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Abstract. The aim of the present study was to present a novel 
non‑local mean (NLM) method to denoise diffusion tensor 
imaging (DTI) data in the tensor space. Compared with 
the original NLM method, which uses intensity similarity 
to weigh the voxel, the proposed method weighs the voxel 
using tensor similarity measures in the diffusion tensor 
space. Euclidean distance with rotational invariance, and 
Riemannian distance and Log‑Euclidean distance with affine 
invariance were implemented to compare the geometric and 
orientation features of the diffusion tensor comprehensively. 
The accuracy and efficacy of the proposed novel NLM method 
using these three similarity measures in DTI space, along with 
unbiased novel NLM in diffusion‑weighted image space, were 
compared quantitatively and qualitatively in the present study.

Introduction

Diffusion tensor imaging (DTI) has evolved into a primary 
technique for characterizing the structure and architecture of 
living tissue non‑invasively in vivo (1). The Brownian motion 
of free water molecules is first measured using diffusion sensi-
tizing gradients along different spatial directions to generate 
diffusion‑weighted images (DWIs), from which DTI data are 
reconstructed under the assumption of a Gaussian model. 
Mathematically, the tensor is represented by a 3x3, symmetric 
positive definite matrix, whose eigenvalues and eigenvectors 
describe the magnitudes and directions of water diffusion 
in each voxel imaged. The eigenvector corresponding to the 
largest eigenvalue is assumed to be along the longitudinal axis 
of white matter fiber bundles, the integration of which over the 
image volume allows the trajectories of the white matter fiber 
pathways to be delineated in vivo (2). An additional important 
parameter, fractional anisotropy (FA), which is derived from 

the eigenvalues, has been found to be a very sensitive index of 
the structural integrity of brain tissue (3).

The unique capability of DTI has been exploited in the past 
decade in a number of clinical studies that aimed to understand 
the structural basis of functional anomalies or the normal 
developmental processes of the human brain (4,5). Despite the 
success in providing insight into the tissue microstructure and 
architecture, the reliability and validity of DTI, particularly in 
the context of tractography, remain a common concern. Most 
notably, due to the use of echo planar imaging sequences, the 
DWIs from which tensors are reconstructed are particularly 
vulnerable to imaging noise, which necessarily imparts the 
parameters subsequently derived from the DTI data (3).

To improve the reliability and validity of DTI applications, 
extensive efforts have been made to suppress image noise by 
image smoothing. To date, the smoothing methods reported are 
primarily neighborhood based and may be broadly classified 
into two categories: Denoising in the DWI space (6‑10) and 
denoising in the DTI space (11,12). Although these methods 
have been demonstrated to be able to reduce the noise 
effectively, each method has advantages and disadvantages. 
Denoising in the DWI space enhances the signal‑to‑noise ratio 
prior to tensor reconstructions, but these methods provide no 
guarantee to the smoothness of the DTI space since higher 
level constraints from the structure information cannot be 
elegantly embedded. In addition, denoising in DWI space 
requires restoring the images for all spatial directions. This 
duplication markedly increases the computation time, particu-
larly in high angular resolution diffusion Imaging (HARDI), 
which involves hundreds of directions for restoration (13). 
By contrast, denoising in the DTI space usually smooths the 
tensor space using tensor elements or the decomposed tensor 
spectra. While methods in this category possess the advantage 
of being able to maintain explicitly the coherence of structures 
inherent in the image, they are dominantly based on limited 
features derived from the tensor and, thus, impose constraints 
in only a sub‑space of the DTI.

In the present study, a novel DTI space denoising method, 
based on recently established non‑local mean (NLM) 
smoothing (14), was proposed. In contrast to the conventional 
NLM denoising method, which smooths images in a gray‑level 
scale, this method adapted NLM into DTI space. In addition, 
the weighting scheme of NLM was implemented using affine 
invariant metrics, which compare geometric and orienta-
tion features of the diffusion tensors comprehensively. The 
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benefits of the proposed method are three fold. Firstly, using 
NLM denoising in DTI space ensures an optimal restoration 
result for the geometric and orientation information of the 
diffusion tensor. Secondly, comparison with affine invariant 
metrics produces a more accurate weighting scheme and, thus, 
involves further improvement of NLM denoising. Finally, 
computational redundancy is markedly decreased for tensor 
base smoothing and the effective weighting scheme.

The present study introduces the basic principle of this 
smoothing method, as well as the implementation details. 
Performance of the algorithm was evaluated on the basis of 
three similarity measures, namely, Log‑Euclidean distance 
(LED) (15), Riemannian distance (RD) (16) and Euclidean 
distance (ED) (17), together with the unbiased NLM method 
in DWI space (10). Experimental results with synthetic and 
real in vivo DTI data were assessed.

Materials and methods

Methods. The original NLM algorithm proposed by 
Buades et al (14) smooths gray‑level images on the basis of 
image intensity similarity, instead of spatial proximity, which 
is formulated under the framework of the Markov random 
field (18). Specifically, for position p, the filtered intensity I is 
computed as follows (equation 1); 

where p and q are the positions of image pixels, v is the noised 
image and Ω is a neighborhood of p with a reasonable size. 
The parameter w is a weighting factor computed as follows 
(equation 2):

Where d(p,q) is an ED of the gray level between pixels p and 
q, h controls the rate of decay of the exponential function and 
Z is a normalizing factor calculated as follows (equation 3):

According to the aforementioned equations, the estimated 
value of I is a weighted average of the pixels in the Ω neigh-
borhood, where the pixels with more similar gray levels are 
assigned larger weights. Essentially, the NLM reduces noise 
by exploiting the self‑similarity of image gray levels, which 
has been demonstrated to be an effective method of imaging 
smoothing for conventional MRI (19), as well as DWIs (12).

Unlike MRI or DWI generation, DTI uses a symmetric 
positive definite matrix in each voxel to describe the tensor 
model, which characterizes unique microstructural geometric 
information in white matter fiber bundles. Therefore, DTI 
comparison is required to characterize variability based on 
the entire tensor and thus, is defined as the distance between 
them. To define the geometric distance between tensors, 
metric and local coordinate systems for tensor representation 
are required. Basser and Pajevic (20) proposed a tensor‑variate 
statistical framework which placed the diffusion tensor on a 
Euclidean manifold (equation 4):

where ||•|| denotes the Frobenius norm. This Euclidean metric 
is defined over an entire space of symmetric matrices and is 
rotation invariant, which makes it invariant for the selection of 
orthogonal coordinates. 

An additional framework is Riemannian metric, which is 
affine invariant and operates only on tensors belonging to the 
space of positive definite symmetric matrices (equation 5) (16): 

where V is the tensor matrix and λi is the ith eigenvalue of 
the matrix, V(p)‑1V(q). Compared with the Euclidean metric, 
which admits non‑positive tensors and exhibits a swelling 
effect, the affine invariant metric coincides with the Fisher 
information metric (21) and Kullback‑Leibler divergence (22), 
and is proposed as a natural metric for DTI. In addition, the 
Log‑Euclidean metric, with its corresponding geodesic, was 
proposed as an efficient approximation for the computation-
ally demanding affine‑invariant metric and is implemented in 
a number of tensor processing applications (equation 6) (15):

where Trace denotes the sum of the eigenvalues.
According to the original NLM method (14), the gray‑level 

intensities of an image are assumed to be approximate with 
normal distribution. However, since the diffusion tensor space 
is not Euclidean, the normal distribution can be adopted 
into log‑normal distribution and the first equation should be 
rewritten as the geometric mean (equation 7):

where the weight can be calculated using equations 4-6 

Experiments with simulated DTI data. The proposed algo-
rithm was first evaluated with a synthetic DTI dataset, which 
was designed to have a sinusoid geometric structure, as shown 
in Fig. 1A. To improve the visualization details of the synthetic 
fibers, the boxed region in Fig. 1A is shown in an enlarged 
view in Fig. 1B. Each voxel was visualized by an ellipsoid, 
whose principal axes were the three orthogonal eigenvectors 
of the tensor, and the radii of the ellipsoid along the axes were 
proportional to their corresponding eigenvalues. To closely 
mimic the physiological in vivo conditions, synthetic tensors in 
the curves were constructed to have a trace of 2.1x10‑5 cm2/sec 
and an FA of 0.8. These diffusion parameters were similar 
to those in normal brain parenchyma. Diffusion‑weighted 
imaging was simulated along 32 non‑collinear directions with 
a b value of 1,000 sec/mm2, and the diffusion‑weighted data 
were corrupted with 5% Rician noise as follows (equation 8):

where ai is the simulated DWI signal at pixel i, and xi and yi are 
both Gaussian noise with a mean value of zero and identical 
standard deviations of 0.05. Fig. 1C demonstrates an example 
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of noised DTI tensors whose principle direction and shape are 
disarranged due to noise corruptions.

The proposed DTI‑NLM method using ED (equation 4), 
RD (equation 5) and LED (equation 6) was examined with a 
synthetic DTI dataset. In addition, an unbiased non‑local mean 
(UNLM) algorithm in DWI space was used (10) and calcu-
lated to tensor using a linear least‑square fitting procedure for 
comparison (1).

Three approaches were employed to compare the perfor-
mance of these denoising methods, namely, visual assessment, 
quantification of the mean angular deviation of the principal 
direction (PD) and mean deviation of the FA prior to and 
following denoising. The first assessment demonstrated the 
improvement of the visual effect with the denoising methods. 
The second assessment measured the capability of these 
denoising methods to restore the tensor orientation, while the 
last assessment gauged the extent to which the tensor direc-
tionality was restored with the denoising methods. 

Finally, the effects of denoising were more rigorously 
examined with permutation tests, which compared the influ-
ences of different denoising methods on the uncertainties 
of the DTI data. Experimental procedures were conducted 
as follows. Firstly, the DWI data were computed from the 
denoised and uncorrupted DTI data. Secondly, residuals were 
obtained by calculating the differences between the DWIs 
from the denoised DTI data and those from the uncorrupted 
DTI data. The residuals were then randomly permuted and 
added to the uncorrupted DWI data. This process was repeated 
1,000 times to produce 1,000 new DWI datasets, from which 
DTI data were derived. The 1,000 samples of each of the 
six independent tensor components were fitted with normal 
distributions, and the mean and 95% confidence intervals for 
each component were calculated. Finally, an ellipsoid was 

constructed corresponding to the mean DTI data, which was 
sandwiched by ellipsoids corresponding to the upper and lower 
bounds of the confidence interval.

Parameters of the proposed denoising were set as follows. 
In NLM, the parameter h controls the decay of the exponential 
function, which impacts the degree of filtering. Typically, the 
value of h is selected on the basis of the variance of noise (14). 
In the present study, it was manually tuned to 30, since this 
value had produced optimal results in preliminary trials. The 
neighborhood was empirically defined to be a 5x5 window 
[the same window size was used for Gaussian filtering (GF)], 
which was also demonstrated to yield optimal results. The 
parameters of UNLM in DWI space were implemented using 
the optimal ones suggested by the author (19). 

Experiments with in  vivo human DTI data. To assess the 
performance of the proposed algorithm on in vivo data, DWI 
data were acquired from a healthy human volunteer using 
a 3T Philips Intera Achieva MR scanner (Philips Medical 
Systems, Best, Netherlands) and an eight‑element SENSE coil. 
A single shot, echo‑planar pulsed gradient spin‑echo imaging 
sequence was used, and diffusion weighting was performed 
along 32 non‑collinear directions with a b value of 1,000 sec/
mm2. A total of 64  contiguous, 2‑mm‑thick slices with a 
matrix size of 128x128 were acquired from a field of view of 
256x256 mm2, yielding an in‑plane pixel size of 2x2 mm2. 
Three repeated scans were obtained from each subject, which 
were motion and distortion corrected and then averaged using 
the Philips diffusion registration PRIDE tool (Release 0.4; 
Philips Medical Systems). Diffusion tensors were estimated 
from the averaged DWI data using a linear least‑square fitting 
procedure (1), from which FA maps were computed. Prior to 
the study, the subject provided informed consent for the study 

Figure 1. Visual assessment of the denoising effects on synthetic DTI data. (A) Synthetic dataset without noise. (B) Enlarged view of the boxed region in (A). 
Same region of (B) with (C) 5% Rician noise, and denoising with (D) GF, (E) RD, (F) LED, (G) ED and (H) UNLM in DWI space. DTI, diffusion tensor 
imaging; GF, Gaussian filtering; RD, Riemannian distance; LED, Log‑Euclidean distance; ED, Euclidean distance; UNLM, unbiased non‑local mean; DWI, 
diffusion weighted image.

  B  A

  E

  C   D

  H  G  F



SU et al:  NON-LOCAL MEAN DENOISING IN DTI FIELD450

protocol that had been approved by the local ethics committee 
of West China Hospital.

The same four methods were utilized with the in vivo 
dataset and the parameter settings were the same as for the 
synthetic experiments. Denoising results were evaluated visu-
ally and quantitatively, on the basis of the tensor geometry, the 
mean angular deviation of PD and the mean deviation of FA, 
as before.

Results

Results with simulated DTI data. Results of the proposed 
DTI‑NLM method are demonstrated in Fig.  1D‑H, with 
smoothing with GF, weighting with RD, LED and ED, and 
the UNLM method in DWI space, respectively. In reference 
to the corrupted image in Fig. 1C, the results indicated that 
all the denoising methods restored the tensor shape and 
orientation, although to varying degrees. Compared with the 
traditionally used GF (Fig. 1D), which smoothed DTI data in 
homogeneous regions and blurred edges simultaneously, the 
proposed NLM method effectively preserved the edges while 
greatly reducing noises throughout the image. This was mani-
fested in the consistency of the shape and orientation with the 
original noise‑free data, even at the edge of the fiber bundle, as 
opposed to the spreading of these shapes into the background 
regions by GF.

Among the different weighting schemes using NLM, the 
RD and LED methods (Fig. 1E and F) yielded the best results 
due to the use of full information from the tensor. By contrast, 
ED weighting produced the poorest results due to the reliance 
on only partial tensor information in computing the weight. 
In particular, the UNLM in DWI space achieved reasonable 
results which restored shape and orientation simultaneously. 

Quantitative evaluations of the smoothing effects are shown 
in Table I, which lists the mean deviations of PD and FA for 
each of the methods implemented. The results demonstrated 
that the effects of denoising with RD and LED weighting were 
similar, as expected, and were better than the effects achieved 

with ED. The mean deviations of PD for the RD and LED 
methods decreased by more than one degree when compared 
with the noised DTI data. By contrast, the result from UNLM 
in DWI space was also comparative and achieved a similar 
result to RD and LED. In addition, GF yielded the largest 
improvement in the deviation of FA, which was not unexpected 
since smoothing of a scalar field can be reasonably achieved 
through neighborhood averaging.

Changes in the tensor uncertainties following denoising 
are shown in Fig. 2. The voxel selected was the one with the 
largest FA, as shown in Fig. 1. Fig. 2A demonstrates the upper 
(blue) and lower (red) bounds of the tensor following corrup-
tion with 5% Rician noise. Following denoising, the tensor 
uncertainty exhibited varying levels of changes. Among all 
the denoising methods, RD and LED weighting yielded the 
tensor with the smallest confidence intervals, attesting again 
to their better denoising performance in comparison with the 
other methods.

Results with in vivo human DTI data. Figs. 3 and 4 demon-
strate the effects on the shape and orientation information, 
respectively, using the proposed DTI‑NLM method with the 
three weighting strategies and UNLM DWI denoising in the 
human brain. Figs. 3A and 4A show the FA and PD maps, 
respectively, of one slice of the in vivo human DTI dataset, 
which demonstrated marked artifacts resulting from noise. 
Figs. 3B‑E and 4A‑E show the FA and PD maps, respectively, 
following denoising using the four aforementioned methods. 
Among the NLM‑DTI based denoising methods, the RD and 
LED weighting methods achieved visually the most appealing 
effects in the FA and PD maps, which may be attributable to 
their use of full tensor information in similarity weighting. The 
ED weighting method also restored the FA and PD maps well, 
with a little residual noise artifacts observed, but somewhat 
clearer structure boundaries. 

To assess the denoising effects in the tensor structure, the 
same section presented in Fig. 3 was selected. Fig. 5 shows 
the tensor ellipsoids of the restoration result using the four 

Table I. Mean deviations of PD and FA following the addition of 5% Rician noise and the denoising of synthetic data.

Parameter	 Add 5% noise	 LED	 RD	 ED	 UNLM in DWI	 GF

Mean deviation of PD	 5.2317	 3.9814	 4.1129	 4.4398	 4.1349	 4.4912
Mean deviation of FA	 0.0573	 0.0487	 0.0496	 0.0512	 0.489	 0.0459

PD, principal direction; FA, fractional anisotropy; RD, Riemannian distance; LED, Log‑Euclidean distance; ED, Euclidean distance; UNLM, 
unbiased non‑local mean; DWI, diffusion‑weighted image; GF, Gaussian filtering.

Figure 2. Tensor uncertainties prior to and following various denoising methods. The mean value is denoted in black and the 95% confidence interval is denoted 
in red and blue. Tensor uncertainty after (A) 5% Rician noise corruption, and denoising with (B) RD, (C) LED and (D) ED weighting and (E) UNLM in DWI 
space. RD, Riemannian distance; LED, Log‑Euclidean distance; ED, Euclidean distance; UNLM, unbiased non‑local mean; DWI, diffusion‑weighted image.
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aforementioned denoising methods. In Fig. 5, the background 
is the FA map of the slice and the tensor is represented by 
a 3D ellipsoid projected onto the FA plane. Fig. 5B‑F show 
an enlarged view of the boxed region in Fig. 5A. The results 
indicate that with the original noised image, the ellipsoids 
were disarrayed and the tensors appeared to have marked 

irregularity in shape and direction. Following the use of the 
proposed NLM methods with the RD and LED weighting 
strategies (Fig. 5C and D), the structures were well restored, 
and the structure and orientation were regularly arranged, with 
the exception of a few artifacts. In addition, the NLM‑DTI 
method using ED weighting accomplished reasonable results, 

Figure 3. In vivo FA maps prior to and following denoising. FA map of (A) original image, and denoising with (B) RD, (C) LED and (D) ED weighting and 
(E) UNLM in DWI space. Upper row, axial plane; middle row, sagittal plane; lower row, coronal plane; FA, fractional anisotrophy; RD, Riemannian distance; 
LED, Log‑Euclidean distance; ED, Euclidean distance; UNLM, unbiased non‑local mean; DWI, diffusion‑weighted image.

Figure 4. In vivo PD maps prior to and following denoising. PD map of (A) original image, and denoising with (B) RD, (C) LED and (D) ED weighting and 
(E) UNLM in DWI space. Upper row, axial plane; middle row, sagittal plane; lower row, coronal plane; PD, principal direction; RD, Riemannian distance; 
LED, Log‑Euclidean distance; ED, Euclidean distance; UNLM, unbiased non‑local mean; DWI, diffusion‑weighted image.

Figure 5. Visual assessment of the denoising effects on in vivo DTI data. The slice shown is the same as in Fig. 3 and 4, and each tensor is represented by 
an ellipsoid. (A) A slice of the in vivo dataset. (B) Enlarged view of the boxed region in (A). Denoising with (C) RD, (D) LED and (E) ED weighting and 
(F) UNLM in DWI space. DTI, diffusion tensor imaging; RD, Riemannian distance; LED, Log‑Euclidean distance; ED, Euclidean distance; UNLM, unbiased 
non‑local mean; DWI, diffusion‑weighted image.
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however, an evident error tensor was observed (red arrow in 
Fig. 5E). This may have been caused by the inaccuracy of the 
tensor weighting from the partial comparison using ED. It 
should be noted that the UNLM in DWI method also yielded 
a significant improvement in the tensor shape and orientation. 
Overall, the effects of these methods on the in vivo data were 
similar to those on the simulated data.

Computational efficiency. The computational efficiency of 
the proposed NLM‑DTI algorithm with the three different 
weighting schemes and UNLM in DWI space is demonstrated 
in Table II. The time consumption primarily depended on the 
size of the dataset. In addition, DWI denoising required dupli-
cating the procedure for all the directions, which increased the 
computational time. Under the parameter settings used in the 
present study and on a notebook computer with an Intel Core 
(TM) i7 CPU, 4GB RAM, scripted in MATLAB, the running 
time of the proposed method was <30 sec, which should satisfy 
the majority of research and clinical applications. 

Discussion

In the present study, a novel DTI denoising method in the tensor 
space is proposed. Following the widely recognized NLM 
method, DTI data were denoised by averaging the tensors in 
a specific neighborhood according to their similarity to the 
tensor in the center. Under the proposed NLM framework, 
three weighting schemes corresponding to different features 
extracted from the tensor, as well as GF in DTI space and 
UNLM denoising in DWI space, were compared quantita-
tively and qualitatively with synthetic and real human brain 
DTI datasets.

The results of these experiments demonstrated that the 
proposed method is able to suppress noise and preserve explicit 
boundaries in DTI data, with the extent varying depending 
on the similarity weighting scheme used. Specifically, the 
denoising performance relied primarily on the accuracy of 
tensor comparison. When the tensor was compared on the 
basis of a greater number of structural features, as imple-
mented in RD and LED, the proposed NLM method achieved 
the best effect. By contrast, when the comparison used fewer 
structural features, as implemented in ED, the denoising effect 
was markedly decreased.

As previously discussed, DTI denoising may be broadly 
divided into two categories: Denoising in the DWI space and 
denoising in the DTI space. Compared with DWI denoising, 
DTI denoising is much more convenient to implement and is 

able to achieve similar denoising results for orientation and 
structure information. Unlike DTI denoising, which involves 
only six independent parameters, DWI data normally entail a 
much greater number of directions and the denoising procedure 
has to be duplicated for all the directions. As the application 
of HARDI increases (13), the computational burden is likely 
to become the critical disadvantage of DWI denoising due to 
the hundreds of scanning directions and different b values. In 
addition, due to the nonlinearity between the DWI and DTI 
spaces, optimal denoising results in the DWI space are not 
necessarily optimal in the DTI space. Therefore, denoising 
DTI directly is able to achieve the most intuitive restoration 
results and convenience for subsequent applications. 

Finally, it should be considered that the proposed method 
does not come without limitations, despite its great poten-
tial. Although denoising in DTI space is timesaving when 
compared with DWI denoising, the NLM method itself is 
generally computationally intensive. This can be resolved 
by improving the NLM framework (23) or by implementing 
the smoothing process with more advanced computational 
techniques. In conclusion, the proposed method smooths DTI 
data in the tensor space with an NLM method, which extracts 
information from the tensor for computing the weight for 
averaging. The efficacy and advantages of the technique have 
been demonstrated by experiments with synthetic and in vivo 
human DTI data. With the application of an affine invariant 
matrix, which encapsulates the comprehensive information of 
the diffusion tensor, NLM‑DTI denoising is able to achieve 
comparative restoration results to resemble the denoising 
method in DWI space. In addition, the time efficiency demon-
strates the practical use for this method as a routine denoising 
algorithm.
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