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Abstract. Spinal cord injury (SCI) may lead to a devastating 
and permanent loss of neurological function, which may 
place a great economic burden on the family of the patient 
and society. Methods for reducing the death of neuronal 
cells, inhibiting immune and inflammatory reactions, and 
promoting the growth of axons in order to build up synapses 
with the target cells are the focus of current research. Target 
cells are located in the damaged spinal cord which create a 
connect with the scaffold. As tissue engineering technology is 
developed for use in a variety of different areas, particularly 
the biomedical field, a clear understanding of the mechanisms 
of tissue engineering is important. This review establishes 
how this technology may be used in basic experiments with 
regard to SCI and considers its potential future clinical use.
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1. Introduction.

Spinal cord injury (SCI) typically results in a permanent 
disability, which may be an economic burden on the family of 
the patient and society, and to date there is no effective method 

of treatment (1). Every year there are 12,000 new cases of SCI 
in the USA, with the total number of American individuals 
living with a SCI estimated at ~259,000 (2). The development 
of a cure for SCI is a research topic of particular interest.

SCI triggers a series of pathological steps that include the 
original insult and subsequent secondary steps, such as isch-
emia, anoxia, free-radical formation and excitotoxicity (3). The 
original insult refers to the mechanical trauma that leads to 
the SCI. During this period, the spinal cord tissue is disrupted 
by an external force, produced by the original insult mecha-
nism. The most recognized mechanism for injury includes 
the following steps (4,5): i) contusion of the spinal cord when 
injury occurs and ii) prolonged compression due to displace-
ment of vertebral bony structures and tissues. Following the 
initial spinal cord trauma, secondary damage is apparent. The 
post‑trauma inflammatory response is particularly significant 
and, through a series of complicated cellular and molecular 
interactions, plays a key role in the entire secondary phase 
following SCI (6,7).

Clinically, the treatment of SCI mainly focuses on 
reducing secondary damage and the prevention of complica-
tions (8). However, if the aim is to successfully repair the 
SCI and promote functional recovery, the following must be 
achieved (9,10): i) reduction of the death of neuronal cells, 
ii)  inhibition of glial scar formation, since glial scarring 
decreases axon growth, iii) provision of a matrix at the injury 
site to supply the nutrients required to support axonal growth, 
iv)  elimination of immune reactions and v)  facilitation of 
the build‑up of functional synapses and the transmission of 
neurotransmitters by regenerating axons. The key to treat-
ment is to establish axonal regeneration in the damaged area 
with the anticipation that it will extend through the damaged 
area to establish a connection with the target neurons in the 
spinal cord. To date, it has been demonstrated that blocking 
inhibitory molecules and antagonizing secondary injury 
mechanisms promotes axon growth, by using trophic factors, 
cellular transplants and polymeric scaffolds (11). However, no 
significant functional recovery has been observed; therefore, a 
novel method is required.

Tissue engineering is an emerging area in biomaterial 
research that possesses great therapeutic potential. However, in 
order for it to be used clinically there are challenges that need 
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to be overcome (12). In recent years, studies have begun to 
explore the possibility of using tissue engineering technology 
to repair SCIs, specifically, by using seed cells, neurotropic 
factors and a biological scaffold (Fig. 1). The aim of this review 
is to discuss this tissue engineering method and investigate the 
hypothesis that, if a suitable seed cell, scaffold and growth 
factor are identified, tissue engineering offers bright prospects 
for future research and the potential for clinical use.

2. Seed cell

The basis for tissue engineering is the seed cell, which is also 
the bottleneck that has been restricting the development of 
tissue engineering. The main reason for this is that certain cells, 
such as cartilage cells and endothelial cells, are limited and it 
is not possible to construct a large organization through small 
quantities of tissues in vitro (13). In general, tissue engineering 
seed cells must meet the following criteria (14,15): i) successful 
ability to proliferation in vitro, ii) good cell viability and func-
tion, iii) high level of purity, iv) no rejection by the immune 
system and v) high safety. With the continuous development 
of tissue engineering, stem cells, including embryonic stem 
(ES) cells, and adult stem cells are gradually entering the seed 
cell field, with many advantages, including wide availability, 
a strong ability to proliferate, the ability to differentiate into 
a variety of cells and the ability to form the corresponding 
organization. At present there are clinical problems with using 
seed cells, the selection of a suitable seed cell may resolve this 
problem (16).

ES cells and neural stem cells are the most important 
types of stem cell that were used in the early stages of seed 
cell research (17,18). Transplanting ES cells into the brain 
was shown to significantly improve neurological function in 
an animal model of Parkinson's disease (19). The reason for 
this success is that the cells survived and were differentiated 
into different cells, such as oligodendrocytes, astrocytes and 
neurons. However, this method has certain ethical issues and 
problems with regard to rejection reactions (20). In addition, 
the availability of neural stem cells is limited and, therefore, 
their widespread clinical use is not viable (21). With advances 
in stem cell research, mesenchymal stem cells (MSCs) 
extracted from bone marrow (BMSCs) have been shown to 
contain pluripotent precursor cells, which have the ability to 
differentiate into various types of brain cell (22). In vivo trans-
plantation of BMSCs into the brain has established that they 
migrate throughout various brain regions where they undergo 
differentiation into cells with astrocytic and neuronal pheno-
types (23). However, if BMSCs are to be used clinically, the 
extraction of bone marrow from patients is necessary, which 
is likely to result in patient trauma. Therefore, an increasing 
number of studies have suggested the use of adult stem cells, 
which have all the advantages of BMSCs, but without the need 
to induce trauma in the patients in order to extract them.

Muscle-derived stem cells (MPSCs) are adult stem cells, 
commonly used in tissue engineering. Alessandri et al (24), 
have demonstrated that adult human skeletal muscle includes a 
population of progenitor stem cells capable of generating cells 
of the same lineage and have suggested that MPSCs are ideal 
seed cells. Lavasani et al (25) and Wu et al (26) have shown that 
MPSCs have the ability to differentiate into various cell types 

when placed within specialized inducing media. Danisovic 
et al (27,28) focused on the immunological properties of MPSCs 
and hypothesized that their potential for differentiation may be 
useful in cell therapy for a variety of degenerative diseases. 
However, the majority of studies have investigated the use of 
MPSCs to cure coronary and urological diseases, with a limited 
number using MPSCs to repair nerve injuries. Woo et al (29) 
transplanted MDSCs into a cavernous nerve injury in a rat 
model, the result of which demonstrated that MDSCs were 
capable of improving erectile function. Stulpinas et al (30) and 
Shibuya et al (31) investigated the potential use of MPSCs in 
the treatment of non-acute myocardial infarction, with a swifter 
recovery. Kwon et al (32,33) found that although MPSCs are a 
good seed cell, capable of differentiating into numerous cell 
types, the neural differentiation capacity of MDSCs is less than 
that of adipose-derived stem cells (ADSCs). Therefore, ADSCs 
may be the most suitable type of adult stem cell for use as seed 
cells in SCI treatment.

Adipose tissue is abundant in the body. Zuk (34) extracted 
cells from adipose tissue and observed that the morphology, 
biological characteristics and immune phenotypes of the 
cells were similar to those of BMSCs. An advantage of using 
ADSCs is that obtaining these cells is minimally invasive 
to the patient. If different types of induction medium are 
used, the cells may differentiate into adipocytes, osteoblasts, 
chondrocytes and neurons, which are the most common 
types of seed cells currently used in research, and represent 
a promising tool for SCI treatment (35-38). Recently, studies 
have shown that due to the secretion of various growth factors, 
such as hepatocyte growth factor (HGF), tumor necrosis 
factor-α (TNF-α), vascular endothelial growth factor (VEGF), 
brain-derived neurotropic factor (BDNF) and nerve growth 
factor (NGF), ADSCs may be used in the acute stages of SCI 
and have the potential to improve functional recovery, tissue 
preservation and neuronal regeneration (39-41). Oh et al (42) 
used ADSCs to treat SCI and observed functional improve-
ments. Similar results were demonstrated by Barriga et al (43), 
Ferrero-Gutierrez et al (44) and Chung et al (45). Therefore, 
this type of stem cell may be considered to be the most suitable 
for use as a seed cell for the treatment of SCI.

3. Scaffold

Maintaining cell growth is challenging if the cells are injected 
directly into the damaged area. Opening the meninges may 
lead to cell loss, which is likely to inhibit the ability of the cells 

Figure 1. Scheme for the use tissue engineering technology in the repair of 
spinal cord injuries.
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to adhere to the damaged tissues and proliferate. Therefore, 
in addition to seed cells, tissue‑engineering scaffolds are also 
important and their potential use in the repair of the spinal has 
been the subject of study for several years (46).

The requirements of a scaffold for spinal cord regenera-
tion are as follows (47,48): i) good biocompatibility, in order 
to avoid reactions with the immune system, ii)  an ideal 
degradation rate and the formation of non‑toxic degradation 
products, and iii) mechanical properties that are suitable for 
cell adhesion and axonal regrowth. There have been several 
studies that have concentrated on the microstructural design 
of porous scaffolds, which must be conditioned in vivo prior to 
implantation (49,50). However, this has the major disadvantage 
of increasing the difficulty of the design at the engineering 
level and surgical implantation may also be challenging. The 
best solution is to create a scaffold with a simpler design, 
that is easier to transplant and is suitable for various types of 
injury (51,52).

Silk fibroin (SF) is obtained by degumming silk and acts 
as a natural structural albumen without physiological activity. 
It mainly consists of three  simple amino acids: glycine, 
alanine and serine, which account for 85% of the total protein. 
Furthermore, SF has excellent mechanical properties, good 
compatibility and induces only a slight inflammation reaction 
in vivo. SF has been used as a scaffold for the treatment of SCI 
in certain experiments, but the disadvantage of this material 
is that when it is dry it is particularly brittle and difficult to 
handle (53). Therefore, in order to overcome this shortcoming, 
another polymer, chitosan, is added to the SF formulation. 
Chitosan has been investigated for its biocompatibility, biode-
gradability and toxicity in tissue engineering for several years, 
despite the disadvantages that it degrades rapidly and has a 
high swelling property (54,55). Therefore, a blend of both 
materials to make silk fibroin‑chitosan (SFCS) may avoid the 
limitations of pure SF and CS. Furthermore, the blend has 
good mechanical properties and may be used as a scaffold 
material for the repair of SCIs (56,57). 

In addition to SFCS scaffolds derived from natural 
components, injectable scaffolds are also particularly impor-
tant for tissue engineering, as they are capable of filling the 
damaged site and may be delivered using a minimally invasive 
method (58). This type of scaffold also possesses the ability to 
mold to irregularly shaped damaged sites. Comolli et al (59) 
used a poly(N-isopropylacrylamide)-co-poly(ethylene glycol) 
(PNIPAAm-PEG) injection scaffold, which provided the 
sustained release of BDNF and neurotrophin-3 (NT-3) for up 
to four weeks; the constant secretion of these growth factors 
was identified to be a positive factor in functional recovery. 
However, the majority of these scaffolds require gelation 
(crosslinking) in vivo, which may result in complications, 
either from unreacted monomers or excess reactant (60).

Further to the two previously discussed types of scaffold, 
other scaffolds have been used successfully in the treatment 
of SCI. Kang et al (61) used poly (D,L-lactide-co-glycolide) to 
successfully treat transected spinal cords in rats; a certain 
degree of nerve regeneration and functional recovery was 
observed. A study by Liu et al (62) using nanofibrous collagen 
nerve conduits demonstrated that this type of scaffold is capable 
of promoting neural fiber growth following SCI, and is also 
capable of inhibiting glial scar hyperplasia. Zhu et al (63) used 

nanofibrous scaffolds as a drug delivery vehicle for the treat-
ment of SCI in rats, and observed significant improvements in 
hindlimb function after three weeks. Teng et al (64) studied 
the use of a poly(lactic-co-glycolic acid) (PLGA) scaffold to 
treat SCI in rats. The authors identified that corticospinal tract 
fibers permeated the epicenter of the injury to the caudal cord 
and that local GAP-43 expression was increased, which lead 
them to hypothesize that PLGA increases the possibility of 
recovery following SCI. However, in contrast to the findings of 
Teng et al, a study by Du et al (65) demonstrated that a gelatin 
sponge is more suitable than a PLGA scaffold for transplanta-
tion into the spinal cord to promote the recovery of SCI.

In order to successfully use tissue engineering to repair SCI, 
the selection of a suitable scaffold is particularly important. 
Compared with a single component scaffold, a mixed scaffold 
(comprising several ingredients) may be more successful as 
it may minimize the disadvantages of the single component 
scaffold and provide a scaffold with increased functionality. 
Furthermore, compared with synthetic scaffolds, scaffolds 
prepared from natural components may be more advantageous, 
as the reaction of the immune system and the inflammatory 
reaction is reduced following implantation into the body.

4. Growth factor

Neurotrophic factors play an important role  in functional 
recovery following SCI, as they protect neuronal cells from 
apoptosis and promote axonal regeneration (66). Neurotrophic 
factors may be divided into neurotrophins, ciliary neurotropic 
factor, the glial cell line-derived neurotrophic factor family and 
other growth factors or cytokines (67-69). The most frequently 
used neurotrophic factors are NGF, NT-3 and BDNF. NGF was 
discovered in 1950 and, as a core factor in the regulation of 
peripheral innervations, was found to have an effect on the 
CNS (70). Allen et al (71) demonstrated that NGF has a prom-
ising future as a therapeutic option for neurodegeneration. 
Weishaupt et al (72,73) extracted BDNF from a porcine brain 
and identified that it had a broad‑spectrum effect on periph-
eral and central neurons, with the exception of the ciliary 
ganglion neurons, sensory neurons, hippocampal neurons, 
cerebellar neurons, motor neurons, cholinergic neurons of 
the basal forebrain and midbrain dopaminergic neurons. 
BDNF expresses its biological effects through the activation 
and binding of TrkB (74). Stokols et al (75) discovered that 
a BDNF-incorporated agarose scaffold implanted into the 
spinal cord of a rat resulted in the linear-fashioned growth 
of regenerating axons through the scaffold. NT-3, which may 
be generated by the cloning of a multifunctional NGF gene, 
not only maintains motor neurons, sympathetic neurons and 
dopaminergic neuron differentiation, but also maintains the 
survival of sympathetic and sensory neurons and promotes 
nerve outgrowth in vitro (76,77). To date, NT-3 is considered 
to be the only gene to promote the growth of the corticospinal 
tract (CST) following SCI. The biological effect of NT‑3 is 
produced by the binding and activation of TrkC; NT-3 also has 
effects on TrkA and TrkB, but these are weak (78,79).

Neurotrophic factors may be applied by the following 
three methods: local injection, cerebrospinal fluid injection 
and gene modification (80). Of these methods, the most impor-
tant is gene modification. Studies have shown that the direct 
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injection of neurotrophins into the site of injury results in an 
improved functional recovery compared with that in a control 
group to which growth factor is not administered; however, 
due to several factors, such as concentration, time limitation, 
and a short half-life, this treatment was unable to fully meet 
the requirements for nerve regeneration (81,82). Cerebrospinal 
fluid injection has certain disadvantages, including the fact 
that it is not possible to restrict the location of the neuro-
trophic factor to the injury site, and recovery is less successful 
compared with that achieved using other methods. Therefore, 
an increasing number of researchers are focusing on gene 
modification (79).

There are two methods of applying gene therapy for the 
treatment of SCI (83-85): the direct transfer of the gene into 
the target cells in the human body, and cell-mediated gene 
therapy. The latter method, which requires the target gene to 
be transferred into an appropriate transplant cell, the selection 
of cells with a high level of gene expression, and the transplan-
tation of the cells into the target tissue, is the most commonly 
used. Researchers have used transgenic technology to modify 
fibroblast cells, muscle cells and Schwann cells, which are 
subsequently transplanted into the injured area. The geneti-
cally modified cells may continue to express nutritional factor, 
the purpose of which is to promote nerve regeneration. Gene 
transfer vectors are divided into viral vectors and non-viral 
vectors (86). Viral vectors include adenoviruses, retroviruses 
and chronic viruses; retroviruses and chronic viruses are of 
particular interest as their transfer into the host genome may 
lead to long-term expression (87-89); Morizono and Chen (89) 
compared the efficiencies of three types of virus for the 
transfection of ADSCs, and observed that the highest transfec-
tion efficiency was achieved with a chronic virus. When an 
exogenous gene was transferred by chronic virus carriers into 
adipose stem cells, which were then induced in vitro, detec-
tion of the gene remained possible following osteogenic and 
adipogenic differentiation. Therefore, the combination of stem 
cells and chronic virus carriers is currently being studied (89). 
However, the clinical application may be simpler if growth 
factors are slowly released from scaffolds, rather than being 
delivered by gene transfer, using biomaterials that are capable 
of providing the protracted release of loaded proteins.

5. Conclusion 

Tissue engineering is a promising method that may be used 
for the treatment of SCI. It involves three factors: the seed cell, 
the scaffold and a growth factor. For the repair strategy to be 
successful, the selection of an appropriate seed cell, scaffold 
and growth factor is required. Considering the seed cell, adult 
stem cells, particularly stem cells derived from adipose tissue, 
appear to be more suitable than fibroblasts, neuronal stem cells 
and ES cells. For the scaffold, scaffolds formed from natural 
components are more advantageous than scaffolds composed 
of artificial and synthetic materials. However, the blending of 
natural and synthetic materials may reduce the disadvantages 
of using synthetic material while also avoiding the disadvan-
tages of using solely natural components. The growth factor 
is important as it enhances the repairing effect, particularly 
when the virus carrier used to transfect the stem cells enables 
the consistent expression of the growth factor gene. We 

hypothesize that the use of a combination of growth factors 
may be more effective than the use of a single growth factor. 
Therefore, the construction of a virus capable of carrying 
several genes together requires further study. In conclusion, 
although tissue engineering has a promising future for the 
treatment of SCI, extensive further studies are necessary for 
the successful treatment of SCI to be achieved.
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