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Abstract. Insect antimicrobial peptides (AMPs) have a 
broad antimicrobial spectrum. To aid the characterization 
of the gene function and further applications, we cloned the 
gene of cecropinXJ into the prokaryotic expression vector 
pET32a and expressed cecropinXJ in Escherichia coli BL2l 
(DE3). Following induction by isopropyl-β-D-thiogalactoside 
(IPTG), a 25 kDa fusion peptide of cecropinXJ with a tagged 
thioredoxin (Trx) protein was highly expressed in E. coli. 
The yield was 10 mg/l culture medium following purifica-
tion on nickel‑nitrilotriacetic acid (Ni-NTA) metal affinity 
chromatography matrices. The purified recombinant antibac-
terial peptide, cecropinXJ, retained a high stability against 
Staphylococcus aureus over a temperature range from 4 to 
100˚C and a pH range from pH 2.0 to 12.0. The minimum 
inhibitory concentration (MIC) of the fusion protein against 
S. aureus was 0.4 µM. The recombinant cecropinXJ is also 
cytotoxic to several types of human cancer cells.

Introduction

Antimicrobial peptides (AMPs) are a class of immune-related 
peptides that provide the first line of defense to protect the host 
from invading pathogens (1). These peptides prevent bacte-
rial infections and are particularly critical for invertebrates, 
such as insects, that lack lymphocytes and antibodies  (2). 
AMPs have minimal toxicity and low sensitivity effects to 
the host (3). Thus, antimicrobial peptides may be applied in 

medicine, agriculture and food as new and safe antibiotics or 
antiseptic agents (4-7).

Cecropins, a group of small basic polypeptides mainly 
found in the hemolymph of insects, consist of 31‑39 amino acid 
residues and have a broad spectrum, high heat stability and 
potent bacteriostatic activity (8-10). Eukaryotic cell expression 
or artificial synthesis of the cecropin gene is characterized by 
a low efficiency and high cost (11-13). In order to explore a 
cost‑effective and scalable method for producing large quan-
tities of active peptides, expression of recombinant peptides 
may be used. To date, various expression systems, including 
yeast (14), E. coli (15) and insect cells (16), have been estab-
lished for the production of recombinant antibacterial proteins. 

In recent years, studies concerning the expression of anti-
microbial peptides have mainly focused on the use of fusion 
partners (17). Thioredoxin, a heat-stable and low molecular 
weight soluble protein in the prokaryotic cytoplasm, has been 
shown to display chaperone‑like activity (18). Fusion proteins 
of antimicrobial peptides generated in E. coli reduce the toxic 
effect of antimicrobial peptides to the host cells and protect 
the small antimicrobial peptides from proteolytic degradation.

CecropinXJ, is a member of the cecropin family, which 
we first cloned from the larvae of the Xinjiang silkworm 
(Bombyx mori) by reverse transcription‑polymerase chain 
reaction (RT-PCR) and 3'- and 5'- rapid amplification of cDNA 
ends (3'/5'-RACE). The complete amino acid sequence of the 
molecule was determined (19). In addition, we successfully 
expressed cecropinXJ in Pichia pastoris, where the expression 
levels were observed to be relatively low (20). 

In the present study, we aimed to express  cecropinXJ 
in a prokaryotic expression system, which combines the 
advantages of high expression levels, easy scale-up and inex-
pensive growth media. A vector derived from the commercial 
pET32a(+) was developed. This expression vector carrying 
the thioredoxin (Trx) gene and T7 promoter contained a 
6xHis-tag to facilitate purification and enhance the expression 
yields of fusion proteins in E. coli. We constructed a recom-
binant expression vector pET32a-cecropinXJ and expressed 
recombinant cecropinXJ at high levels. A high yield of soluble 
recombinant cecropinXJ was obtained and purified. The puri-
fied recombinant cecropinXJ displayed strong antimicrobial 
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activity to bacteria and fungi, as well as cytotoxicity to several 
types of human cancer cells. 

Material and methods

Bacterial strains, vectors and enzymes. The prokaryotic 
plasmid pET32a(+) was purchased from Invitrogen (Beijing, 
China). The restriction enzymes, T4 DNA ligase, DNA 
ladder and pre-stained protein marker were purchased from 
Fermentas (Vilnius, Lithuania). E. coli DH (5α) and BL21(DE3) 
pLYsS competent cells were purchased from Takara (Dalian, 
China). PCR primers were synthesized by Shanghai Sangon 
Biological Engineering Technology & Services Co., Ltd. 
(Shanghai, China). Other reagents were obtained either from 
Sangon Chemical Reagent (Shanghai, China) or Sigma (St. 
Louis, MO, USA). The test microorganisms used in this 
study were obtained from the China General Microbiological 
Culture Collection Center (Beijing, China). 

Construction of recombinant pET32a-cecropinXJ expression 
vector. The sequence of the cecropinXJ gene was amplified 
and isolated from the plasmid pMD18-T-cecropinXJ  (19), 
which carries the cDNA of cecropinXJ from the Xinjiang 
silkworm larvae (Bombyx mori). The upstream primer Pl, 
5'-CCG gaa ttc AGG TGG AAG ATC TTC AAG AAA ATT 
GAA AAA ATG GGC-3' contained an EcoRI site (lower 
case), and the downstream primer P2, 5'-CCG ctc gag TCA 
TTT TCC TAT AGC TTT AGC CGA ACC AAG-3' contained 
a XhoI site (lower case). The PCR reaction parameters were: 
pre-denaturation at 95˚C for 1 min, denaturation at 95˚C for 
1 min, annealing at 95˚C for 30 sec, extension at 55˚C for 
1  min for 30 cycles and 1  min extension at 72˚C. The 
cecropinXJ gene and the vector pET32a plasmid were 
subjected to digestion with EcoRI and XhoI, and ligated using 
T4 DNA ligase. The recombinant pET32a‑cecropinXJ was 
transformed into E. coli DH (5α) competent cells for amplifi-
cation. Positive colonies resistant to ampicillin on a 
Luria-Bertani (LB) plate were selected and the plasmid 
pET32a-cecropinXJ was confirmed by restriction enzyme 
mapping and DNA sequencing.

Expression of recombinant protein. The recombinant 
plasmid pET32a-cecropinXJ was transformed into E. coli 
BL21(DE3) competent cells for expression. The expression 
of the fusion protein was induced by the addition of 0.8 mM 
isopropyl‑β‑D‑thiogalactoside (IPTG) once the optical density 
at 600 nm (OD600) of the culture had reached 0.6-0.8. After 5 h 
of induction, 1 ml culture was centrifuged at 8,000 x g for 5 min. 
The cell pellet was resuspended in 100 µl phosphate‑buffered 
saline (PBS) and analyzed by Tricine‑SDS-PAGE. The expres-
sion level of recombinant cecropinXJ was determined by 
protein bands and quantified using densitometry (GeneTools 
software, Philomath, OR, USA). Bovine serum albumin (BSA) 
was used as a standard.

Purification of recombinant protein. Following induction, 
1 l culture was centrifuged at 8,000 x g for 5 min. The pellet 
was resuspended in 10 ml PBS and placed in an ice bath for 
ultrasonic lysis (200 W, 5 sec, 5 sec). The supernatant was 
further purification by 80% ammonium sulphate fraction-

ation, dialysis and desalt, filtered using a 0.22 µm filtration 
membrane and loaded onto a Ni-NTA agarose column 
(Qiagen, Hilden, Germany). Using the QIAexpressionist™ kit, 
the supernatant was mixed with equilibration buffer (50 mM 
sodium phosphate; pH 8.0; 0.3 M sodium chloride; and 10 mM 
imidazole) gently by agitation (150 rpm on a rotary shaker) at 
4˚C for 60 min. The column was washed with buffer (equili-
bration buffer) and the protein was eluted with elution buffer 
(50 mM sodium phosphate; pH 8.0; 0.3 M sodium chloride; 
and 250 mM imidazole). The eluate was concentrated through 
a 10 kDa cutoff Centriprep filter (Millipore, Bedford, CA, 
USA) for Tricine-SDS-PAGE and western blot analysis.

Western blot analysis. The concentration of purified recom-
binant protein was detected using a Bradford protein assay 
kit. The supernatants were electrophoresed using 15% 
Tricine‑SDS‑PAGE and transferred onto a PVDF membrane 
(Pall Corporation, Washington, NY, USA). After being 
washed with TBST buffer (20 mM Tris-HCl, 150 mM NaCl 
and 0.05% Tween 20), the membrane was blocked with 3% 
(v/v) BSA in TBST buffer overnight at 4˚C. The membrane 
was washed three times for 5 min each time with TBST buffer 
and incubated with 1% (v/v) BSA in TBS buffer for 2 h at 37˚C 
with specific anti-His-tag antibodies (1:1,000). The membranes 
were washed three times with TBST buffer and incubated with 
HRP-conjugated secondary antibodies (Invitrogen, Grand 
Island, NY, USA) at 37˚C for 1 h. After washing three times 
with TBST buffer, the membrane was analyzed using the DAB 
substrate kit (Invitrogen).

Assay of antimicrobial activity. Antimicrobial activity against 
standard and clinically isolated microorganism strains was 
analyzed by an inhibition zone assay. The bacteria were grown 
in LB broth at 37˚C. A bacterial dilution (100 µl; OD600=0.5) 
was taken and added to 6 ml fresh LB broth with 0.8% agar and 
poured over a 9.0 cm Petri dish, giving an agar depth of 1 mm. 
When the top agar had hardened, a 10 µl aliquot of test sample 
filtered through a 0.22‑µm filter (Millipore) was dropped onto 
the surface of the top agar and incubated at 37˚C overnight. If 
the sample examined had antimicrobial activity, a clear zone 
was formed on the surface of the top agar representing inhibi-
tion of bacterial growth. The minimal inhibitory concentration 
(MIC) was determined in liquid medium according to the 
method described by Wang et al (21). The MIC was determined 
from three independent experiments performed in triplicate.

Assay of antifungal activity. The fungi were cultivated on 
potato/dextrose/agar (PDA) media at 28˚C. After 6 days, the 
non‑germinate conidia were inoculated into sterile water. 
Samples of ~2x104  cells/ml each of Alternaria alternata, 
Penicillium digitatum, Botrytis cinerea, Rhizopus stolonifer, 
Penicillium italicum and Magnaporthe grisea were seeded in 
yeast extract peptone dextrone (YPD) media to a final volume 
of 100 µl, in a flat‑bottom 96-well microtiter plate. A two‑fold 
dilution series of cecropinXJ solutions (100, 50, 25, 12.5, 6.25, 
3.125, 1.56, 0.78 and 0.39 µM) were added to the plates and 
kept at 28˚C for 24 h. A total of 10 µl 5 mg/ml 3-(4,5-dimethyl-
2-thiazolyl)‑2,5-diphenyl-2H-tetrazolium  bromide (MTT) 
solution in PBS (pH 7.4) was added to each well and the plates 
were incubated for 4 h. Fungal growth was analyzed using a 
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microplate reader at 570 nm. Assays were performed in tripli-
cate for three independent experiments.

Effect of pH and temperature on cecropinXJ activity. The 
stability of the purified cecropinXJ at different pHs and 
temperatures was evaluated. To determine pH and temperature 
resistance, the purified peptide was incubated at various pH 
values between 2.0 and 12.0 and temperatures between 4 and 
100˚C for 1-12 h prior to confirming the antimicrobial activity.

Hemolysis assays. The hemolysis activity of the peptide was 
assessed by measuring the release of hemoglobin from human 
red blood cells as reported previously (22). Serial dilutions of 
the peptides were used and after incubation for 1 h at 37˚C, the 
cells were centrifuged and the absorbance of the supernatant 
was measured at 595 nm. Controls for 0% hemolysis (blank) 
and 100% hemolysis were determined using PBS buffer and 
1% Triton X-100, respectively.

Cell proliferation assay. Cancer cells and 293T cells in the 
logarithmic growth phase (1x105 cells/ml) were plated inde-
pendently into a 96-well plate (1x104 cells per well), then 
incubated at 37˚C for 24 h. The media were replaced with 200 µl 
fresh complete medium containing various concentrations of 
cecropinXJ and complete medium without cecropinXJ was 
used as a blank control. After another 24 h, the cells were incu-
bated with 20 µl MTT solution (0.5 mg/ml) and 80 µl culture 
medium followed by incubation at 37˚C for 4 h. Subsequently, 
100 µl dimethyl sulfoxide was added to dissolve the formazan 
crystals formed. The OD of the samples was measured with a 
spectrophotometer at 570 nm. Experiments were performed at 
least three times. The cell survival was calculated as follows: 
Cell viability (%) = OD570 (sample)/OD570 (control) x100.

Statistical analysis. All measurement results are expressed 
as mean ± standard error (SE) and performed at least three 
separate times. The differences between the peptide-treated 
group and control group were evaluated using the unpaired 
Student's t-test using one-way ANOVA by GraphPad Prism 
4 software (La Jolla, CA, USA). P<0.05 was considered to 
indicate a statistically significant result.

Results

Expression and purification of recombinant cecropinXJ. 
The expected molecular masses of 114 and 5700 bp were 

obtained for the pET32a-cecropinXJ plasmid following 
digestion with EcoRⅠ and XhoⅠ (Fig.  1). The verified 
pET32a‑cecropinXJ plasmid was then transformed into the 
E. coli strain BL21(DE3) that encodes a chromosomal T7 
RNA polymerase under the control of a tac promoter. Under 
IPTG induction, the tac promoter is activated and drives 
expression of pET32a‑cecropinXJ. IPTG at a concentration of 
0.8 mmol/l efficiently induced the expression of cecropinXJ 
in the pET32a-cecropinXJ-BL21(DE3) system at 37˚C, and 
whole cell proteins were collected for Tricine-SDS-PAGE gel 
analysis. A major band at the expected size of 25 kDa was 
observed compared with control as shown in Fig. 2A. The 
product of recombinant cecropinXJ was mainly present in 
the supernatant of bacterial lysate following ultrasonic cell 
lysis and the output was ~30% of the total bacterial proteins. 
Purification of recombinant cecropinXJ proteins by Ni-NTA 
resulted in the isolation of ~10 mg protein/l of culture (Table I). 
The specific binding of the His-tag to cecropinXJ was revealed 
by western blot analysis (Fig. 2B).

Assay of antimicrobial activity. To confirm that cecropinXJ 
has an inhibitory effect against several pathogenic bacterial 

Table I. Isolation of recombinant cecropinXJ based on 1 l of bacterial culture.

Purification step	 Total protein (g)	 TrxA-cecropinXJ (g)	 Purity (%)c

Sonicated supernatant	 1.147±0.614a	 0.998±0.215b	 Not applicable
Ammonium sulfate precipitation	 0.715±0.347a	 0.429±0.208b	 ﹥60
HisTrap	 0.016±0.003a	 0.015±0.002c	 ﹥90

The wet weight of cells was 4.754±0.681 g. aProtein concentration was determined by Bradford protein assay. bPercentage of fusion pro-
tein (TrxA-cecropinXJ) from total proteins was estimated by Tricine-SDS-PAGE gel scanning. cPurity of protein was estimated by staining 
Tricine‑SDS‑PAGE gel with Coomassie blue.

Figure 1. Identification of the recombinant plasmid. (A) Schematic structure 
of pET32a-cecropinXJ. T7 Pro, T7 promoter; LB and RB, left and right 
border of the expression vector pET32a. (B) Identification of recombinant 
plasmid by plasmid polymerase chain reaction (PCR). Lane M1, DNA molec-
ular weight standards; lane 1, PCR product of the cecropinXJ gene fragment 
with the recombinant plasmid pMD18-T-cecropinXJ as template; lane 2, 
PCR product of the cecropinXJ gene fragment with the recombinant plasmid 
pET32a-cecropinXJ as template. (C) Identification of recombinant plasmid 
pET30a-cecropinXJ by digestion with EcoRI and XhoI. Lane M2, DNA 
molecular weight standards; lane 3, DNA fragment of pET32a-cecropinXJ 
digested with EcoRI and XhoI. PCR, .

  A

  B   C
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strains, antimicrobial assays were performed as listed in 
Table II. The purified cecropinXJ showed strong antimicrobial 
activity against the tested strains (Fig. 3). Of the tested strains, 
Staphylococcus aureus was the most sensitive to cecropinXJ 
whereas Acinetobacter baumannii was not sensitive to this 
antimicrobial peptide. CecropinXJ inhibited S. aureus activity 
with an MIC of 0.4 µM.

Assay of antifungal activity. The inhibition zone assay is a 
simple method for estimating lethal concentrations. However, for 
certain filamentous fungi, the diameters of the inhibition zones 
were poorly defined, and for this reason we used a microplate 
assay to observe the antifungal activity of cecropinXJ under a 
microscope. As shown in Table III, the MICs of cecropinXJ for 
A. alternata, P. digitatum, B. cinerea, R. stolonifer, P. italicum 
and M. grisea were 25, 1.56, 6.25, 12.5, 6.25 and 0.78 µM, 
respectively. CecropinXJ displayed strong antifungal activity 
against all the tested fungi and fungal growth was completely 
blocked by cecropinXJ at micromolar concentrations.

Temperature and pH stability. The results of the heat stability 
assay confirmed that cecropinXJ was fully heat stable as the 

antimicrobial activity of cecropinXJ toward S. aureus was 
retained, even following exposure to 100˚C for 12 h (Fig. 4A). 
CecropinXJ was also observed to be stable at a wide range 
of pH values as the antimicrobial activity of cecropinXJ was 
retained between pH 2.0 to 10.0. However, the antimicrobial 
activity of cecropinXJ was reduced significantly at pH ≥10.0 
(Fig. 4B). All assays were performed in duplicate.

Hemolysis assays. To examine whether cecropinXJ had 
hemolytic activity, we tested its ability to lyse erythrocytes. 

Table III. Antifungal activity of cecropinXJ.

Fungus	 MIC (µM)a

Alternaria alternata	 25
Penicillium digitatum	 1.56
Botrytis cinerea	 6.25
Rhizopus stolonifer	 12.5
Penicillium italicum	 6.25
Magnaporthe grisea	 0.78

aThese concentrations represent mean values of three independent 
experiments performed in duplicate. MIC, minimum inhibitory con-
centration.

Figure 2. Expression of pET32a-cecropinXJ fusion protein analyzed by 
Tricine-SDS-PAGE. Lane M: Protein molecular mass marker; lane 1: purified 
pET32a-cecropinXJ; lane 2: precipitation of bacterial lysate; lane 3: superna-
tant of bacterial lysate; lane 4: induced BL21(DE3)-pET32a-cecropinXJ (37˚C, 
0.8 mM IPTG, 5 h); lane 5:uninduced BL21(DE3)-pET32a‑cecropinXJ; lane 
6: induced BL21(DE3)-pET32a; lane 7: induced BL21(DE3); lane 8: western 
blot of purified pET32a-cecropinXJ. IPTG, isopropyl-β-D-thiogalactoside.

Figure 3. Antimicrobial activity of recombinant cecropinXJ and 
ampicillin using inhibition zone assays. (A)  Gram-positive bacterium 
Staphylococcus aureus treated with (1-3), 1, 2 and 5 µM purified cecropinXJ, 
respectively; (4), 0.5 µM ampicillin; (5), 10 µl sterile, deionized water. 
(B) Gram‑negative bacterium Klebsiella penumoniae treated with (1-3), 1, 2 
and 5 µM purified cecropinXJ, respectively; (4), 0.5 µM ampicillin; (5), 10 µl 
sterile, deionized water.

  A

  B

  A   BTable II. Antimicrobial activity of cecropinXJ. 

Microorganisms	 MIC (µM)a

Gram-negative bacteria	
  Klebsiella pneumoniae	 0.8
  Shigella flexneri	 2.4
  Acinetobacter baumannii	 4.8
  Shigella sonnei	 2.4
  Klebsiella ozaenae	 3.6
Gram-positive bacteria	
  Staphylococcus aureus	 0.4
  Enterococcus faecalis	 1.2
  Staphylococcus epidermidis	 2.4

aThese concentrations represent mean values of three independent 
experiments performed in duplicate. MIC, minimum inhibitory con-
centration.
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CecropinXJ had little hemolytic activity on red blood cells, 
even at peptide concentrations of up to 200 µM (Fig. 5).

Cell proliferation and viability assay. MTT results showed 
that cecropinXJ inhibited the proliferation of several cancer 
cells within 0.01-0.5 µM in a concentration-dependent manner. 
No inhibition of the proliferation of normal human embryonic 
kidney epithelial cells was observed (Fig. 6). 

Discussion

AMPs exhibit significant antibacterial activity against 
Gram‑positive and Gram-negative bacteria, and also have 
potent antitumor activities, which have been studied exten-
sively and are among the most promising candidates for 
pharmaceutical and antiseptic use (4,7). The difficult isola-
tion and purification processes of the native antimicrobial 
peptides from their natural sources, as well as the relatively 
high costs of chemical synthesis, have limited their wide 
application (23). The ability to produce larger quantities of 
highly bioactive AMPs at low cost via recombinant DNA 
technology is important (24). The E. coli recombinant expres-
sion system is a suitable choice for large-scale production, 
due to its easy culture, fast growth and effective prevention 
of bacterial contamination (25). Numerous AMPs have been 

prepared successfully in E. coli, including brevinin-2R (26) 
and palusterin-2CE (27). A number of fusion partners have 
been used to express AMPs, including maltose-binding 
protein, thioredoxin and green fluorescent protein (28-30), 
to avoid toxicity and proteolysis of AMPs and increase their 
expression levels in E. coli (17,24). 

An antimicrobial peptide expressed in bacteria may be 
cytotoxic to the host or subjected to degradation by host‑derived 
peptidases (24,31). To overcome these potential problems, we 
fused the DNA coding sequence of a cecropinXJ gene analog 
within the sequence of a bacterial thioredoxin gene, which was 
expressed in the pET32a(+) expression system under optimized 
conditions (15,32). 

In a previous study, culture and induction conditions were 
demonstrated to affect the expression of the soluble target 
proteins  (24). The highest level of soluble expression was 
achieved at 37˚C and 0.8 mM IPTG with a yield reaching 
30-35% of the total bacterial proteins (Fig. 1), which was 
higher than for other AMPs, including adenoregulin  (33), 
perinerin (34), brevinin‑2R (26) and ranalexin (35), which had 
yields of 20, 20-25, 25 and 23‑28%, respectively. Subsequently, 
purification was relatively simple and efficient for preparing 
large quantities of fusion proteins by affinity chromatography. 
The yield of cecropinXJ fusion protein reached 10  mg/l 
of bacterial culture. By comparison of the expression of 
cecropinXJ with that of other cecropin peptides (36-39), the 

Figure 4. Effects of (A) temperature and (B) pH on cecropinXJ. The controls used were (A) cecropinXJ kept at 4˚C and (B) cecropinXJ in the original culture 
(pH 7). Staphylococcus aureus was used as the indicator strain.

Figure 5. In vitro hemolytic activity of cecropinXJ on human erythrocytes. 
Controls for 0% hemolysis (blank) and 100% hemolysis were determined in 
phosphate-buffered saline (PBS) and 1% Triton X-100, respectively. Values 
shown are the means of three independent experiments performed on dif-
ferent occasions with error bars representing standard deviations.

Figure 6. Determination of cell viability by MTT assay. Various cell lines 
were treated with cecropinXJ in concentrations ranging from 0.01 to 0.5 µM 
and cell viability was measured by MTT assay. HeLa (human cervical 
cancer), Hep2 (human laryngeal cancer), MGC (human gastric cancer) and 
293T (human embryonic kidney epithelial) cells were cultured in RPMI-1640 
medium supplemented with 10% FCS for 24 h at 37˚C. Data are expressed as 
mean ± SEM from three independent experiments. 

  A   B
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fusion technology may be employed as a new method for the 
production of recombinant cecropin peptides.

The recombinant cecropinXJ demonstrated potent antimi-
crobial activity and a broad antimicrobial spectrum against 
Gram-positive and Gram-negative bacteria (Table  II) and 
against fungi (Table III). In addition, cecropinXJ retained a 
high stability against S. aureus under different temperatures 
ranging from 4 to 100˚C and pH values ranging from pH 3.0 
to 12.0 (Fig. 4). Earlier studies had indicated that cecropinXJ 
shares a similar structure with ABP-CM4, which has the 
ability to form specific amphipathic α-helices which allows 
targeting of nonpolar lipid cell membranes. Upon membrane 
targeting, the helices form ion-permeable channels, subse-
quently resulting in cell depolarization, irreversible cytolysis 
and finally cell death (40-42).

A previous study observed that short cationic peptides 
consisting of arginine, leucine and lysine inhibit the prolifera-
tion of certain types of tumor cells, but do not affect normal 
cells (43). Differences between the membranes of tumor cells 
and normal cells contribute to the selectivity of antimicrobial 
peptides for tumor cells (44-46). In addition, the amphipathic 
helix of cecropinXJ may play an important role in killing 
cancer cells by causing leakage of the biomembranes and 
cytoskeleton. Due to their selectivity, this type of peptide is a 
good candidate for development as an antitumor agent.

In summary, we provided a simple, economical strategy 
for producing the antimicrobial peptide cecropinXJ without 
affecting its antimicrobial activity. Recombinant antibacterial 
peptide cecropinXJ shows potent activities against bacteria, 
fungi and tumor cells, and may be a promising candidate for 
use as a new antibiotic. Furthermore, this study provides a 
basis for the pharmaceutical application of cecropinXJ.
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