a 4-12% Tris-HCl polyacrylamide gel, 
transferred to nitrocellulose membranes and immunoblotted 
with antibodies against CHOP (Cell Signaling, Danvers, 
MA, USA). Protein levels were detected using a horseradish 

peroxidase conjugated secondary antibody and the chemilu-
minescence detection system (Pierce, Rockford, IL, USA).

Detection of caspase activity. Cells were plated in serum‑free 
DMEM for 24 h, treated with 1 µM thapsigargin, 1 µM tunica-
mycin or the vehicle and allowed to incubate for 48 h. Cells 
were lysed in lysis buffer (pH 6.8) containing 60 mM Tris and 
2% SDS, and protein concentrations were determined using 
the Bradford method. Subsequently, caspase 3 activity assays 
were conducted according to manufacturer's instructions using 
30 µg of protein (Promega, Madison, WI, USA).

Results

Endoplasmic reticulum stress inducers impede glioblastoma 
cell production. Eliciting a hyper-stress response in the endo-
plasmic reticulum as a means of promoting anti-tumor cell 
behavior due to the accumulation of unfolded proteins or an 
unstable physiological cellular environment, such as increased 
intracellular calcium concentration, has been demonstrated 
in a variety of types of human cancer (13-17). In this study, 
we performed a comparative assessment of two endoplasmic 
reticulum stress inducers, thapsigargin and tunicamycin, 
with markedly different modes of stressing the endoplasmic 
reticulum for their anti-tumor properties on glioblastomas. 
Thapsigargin and tunicamycin were first examined for their 
effects on glioblastoma cells in dose‑response experiments. 
These experiments revealed a dose‑dependent decrease in 
glioblastoma cell proliferation in A172 and U373 cells exposed 
to increasing concentrations (1-10  µM) of thapsigargin or 
tunicamycin, as compared to the vehicle-treated control cells 
(Fig. 1). Dose response data also revealed that the inhibitory 
effects on A172 and U373 glioblastoma cell proliferation were 
more pronounced in the cells treated with 5-10 µM thapsigargin 
as compared to the cells treated with 5-10 µM tunicamycin. 
Additionally, A172 cells appeared to be more sensitive to endo-
plasmic reticulum stress as indicated by a 44±6 and 27±11% 
reduction in cell proliferation (compared to controls) when 
treated with 1 µM thapsigargin or tunicamycin, respectively, in 
comparison to the U373 cells treated with either endoplasmic 
reticulum stress inducer at the same concentration.

Figure 1. Dose response of thapsigargin and tunicamycin on A172 and U373 
glioblastoma cells. Vehicle-treated (DMSO) control cells (white bars); 10 µM 
(solid black bars); 5 µM (hatched bars); 1 µM (graybars). Data shown are 
representative of 3 independent experiments (means ± SE) performed in 
duplicate showing similar results (*p<0.05, Student's t‑test). DMSO, dimethyl 
sulfoxide; SE, standard error. 
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To further examine the inhibitory effects of thapsigargin 
and tunicamycin on glioblastoma cell production, clonogenic 
survival assays that measure cellular reproductive capacity at 
low cell plating densities were performed by treating A172 
and U373 cells with 1  µM thapsigargin or tunicamycin. 
This concentration was selected for its non-lethal effects on 
U373 cells, and showed an inhibitory concentration greater 
than 50 (>IC50) in A172 cells, as shown in the dose‑response 
experiments. Clonogenic survival experiments revealed that in 
comparison to the vehicle‑treated control cells, thapsigargin or 
tunicamycin completely abrogated colony formation of A172 
(Fig. 2) and U373 (Fig. 3) cells.

In addition to clonogenic survival experiments, time‑course 
experiments were performed as a means to determine the 
cellular behavior underlying the inhibition of glioblastoma cell 
proliferation in response to thapsigargin or tunicamycin expo-
sure (Fig. 4). Analysis of glioblastoma cell proliferation was 
conducted over a 6‑day period post-exposure to the vehicle, 
thapsigargin or tunicamycin. The most demonstrative effects of 
thapsigargin or tunicamycin on A172 and U373 cell production 
were observed on day 6, with a statistically significant (p<0.05) 
decrease in glioblastoma cell proliferation as compared to the 
vehicle-treated control cells examined at the same time-point 
(Fig. 4). Time course data also displayed a 28±4 and 52±4% 
reduction in A172 cell proliferation 6 days post-treatment with 
thapsigargin or tunicamycin, respectively, in comparison to 
A172 cell proliferation observed on day 0 (Fig. 4). A compara-
tive assessment between these same time-points in U373 cells 

Figure 2. Clonogenic survival of A172 glioblastoma cells treated with 
endoplasmic reticulum stress inducers. (A) Vehicle control (DMSO); (B) thap-
sigargin (1 µM); (C) tunicamycin (1 µM). Cells shown are of a single colony 
stained with crystal violet from a clonogenic survival experiment. Data shown 
are representative of at least 3 independent experiments (means ± SE) per-
formed in duplicate with comparable results (scale bar = 200 µm). DMSO, 
dimethyl sulfoxide; SE, standard error. 

Figure 3. Clonogenic survival of U373 glioblastoma cells treated with 
endoplasmic reticulum stress inducers. (A) Vehicle control (DMSO); (B) thap-
sigargin (1 µM); (C) tunicamycin (1 µM). Cells shown are of a single colony 
stained with crystal violet from a clonogenic survival experiment.  Data 
shown are representative of at least 3 independent experiments (means ± SE) 
performed in duplicate with comparable results (scale bar = 200 µm). DMSO, 
dimethyl sulfoxide; SE, standard error. 

Figure 4. Time course analysis of glioblastoma cell proliferation post‑expo-
sure to thapsigargin or tunicamycin. Cells were exposed on day 0 to solvent 
(DMSO), thapsigargin (1 µM) or tunicamycin (1 µM) and monitored for a 
period of 6 days. The proliferation curves displayed show that, when compared 
to the controls, glioblastoma cell proliferation is significantly reduced when 
treated with thapsigargin or tunicamycin. Data shown are representative of 
3 independent experiments (means ± SE) performed in duplicate displaying 
similar results (*p<0.05, Student's t‑test). DMSO, dimethyl sulfoxide; SE, stan-
dard error. 
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also revealed a decrease in cell proliferation 6 days post-treat-
ment with either thapsigargin or tunicamycin when compared 
to U373 cell proliferation on day 0 (Fig. 4). Taken together, 
the time course data presented here suggest that the overall 
inhibitory effect of thapsigargin and tunicamycin was due 
to glioblastoma cell death. These results are similar to those 
from other studies on several types of human cancer that also 
demonstrated that thapsigargin (18-21) and tunicamycin (22-24) 
promoted tumor cell death.

ER stress inducers increase CHOP expression and caspase 3 
activity. It is well established that the inability of the endoplasmic 
reticulum to activate compensatory mechanisms essential for 
cellular survival in response to stress will subsequently lead 
to apoptotic cell death  (3,4). CHOP, a basic-leucine zipper 
(bZIP) transcription factor, and caspase 3, a cysteine protease, 
are pro-apoptotic proteins known to play prominent roles in 
endoplasmic reticulum stress‑induced cell death (25,26). We 
therefore evaluated the protein expression levels of CHOP 
and caspase 3 in thapsigargin‑ and tunicamycin‑treated glio-
blastoma cells. A temporal analysis using immunoblotting 
procedures revealed an up-regulation of CHOP protein levels 
at 24 and 48 h in A172 and U373 cells treated with 1 µM thap-
sigargin or tunicamycin (Fig. 5). Caspase 3 activity assessment 
displayed a 2.6‑ and 1.43‑fold increase in caspase 3 activity at 
48 h in A172 cells treated with thapsigargin or tunicamycin, 
respectively, while a 1.32- and 1.30‑fold increase in caspase 
3 activity was observed at the same time-point in U373 cells 
treated with thapsigargin or tunicamycin (Fig. 6). Although our 
observations are consistent with previous ones on colon cancer, 
leukemia and neuroblastomas, which also demonstrated that 
thapsigargin or tunicamycin invoked CHOP expression or 
caspase 3 activity (24,27-30), few studies have shown the induc-
tion of both of these pro-apoptotic proteins in the same tumor 
type in response to single exposures of endoplasmic reticulum 
stress inducers with different modes of action. This suggests 
that glioblastomas are susceptible to endoplasmic reticulum 
stress‑induced cell death by diverse physiological stressors.

Effects of ER stress on glioblastoma cell motility. Glioblastomas 
are notoriously invasive tumors with high rates of recurrence, 

which are major factors contributing to their therapeutic 
refractiveness during clinical treatment (surgery, chemo- and 
radiotherapy) regimens. Few studies to date have investigated 
the role of the unfolded protein endoplasmic reticulum stress 
response in tumor cell motility and invasion. However, a study 
by Chiu et al  (31) on head and neck cancers revealed that 
silencing the function of the endoplasmic reticulum chaperone 
protein, GRP78, using siRNA reduced the metastatic potential 
of these cancers; thus, providing evidence for a role of the 
unfolded protein endoplasmic reticulum stress response in the 
metastatic invasion of tumor cells. Therefore, in this study, 
we examined the effects of thapsigargin and tunicamycin on 
glioblastoma cell motility, a prerequisite cellular program 
for invasive tumor cells. In contrast to the findings by Chiu 
et al (31), we did not observe antagonistic effects of thapsi-
gargin or tunicamycin on glioblastoma cell motility (Fig. 7), 
which is likely due to variations in the experimental approach 
and the differential mechanisms targeted.

Discussion

Targeting the unfolded protein endoplasmic reticulum stress 
response is a relatively avant-garde yet practical therapeutic 
approach for the treatment of human cancers. Human tumors 
and their microenvironment are in a continuous flux of imbal-
ance due to the presence of abnormally folded proteins and 
physiological instability, relating to fluctuations in pH and ion 
concentration, all of which invoke stress on tumor cells. As a 
survival mechanism, tumor cells respond via the activation of 
stress responders, such as GRP78/binding immunoglobulin 
protein (BiP), inositol-requiring enzyme 1α (IRE1α), protein 
kinase RNA-like endoplasmic reticulum kinase (PERK) and 
activating transcription factor 6 (ATF6) that collectively underlie 
the unfolded protein endoplasmic reticulum stress response 
and confer tumor cell cytoprotection (3,4). The involvement 

Figure 5. Western blot analysis of CHOP protein levels in glioblastoma cells 
treated with thapsigargin (1 µM) or tunicamyicin (1 µM). A172 cells (lanes 1-5); 
U373 cells (lanes 6-10). Vehicle-treated control cells (DMSO) (lanes 1 and 6); 
thapsigargin treatment for 24 h (lanes 2 and 7); thapsigargin treatment for 48 h 
(lanes 3 and 8); tunicamycin treatment for 24 h (lanes 4 and 9); tunicamycin 
treatment for 48 h (lanes 5 and 10). The images shown are representative of 3 
independent experiments performed in duplicate that displayed similar results. 
CHOP, C/EBP homologous protein; DMSO, dimethyl sulfoxide.

Figure 6. Assessment of caspase 3 activity in A172 and U373 glioblastoma 
cells in response to thapsigargin (1 µM) and tunicamycin (1 µM) exposure.  
Caspase protein activity was measured 48 h post-exposure to thapsigargin 
or tunicamycin (vehicle control, white bars; thapsigargin, black bars; tunica-
mycin, gray bars). Data are represented as an average of 3 separate independent 
experiments (means ± SE). SE, standard error.
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of cytoprotective stress responders in glioblastomas has been 
demonstrated in a number of recent investigations that together 
establish that high levels of GRP78 expression correlate with 
increased survival and drug resistance (8-10) in these tumors. 
However, studies to date have failed to demonstrate that antago-
nizing stress responder function, particularly GRP78, promotes 
glioblastoma cell death. 

The dichotomy of the unfolded protein endoplasmic retic-
ulum stress response is that stress exceeding the endoplasmic 
reticulum's capacity to promote cell survival will consequently 
result in cell death. To this end, in this study, we demonstrate 
that two endoplasmic reticulum stress inducers, thapsigargin 
and tunicamycin, promote glioblastoma cell death. Our find-
ings are consistent with those from previous studies on several 
human cancers that also showed that thapsigargin (prostate, 
breast, leukemia, and melanoma) (18-20,30,32) and tunica-
mycin (neuroblastoma and melanoma) induced tumor cell 
death (24,33).

It is well established that the mechanism affiliated with 
endoplasmic reticulum stress‑induced cell death is the 
activation of the transcription factor, CHOP, a downstream 
pro-apoptotic component of the IRE1α, PERK and ATF6 stress 
responder pathways (25). Concomitantly with glioblastoma cell 
death, we observed a significant increase in CHOP expression 
in response to endoplasmic recticulum stress inducers. These 
findings parallel those observed by Rosati et al (22) and Oda 

et al (24) who also detected increased CHOP expression levels 
in leukemia and neuroblastoma cells, respectively, in response 
to thapsigargin and tunicamycin. Although effector molecules 
of CHOP still remain somewhat elusive, its overexpression has 
been shown to lead to a decrease in the pro-survival protein, 
Bcl-2 (34), providing evidence that the pro-apoptotic functions 
of CHOP are associated with mitochondria‑dependent mecha-
nisms of cell death. Our data support this premise and were 
substantiated by observations of increased caspase 3 activity 
in glioblastoma cells treated with thapsigargin or tunicamycin.

In spite of the pro-apoptotic effects of endoplasmic retic-
ulum stress inducers on glioblastoma cell production observed 
in this study, thapsigargin and tunicamycin failed to impair 
glioblastoma cell motility. This is in contrast to experimental 
data by Chiu et al who demonstrated that silencing GRP78 
function reduced cell motility and prevented tumor cell inva-
sion of head and neck cancers (31). The differential cell motility 
responses observed in this study and by Chiu et al are likely 
attributed to divergent cellular and physiological mechanisms 
targeted in the unfolded protein endoplasmic reticulum stress 
response between our two studies, and further emphasizes 
the pleiotropic effects of the endoplasmic reticulum stress 
response on cell behavior. 

Taken together, we provided evidence that hyper‑stressing 
the endoplasmic reticulum, by using endoplasmic reticulum 
stress inducers with markedly different modes of action, is a 
viable approach for the promotion of killing glioblastomas.  
Furthermore, our study suggests that endoplasmic reticulum 
stress inducers exert their anti-tumorigenic effects on 
proliferating cells, a selective advantage for treating clinical 
glioblastomas which typically reside in regions of the human 
brain that contain dormant cells.
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