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Abstract. Rapid developments in radiation oncology are 
currently taking place. Radiation-induced responses are 
being increasingly used for radiotherapy modification 
based on advancements in radiobiology. In the process of 
radiation treatment, radiobiological responses of tumor and 
normal tissue in patients are monitored non-invasively by a 
variety of techniques including imaging, biological methods 
and biochemical assays. Information collected using these 
methods and data on responses are further incorporated into 
radiotherapy optimization approaches, which not only include 
the optimization of radiation treatment planning, such as dose 
distributions in targets and treatment delivery, but also include 
radiation sensitivity modification and gene radiotherapy of the 
tumor and normal tissue. Hence, the highest tumor control 
rate is obtained with the utmost protection being afforded to 
normal tissue under this treatment modality.
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1. Introduction

Radiation oncology has undergone 100 years of development 
and has now entered the ‘precision radiotherapy’ era. New 
radiotherapy modalities, such as intensity modulated radiation 
therapy (IMRT), image guided radiotherapy (IGRT), volu-
metric modulated arc therapy (VMAT), biologically guided 

radiation therapy (BGRT), adaptive radiation therapy (ART) 
and hadron radiotherapy are emerging, each with unique 
characteristics (1). However, a discrepancy between supply 
and demand still exists; the current outcomes of radiation 
therapy are still far from the high demand of cancer patients 
for therapy efficacy and quality of life. Great advancements 
in radiation biology (2), radiation physics (3) and imaging 
technology (4) are bringing about new opportunities to further 
improve the outcomes of radiation treatment. In recent years, 
radiation-induced reponses of tumor and normal tissues have 
increasingly been used as feedback to modify radiotherapy in 
order to get the highest therapeutic gain. In this review, we 
briefly discuss how and why this new treatment strategy has 
come into being, as well as its current status and characteris-
tics. Also, the future developments of this treatment modality 
are discussed.

2. Why response-modified radiation treatment?

Demand for individualized radiotherapy as a driving force. 
Accurate delivery of the ionizing radiation dose has greatly 
improved over the past 2-3 decades, allowing more precise 
deposition of therapeutic agents to the tumor while progres-
sively reducing any unwanted dose to surrounding normal 
tissues. Such techniques allow the dose to the tumor to be 
increased to levels that would be unachievable without precise 
targeting (5,6). With the improvement of tumor control and 
survival, the requirements of improving quality of life have 
also increased. However, the challenge is that not only do the 
same types of tumor tissue from different patients show differ-
ences in sensitivity to radiation, but the sensitivity of tumor 
tissues of the same patient during radiotherapy also shows 
dynamic changes. All of these disparities in radiation sensi-
tivity necessitate the use of different radiation doses. Thus, to 
achieve the greatest efficacy with minimal side effects, indi-
vidualized response-guided radiation therapy is required (7).

Advances in understanding radiobiological responses have 
made ‘response-modified radiation therapy’ possible. Biology 
is a fast-growing branch of science. With the development of 
molecular biotechnologies, we gain deeper understanding 
of biological phenomena and mechanisms. This has led to 
advances in radiation biology, such as radiation-induced early 
responses, cell proliferation, hypoxia and inherent radiosen-
sitivity, as well as screening of a series of specific molecular 
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markers. To date, ATM, ADR, γ-H2AX, MDM2 and Bcl/Bax 
have been verified in preliminary clinical trials (8). We currently 
have a fairly comprehensive understanding of the biological 
responses of radiotherapy-induced molecules, cells, tissues 
and systems at all levels. All these data on radiobiological 
responses may be used to modify personalized radiotherapy. 

Progression in radiation physics and bio-imaging technology 
provides technical support for response modified radiation 
treatment. Newly emerging biological/physiological imaging 
techniques, such as functional imaging, molecular imaging 
and metabolic imaging, differ from traditional anatomical 
imaging. The processes of physiology, biochemistry, metabo-
lism and signal transduction of cells may be visualized through 
bio-imaging technology to generate real-time, dynamic 
biological information of tumor and normal tissues in vivo 
(9,10). Similarly, radiation physics has experienced significant 
development in recent years. A number of new localization and 
fixing techniques, dose calculation algorithms and treatment 
concepts make radiotherapy even more precise. With deeper 
understanding of the concepts of factors such as the biologically 
effective dose (BED), equivalent uniform dose (EUD), α/β, 
tumor control probability (TCP) and normal tissue complication 
probability (NTCP), biological responses could be translated 
into a means for radiation physics optimization (11-13).

To conclude, there is an urgent clinical need for this new 
radiation model, and its feasibility is based on growing knowl-
edge regarding radiation responses and advances in modern 
radiation physics and imaging technology. Therefore, we 
believe that response modified radiotherapy will become the 
mainstream mode of radiation therapy.

3. How do radiation-induced responses modify radio
therapy?

The modality of response modified radiotherapy may be 
described as follows. Based on the biological responses to 
radiation of tumor and normal human tissues, the optimiza-
tion of radiation treatment planning and modification of tissue 
sensitivity are carried out dynamically by adjusting to changes 
in responses to radiation, which will lead to the best therapeutic 
ratio (Fig. 1). Specifically, radiobiological responses include: 
i) molecular reactions such as DSB (14-18), ATM (19,20), ATR 
(21), NBS1 (22), BRCA1 (23), DNA-PK (24,25), HIF-1a (26,27), 
γ-H2AX (28,29), as well as the early response molecules 
such as Egr-1 (30) and c-fos (31); ii) cellular responses such 
as apoptosis (32), autophagy (16,33‑35), cell proliferation 
rate (36) and changes in cell cycle (37-43); iii) tissue and organ 
level responses, including volume changes (44), inflamma-
tion, edema and fibrosis (8,45,46); and iv) the overall level of 
responses, including changes in expression of cytokines such 
as IL-1 (47), IL-6 (48), TNFα (49) and TGFβ (45). Radiation 
responses should be considered on multiple, comprehensive 
levels in the tumor and normal tissue, as well as in the early 
stage of acute response and the late stage tissue responses. 
Based on the above indicators of radiation response, the 
optimization of radiation therapy includes (Table  I) i)  the 
optimization of the radiation treatment planning, including the 
dose-painting techniques on regions with different sensitivity 
in the same target volume and the dose-fractionation model 

and ii)  the tumor tissue radiosensitizer (37) and radiation 
protection of the normal tissue (50). For example, based on the 
close relationship between TGFβ and pulmonary fibrosis, if 
high levels of TGFβ in peripheral blood of patients undergoing 
chest radiotherapy are detected, appropriate measures should 
be taken to block radiation-induced pulmonary fibrosis. Thus, 
radiotherapy may be modified along the entire process.

Response-modified radiotherapy is not only a new 
modality of treatment, but also a novel radiotherapy philos-
ophy. A variety of optimization methods can be inserted at 
specific stages of radiotherapy. Every fractionation in the 
whole process of radiotherapy should be unique and should 
be dynamically optimized according to specific tumor and 
normal tissue responses.

Response-modified radiotherapy is a new treatment 
modality developed from adaptive radiation therapy 
(ART)  (51,52), however, it places more emphasis on the 
comprehensive information from multiple stages and across 
disciplines, such as molecular biology, physiology and 

Figure 1. Flowchart illustrating the basic steps of one cycle of RGRT, which 
mainly includes the detection of various responses in normal and tumor 
tissues caused by primary radiotherapy, the modifications of continued 
radiotherapy based on detected responses. Practically, a complete radia-
tion treatment course usually contains several RGRT cycles. Radio-genetic 
therapy mentioned herein represents a novel treatment strategy in which gene 
therapy is controlled by radiation via radiation inducible gene promoters such 
as Egr-1. RGRT, response-guided radiotherapy; TCP, tumor control prob-
ability; NTCP, normal tissue complication probability.
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biochemistry. Thus, in addition to the features of ART in terms 
of physics, it also has the following characteristics:

i) Information integration. This model makes full use of 
multiple levels of information from the human body, that is, 
different levels of response caused by radiation. The main 
biological characteristics of tumor and normal tissue, including 
physiological and biochemical features, are obtained non-
invasively from the whole body and the local site, at static and 
dynamic levels. Biological and physical approaches are then 
used to translate this information into radiotherapy optimizing 
strategies.

ii) Evidence-based modification. Generally speaking, the 
use of molecular markers that ‘predict’ the radiosensitivity 
of the tumor is hard to achieve with the desired sensitivity 
and specificity. Response-modified radiotherapy avoids this 
problem; it only considers the final outcomes directly caused 
by radiation therapy, regardless of its mechanisms and biolog-
ical process. For the treatment modality of response-modified 
radiotherapy, radiotherapy is optimized based on the inte-
grated information of the final actual outcomes of tumor and 
normal tissues caused by radiation. For instance, cell apoptosis 
in tumors is detected using molecular imaging after a fraction 
of radiotherapy, then the acquired apoptosis information is 
used to modify further treatment planning.

iii) Technology integration. It is worth noting that the biggest 
advantage of the modality is that its optimization integrates all 
aspects of treatment throughout the course of radiotherapy, 
which include radiotherapy planning optimization, the 
implementation of radiotherapy quality assurance, sensitivity 
modification of tumor and surrounding normal tissues to radia-
tion, the use of various physical and biological measures.

This radiotherapy model combines a variety of radiation 
responses in all the normal tissues and tumor tissues and truly 
achieves individualized technologies. At the same time, it 
maximizes the use of the most systematic and comprehensive 
optimization tools, which bring the greatest benefits to patients 
with minimal side effects and maximal efficacy.

In recent years, the response-guided radiotherapy modality 
has gradually been incorporated into daily radiotherapy prac-

tice. For instance, for nasopharyngeal carcinoma treatment, 
in the course of radiotherapy, we dynamically observe the 
changes in tumor volume to re-delineate the target volume and 
modify the radiation plan to maximize the protection of at-risk 
organs without missing the tumor target. Following years 
of extensive work and systematic research, our centre has 
reviewed the alterations of nasopharyngeal carcinoma volume 
in radiation treatment and used this knowledge as a basis to 
explore the best timeline for replanning. Our results revealed 
that the revised target volume had 100% coverage, doses on the 
normal tissue were reduced by 15%; side effects was reduced 
by 40%, with a local control rate of 92% and 5-year survival 
rate of 87% (53). Similarly, this treatment model has also 
been implemented at certain other radiation oncology centres. 
Wang et al investigated the target volume and dose distribu-
tion changes during nasopharyngeal carcinoma radiotherapy. 
CT scans were performed following 18 fractionations of radio-
therapy, and doses and target size of the former and new plans 
were compared. The results revealed that the bilateral parotid 
gland volume had reduced by 6 cc, and the new plan decreased 
the parotid gland dose by 2.57-2.97 Gy; similar dose changes 
were also achieved for other at-risk organs. When compared 
with the former plan, the new plan decreased the dose in the 
brain stem from 6.51 Gy to 0.08 Gy and the dose in the spinal 
cord from 7.8 Gy to 0.05 Gy. Accordingly, they concluded that 
in the case of nasopharyngeal carcinoma radiotherapy, replan-
ning based on the changes in tumor size may better protect 
at-risk organs such as the parotid gland, spinal cord and brain 
stem (54). Wang et al reported that in 28 cases of replanning of 
nasopharyngeal carcinoma IMRT, the dose in high-risk targets 
increased by 4.9-10.8%, the maximum dose in the spinal cord 
decreased by 5-9.23 Gy and the average dose in the parotid 
gland decreased by 4.23-10.03 Gy with replanning following 
25 fractionations of radiotherapy followed by CT scan (55). 

Hansen et al analyzed the replanned target regions and dose 
changes on the organs at-risk of 13 patients with head and neck 
cancer by IMRT. The results suggest that replanning could 
increase the dose for lesions and high-risk clinical volume by 
0.8-6.3 Gy dose and 0.2-7.4 Gy, respectively, while decreasing 

Table I. Responses of tumor and normal tissues in patients treated by radiotherapy and techniques to modify the radiotherapy. 

Level	 Response	 Detection methods	 How to modify radiotherapy

Molecular	 DSB, ATM, ATR, 	 Molecular imaging, 	 Enhance radiosensitivity, radio-
	 NBS1, BRCA1, 	 molecular biological methods	 genetic therapy
	 DNA-PK, HIF-1a, 
	 γ-H2AX, Egr-1, c-fos
Cellular	 Apoptosis, autophagy, 	 Biological imaging	 Biological target definition, 
	 cell cycle arrest, 	 Functional MRI	 dose painting, optimal fractionation
	 proliferation rate
Organ	 Volume changes, 	 CT, Functional MRI	 Target modification, 
	 inflammation, fibrosis		  normal tissue protection
Systemic	 IL-1, IL-6, FGF2, 	 Biological assays, 	 Normal tissue protection, 
	 TNFα, TGFβ	 biochemistry assays	 NTCP modelling

NTCP, normal tissue complication probability.
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the doses in the spinal cord and brain stem by 0.2-15.4 Gy and 
0.6-8.1 Gy, respectively (56). Mechalakos et al used weekly 
CBCT to observe the effect of volume reduction in a neck 
mass on the dose to the spinal cord in a case of recurrent naso-
pharyngeal carcinoma. The results demonstrated that volume 
reduction of the lesion had little impact on the dose distribution 
in the spinal cord (57). Zhao et al reported that with replanning 
following 15 fractionations of radiotherapy in 33 patients with 
nasopharyngeal carcinoma, the 3-year disease-free survival rate 
was 72.71%, which was higher than that when a single plan was 
used over the entire course (68.16%) (P<0.05). In particular, the 
advantage was most pronounced in patients with local advanced 
disease (58). Zhang and Li studied the effects of radiotherapy 
replanning in non-small-cell lung cancer radiotherapy. The 
preliminary results indicated that multiple-planning radiation 
treatment not only greatly increased the dose for the lesions but 
also maximized the protection of the healthy lung tissue (59).

The above replanning treatments of nasopharyngeal 
carcinoma and lung cancer essentially used the radiation 
responses of tumor to modify the radiotherapy. The changes 
in tumor size during radiotherapy is the main response to 
radiation. Using this response to re-delineate the tumor 
target, revise the radiation treatment planning and modify the 
IMRT of nasopharyngeal carcinoma reflects the core spirit 
of response-modified radiotherapy. It may be inferred that 
further advancements in molecular imaging technology would 
result in biological responses increasingly being used to guide 
radiotherapy optimization.

Another example of response-modified radiotherapy in 
practice is that we usually use different doses and fraction-
ations in several lesions of the same patient, observe the 
changes in lesions and normal tissue response following several 
fractionations of radiotherapy to identify the best therapeutic 
dose and then apply this fractionation model in the next step of 
the treatment. According to our preliminary statistical results, 
this treatment model not only greatly increases the tumor 
control rate but also significantly reduces the side effects of 
radiotherapy and achieves the maximum benefit to patients. 
These results once again demonstrate the scientific rationale 
of response-modified radiotherapy.

4. Perspective on response-modified radiotherapy

This new radiotherapy modality considers the individual 
differences in radiation-induced biological responses and feeds 
this difference back to the radiation treatment planning and 
implementation process through repeated revisions to achieve 
tailor-made radiotherapy. Given the complexity of biological 
phenomena, it is difficult to find ideal, consistent predictive 
factors. Radiotherapy response involves complex molecular 
networks, therefore a single or a small number of molecular 
markers are hard-pressed to anticipate the actual results of 
radiotherapy (60-62). However, response-modified radiotherapy 
is based on the actual responses from the tumor and normal 
tissue and uses this information to amend and optimize radio-
therapy planning. Sidestepping the complexities of biological 
mechanisms of radiation and using actual response feedback 
to guide radiation therapy is an efficient and pragmatic way of 
working and eliminates the need for detailed considerations of 
complex intermediate mechanisms in treatment.

This real-time response guided radiation therapy approach 
not only delivers the most effective radiation doses to tumors but 
also takes into account the dose tolerance of normal tissues. The 
current standard normal tissue tolerance doses are empirical, 
rather than the actual tolerance levels of the individual tissues. 
Perhaps a specific patient is able to tolerate a higher dose than 
the current standard, and thus we are able to safely increase the 
therapeutic dose without serious side effects. This radiotherapy 
model, taking the individual tumor and normal tissue response 
into account, thus guarantees the most effective dose of radia-
tion to the tumor and achieves the ultimate goal of safety.

Although certain cancer centers have begun to explore 
response-modified radiotherapy and have achieved encour-
aging results in cancer treatment, much research is required 
before we are able to achieve true personalized treatment in 
clinical practice. As such, a number of important issues still 
need to be addressed:

Identification of a series of reliable molecular, cellular and 
systemic markers for radiation responses. This would not only 
reliably represent the control rate of the tumor and clinical 
efficacy, but also reflect the sensitivity and dose tolerance of 
normal tissue. Although a considerable number of molecules 
have been studied, specific and sensitive markers are rare.

Establishment of a set of technologies for detecting radia-
tion response. To carry out this modality, we must acquire 
non-invasive, real-time and dynamic information regarding 
in vivo radiobiological responses in tumor and normal tissues. 
Existing molecular imaging techniques, such as PET, SPECT 
and fMRI, yet cannot fully satisfy the actual needs of response-
modified radiotherapy (63,64).

Exploration of how to integrate the information of radiation 
responses into radiotherapy optimization. Taking full advan-
tage of the available physical and mathematical tools, it also 
require interdisciplinary work to integrate a variety of radia-
tion responses into the radiation therapy feedback process.

5. Conclusion

Modern radiotherapy requires advanced equipment and a 
reasonable treatment strategy to gain the best clinical outcome. 
Making full use of biological information to generate reliable 
radiotherapy models needs to be addressed in the near future. 
Response-modified radiotherapy perhaps may not be the most 
optimal radiotherapy modality, nevertheless, it will shed new 
light on the way to personalized radiotherapy.
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