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Abstract. The purpose of this study was to identify the 
feature genes that are associated with non‑union skeletal 
fractures using samples of normal union and non‑union 
skeletal fracture microarray data. The gene expression 
profile GSE494 was downloaded from the Gene Expression 
Omnibus database and included 12 samples based on three 
different platforms (GPL92, GPL93 and GPL8300). Each 
of the platforms had four sets of expression data, two 
from normal union skeletal fracture samples and two from 
non‑union skeletal fracture samples. The differentially 
expressed genes within the three platforms of expression 
data were identified using packages in R language and the 
differentially expressed genes common to the three platforms 
were selected. The selected common differentially expressed 
genes were further analyzed using bioinformatic methods. 
The software HitPredict was used to search interactions 
of the common differentially expressed genes and then 
FuncAssociate was used to conduct a functional analysis of 
the genes in the interaction network. Further, the associated 
pathways were identified using the software WebGestalt. 
Under the three different platforms, GPL92, GPL93 and 
GPL8300, the numbers of differentially expressed genes 
identified were 531, 418 and 914, respectively. The common 
gene CLU and its interacting genes were most significantly 
associated with the regulation of sterol transport and the 
osteoclast differentiation pathway. Upregulation of the gene 
CLU was identified by comparing data for normal union and 

non‑union skeletal fracture samples. According to the func‑
tion of CLU and its interacting genes, it was concluded that 
they inhibit the normal healing process following a fracture, 
and result in non‑union skeletal fractures through the regula‑
tion of sterol transport and the pathways of differentiation in 
osteoclasts.

Introduction

There are >15 million fractures treated in the United States 
annually and many more worldwide  (1). While the vast 
majority of these fractures heal with appropriate orthopedic 
management, 10‑15% of patients suffer complications that 
result in delayed‑ or non‑union (2). Fracture healing is a multi-
stage repair process that involves complex yet well‑established 
steps that are initiated in response to injury, resulting in 
the repair and restoration of function (3). Numerous factors 
have been associated with failure of normal fracture healing, 
including the fracture location, the extent of soft tissue damage 
and interposition, the degree of bone loss in anatomic criteria, 
infection, inadequate reduction, poor stabilization/fixation 
factors that are exacerbated by treatment, patient characteris-
tics, comorbidities and drug use (2).

Fracture repair involves the pathway of normal embry-
onic development, which consists of several cell types 
originating from the cortex, periosteum, surrounding soft 
tissue and bone marrow space  (4,5). Different biological 
factors, which include recruitment, proliferation and differ-
entiation of cell types, vascular regeneration, expression of 
growth factors (e.g. IGF, TGF‑β and BMP) and appropriate 
biomechanical conditions, have been considered to be 
critical for the healing of bone fractures. Local imbalances 
of these different factors during conservative or operative 
fracture treatment may lead to delay of fracture healing or to 
fracture non‑union (6). According to radiological and histo-
logical criteria, non‑unions are generally classified into three 
types (7). Hypertrophic non‑unions are often linked with 
insufficient fracture stability and appear to have an adequate 
blood, oxygen and nutrient supply, while atrophic non‑unions 
are generally poorly vascularized (7). In defect non‑unions, 
the fracture healing is affected by a lack of contact among 
fracture fragments (6). 
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Although clinical experience in the treatment of frac-
ture non‑unions is quite extensive, studies concerning the 
high‑throughput screening and function identification 
of differential gene expression associated with fracture 
non‑union are limited. The objective of this study was to 
document the feature genes and their interacting genes, also 
further explore their potential functions associated with non-
union fractures.

Materials and methods

Affymetrix microarray data. The gene chip GSE494 was 
downloaded from the gene expression database Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and 
is based on three platforms: GPL92, [HG_U95B] Affymetrix 
Human Genome U95B Array; GPL93, [HG_U95C] 
Affymetrix Human Genome U95C Array; and GPL8300, 
[HG_U95Av2] Affymetrix Human Genome U95 Version 2 
Array. There were data for 12 bone samples of fractures in 

total in the three platforms, with each platform containing 
data for two normal healing fracture samples and two 
non‑union fracture samples. All the original files and the 
platform probe annotation information files were also down-
loaded

Data preprocessing and gene differences analysis. The 
original data were preprocessed using the R language Affy 
software package  (8,9). The R  language limma package 
(http://www.r-project.org/) was used to analyze for differen-
tially expressed genes between all the normal and non‑union 
samples (10), and Bayesian methods were used to conduct 
multiple testing correction. The threshold values were set as 
P<0.05 and | logFC |>1. 

Predicting the interactions of differentially expressed 
genes. A single gene is not able to regulate function; only 
protein‑protein interactions (PPIs) have been marked as 
the main actors for all of the processes taking place in a 

Figure 1. Normalized expression values data box plots. Expression data of the three platforms: (A) GPL92; (B) GPL8300; and (C) GPL93. The gray boxes 
indicate a non‑union fracture sample of the platform, while the white ones indicate normal healing fracture samples. The box in the black line is the median 
of each set of data, which determines the degree of standardization of data through its distribution. The black lines in the boxes are almost in the same straight 
line, indicating a good degree of standardization.
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cell and therefore great efforts have been focused towards 
understanding their biological function  (11). Hence, the 
software HitPredict (http://hintdb.hgc.jp/htp/) was used to 
analyze the interactions between the differentially expressed 
genes (12,13). The HitPredict database was built by collecting 
information from the IntAct BIOGRID and HPRD data-
bases through high‑throughput or small‑scale experiments 
of protein interaction associations and, according to the 
interaction score, estimating protein interactions (the inter-
action score is obtained according to a likelihood algorithm 
which uses a Bayesian network combining binding sequence, 
structure and functional annotations of the PPI in the calcula-
tion) (13). HitPredict collects PPI data from high‑throughput, 
small‑scale experiments, and considers a likelihood ratio of 
the resulting score of >1 as a high degree of confidence inter-
action (12). It has collected 239,584 PPIs from nine species, 
including humans and mice, of which 168,458 are predicted 
to have a high degree of confidence. The high degree of 
confidence interactions from the database were used in this 
study (experimental and likelihood ratio >1) to analyze the 
differential gene product. 

Enrichment analysis of genes. Differentially expressing genes 
were screened using enrichment analysis based on the hyper-
geometric distribution algorithm of FuncAssociate (14). The 
threshold value of P<0.05 was selected.

Analysis for pathways involving genes in the interaction 
network. Proteins in a PPI network and the same module 
usually complete the same biological processes and functions 
by co‑expression. In the present study, enrichment analysis 
using WebGestalt (15,16), which is based on the hypergeo-
metric distribution algorithm, was used to analyze the pathway 
of interaction networks involving the differentially expressed 
gene and its interactions (P<0.05).

Results 

Screening for differentially expressed genes. The differences 
between the normalized expression data were compared 
following data preprocessing (Fig. 1). A total of 531, 418 and 
914 genes from the three platforms that met the difference 
threshold (P<0.05 and | logFC | >1) were screened. Two genes, 
CLU and TSPAN2, were identified to be the commonly differ-
entially expressed genes in the three platforms. The expression 
values of these two genes were upregulated in the delayed 
healing fracture sample (Fig. 2).

Predicting the interactions of the differentially expressed 
genes. Using the software HitPredict to screen for all differ-
entially expressed genes and their product interactions, the 
gene CLU and 44 interaction objects were obtained (Fig. 3; 
there were no interaction records of TSPAN2 recorded in 
HitPredict). The interaction objects of CLU and their likeli-
hood of interaction scores are listed in Table I.

Enrichment analysis of network genes. Enrichment analysis 
based on the hypergeometric distribution algorithm was 
conducted using FuncAssociate. A threshold value of P<0.05 
was selected. As presented in Table  II, five significantly 

enriched features were obtained. The most significantly 
enriched genes in the network were associated with sterol 
transport.

Analyzing gene functions in the co‑expression interaction 
network. By using WebGestalt, which is based on the hyper-

Table I. Genes interacting with CLU.

Interactors	 Likelihood of interaction

TGFR2	 999
KU70	 999
TGFR1	 999
PON1	 999
PRIO	 999
VLDLR	 999
C7	 999
LRP8	 999
MMP25	 999
A4	 999
C8B	 999
LEPR	 999
CLUA1	 999
C9	 999
LEP	 999
COMD1	 999
LRP2	           8.68
DISC1	           3.37
TNIK	           3.37
APOA1	           3.37
GRB2	           3.37
H2AX	           3.37
NR4A1	           3.37
FOS	           3.37
MDM2	           3.37
GCR	           3.37
PPARG	           3.37
ZNF24	           3.37
B2CL1	           3.37
MK09	           3.37
RL23	           3.37
BAT3	           3.37
CYP2E1	           3.37
RBBP8	           3.37
KLF11	           3.37
KEAP1	           3.37
T22D4	           3.37
SYVN1	           3.37
UBC	           3.37
NFKB1	           3.37
IKBA	           3.37
CUL1	           3.37
FBW1A	           3.37
RAD21	           3.37
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geometric distribution algorithm, to analyze the pathway of the 
interaction network involving the differentially expressed gene 
and its interactors (threshold value P<0.05), four pathways with 

significantly enriched genes were identified (Table III). One of 
the most significant pathways was osteoclast differentiation, 
which involved the SYVN1, MDM2, KEAP1 and CLU genes.

  A

  B

Figure 3. Co‑expression network of CLU. The orange circle indicates the input gene CLU, and the black circles indicate interaction objects.

Figure 2. Expression data of the two differentially expressed genes. The expression data of (A) CLU and (B) TSPAN2 in the three platforms. The x‑axis 
indicates grouping and the y‑axis demonstrates expression data (a.u.). The height of the red column represents the expression value.
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Discussion

Non‑union of a fracture is defined as the cessation of all 
reparative processes of healing without bone‑union (17). As 
previous data has demonstrated that the diagnosis of non‑union 
fractures is based on clinical symptoms and physical findings, 
including pain at the fracture site and evidence of pathologic 
motion (18), there are seldom studies on the high‑throughput 
screening and function identification of differential gene 
expression in fracture non‑unions. In the present study, the 
upregulated gene CLU and its 44  interaction objects were 
selected from a microarray chip composed of normal union 
and non‑union skeletal fracture samples. According to the 
function of CLU and its interacting genes, the conclusion 
was reached that by inhibiting the normal healing process 
following a fracture, the selected genes regulated the healing 
of non‑union skeletal fractures through participating in sterol 
transport and the pathway involved in the differentiation of 
osteoclasts.

CLU (also known as clusterin, apolipoprotein J, TRPM‑2 
and SGP‑2) is highly conserved in different species, with 
approximately 70-80% protein homology in mammals with 
other species. CLU consists of a 449‑amino‑acid primary 
polypeptide chain. By its disulfide bridges, human CLU is 
cleaved into α and β chains (19). CLU expression is low in 
normal conditions but is induced by stress stimuli, suggesting 
that its function may be directly or indirectly associated with 
the stress response (20). In a number of studies, CLU has been 
demonstrated to be antiapoptotic, protecting cells against a 
variety of death signals (21-23). Although there have been no 
direct studies indicating that CLU is associated with fracture 
healing, a recent study has demonstrated that the mRNA 
levels of CLU are increased in early osteoarthritic articular 

(OA) cartilage, while they are decreased in advanced OA (24).
IL‑1α‑stimulated cartilage explants have been demonstrated 
to produce decreased levels of CLU compared with those in 
untreated cartilage (25) and treatment with IL‑1β also decreases 
the levels of CLU (26). Synovial apoptosis inhibitor 1 (SYVN1), 
also known as DER3 and HRD1, is an E3 ubiquitin ligase that 
is implicated in endoplasmic reticulum‑associated degrada-
tion (27). It is cloned from rheumatoid synovial cells and is 
highly expressed in the synoviocytes of patients with rheuma-
toid arthritis (RA). Through its antiapoptotic effect, SYVN1 
promotes the overproliferation of synoviocytes (28,29). Murine 
double minute 2 (mdm2) was first identified as the gene respon-
sible for the spontaneous transformation of 3T3 cells (30). As 
an E3 ubiquitin ligase, mdm2 is a critical negative regulator of 
p53 by targeting it for ubiquitination and proteasomal degra-
dation (31). Individuals carrying the mdm2 SNP309 T/G or 
G/G have been identified to exhibit a significantly earlier age 
of onset for osteosarcoma (32). In RA patients, the frequencies 
of the mdm2 SNP309 are significantly reduced (33), while 
the mdm2 SNP 309G/G is associated with higher levels of 
apoptotic activity in RA‑derived synoviocytes (34). Kelch‑like 
ECH associated protein 1 (Keap1) is a stress sensor and an 
adaptor component of Cullin 3‑based E3 ubiquitin ligase (35). 
Under normal (unstressed) conditions, Keap1 activates and 
rapidly degrades Nrf2 through the proteasome pathway. 
Upon cellular exposure, as an E3 ubiquitin ligase component, 
Keap1 is inhibited, which provokes Nrf2 stabilization (36). A 
study has reported that the Nrf2‑Keap1 signaling cascade is 
conserved in human skeletal muscle (37). 

Fracture healing is a complex process that involves 
osteoblasts, osteoclasts and a variety of other cells and cyto-
kines (38), which means it may be the outcome of the interaction 
of multiple genes. Although there have been only indirect 

Table II. List of functions associated with enriched genes in the network.

ID	 Term	 P‑value	 Genes

GO:0032371	 Regulation of sterol transport	 0.00000703	 LEP, APOA1, PON1, NFKB1,CLU
GO:0044421	 Extracellular region part	 0.0000341	 LEP, C8B, APOA1, LEPR, CLU, PON1, LRP8, LRP2, 
			   MMP25, VLDLR
GO:0005576	 Extracellular region	 0.000481	 LEP, C8B, C7, APOA1, C9, LEPR, CLU, PON1, LRP8, 
			   LRP2, MMP25, VLDLR
GO:0043233	 Organelle lumen	 0.004086798	 FOS, APOA1, SYVN1, CLU, UBC, NR4A1, MDM2, 
			   NFKB1, KEAP1, CUL1
GO:0031974	 Membrane-enclosed lumen	 0.004673635	 FOS, APOA1, SYVN1, CLU, UBC, NR4A1, MDM2, 
			   NFKB1, KEAP1, CUL1

Table III. List of pathways associated with enriched genes in the network.

ID	 Term	 P‑value	 Genes

hsa04380	 Osteoclast differentiation 	 0.011605668	 SYVN1, MDM2, KEAP1, CUL
hsa04920	 Adipocytokine signaling pathway	 0.022842413	 LEP, LEPR, NFKB1
hsa04610	 Complement and coagulation cascades	 0.024136338	 C8B, C7, C9
hsa04662	 B cell receptor signaling pathway	 0.028195492	 FOS, GRB2, NFKB1
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studies that have indicating that CLU and its interacting genes 
are involved in healing fractures, there is significant evidence 
that they participate in the healing process. In conclusion, 
the generally stronger inhibition of osteoblasts in non‑union 
fractures (39) combined with the results of the present study 
indicating that CLU and its interacting genes SYVN1, MDM2 
and KEAP1 participate in the osteoclast differentiation 
pathway suggest that all the genes which were identified by 
screening may regulate the healing of fractures through an 
involvement in osteoclast differentiation.
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