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Abstract. The aim of the present study was to successfully 
construct a recombinant adeno‑associated virus (rAAV) vector 
containing the human thioredoxin (hTRX)‑PR39 chimeric 
gene (rAAV/hTRX‑PR39), and verify that the vector was able 
to maintain a sustained, stable and efficient expression to 
achieve protein production in the cell. In the present study, a 
chicken embryo model was utilized to analyze the therapeu-
tical effect of rAAV/hTRX‑PR39 in cerebral ischemia diseases. 
ECV304 cells were transfected with rAAV/hTRX‑PR39 
and incubated under conditions of 20, 5  and 1%  O2. 
Subsequently, the expression levels of vascular endothelial 
growth factor (VEGF), vascular endothelial growth factor 
receptor (VEGFR)‑1, VEGFR‑2, fibroblast growth factor 
receptor (FGFR)‑1 and syndecan‑4 were detected by reverse 
transcription‑quantitative polymerase chain reaction. Under 
hypoxic conditions, the mRNA expression levels of VEGF, 
VEGFR‑1, VEGFR‑2, FGFR‑1 and syndecan‑4 were found 
to increase in the PR39‑transfected group when compared 
with the control group, while no statistically significant differ-
ence was observed between the PR39‑transfected group and 
the control group under conditions of 20% O2. In addition, 
hTRX‑PR39 was shown to increase the density of the vascula-
ture and the survival rate of the chick embryos. Under hypoxic 
conditions, it was hypothesized that rAAV/hTRX‑PR39 was 
capable of promoting angiogenesis, which may subsequently 
protect the cells from impairment by hypoxia. In conclusion, 
rAAV/hTRX‑PR39 was demonstrated to promote vasculariza-

tion and cell survival in hypoxia; thus, rAAV/hTRX‑PR39 may 
have potential for use in therapy targeting cerebral ischemia.

Introduction

Cerebral infarction is a severe disease of the central nervous 
system that has a high incidence rate. Thrombolytic therapy is 
considered to be the only safe and effective method to recover 
the blood supply; however, an effective method of providing 
neuronal protection against ischemia and ischemia‑reperfusion 
 injury has not yet been identified. In addition, a method for 
inducing angiogenesis, which may aid the establishment of 
collateral circulation and secondary prevention, has not yet 
been developed (1).

Gene therapy has been considered to be prospective in 
the treatment of infarction and neuron protection  (2,3). A 
number of studies assessing monogenic function have been 
conducted, where the protective roles of neurotrophic factors, 
antiapoptosis genes and angiogenic growth factors have been 
investigated (4). However, the mechanisms underlying cere-
bral ischemic diseases are complicated and involve a variety 
of courses; thus, it was proposed that regulating two genes 
that exhibit positive feedback on each other may aid further 
understanding (5). Human thioredoxin (hTRX) is a type of 
stress‑induced protein that protects neurons against oxidative 
stress (6,7). hTRX has been demonstrated to possess the ability 
to scavenge free radicals, and also ease the inflammatory 
response by regulating nuclear factors or mitogen‑activated 
protein kinases. In addition, since hTRX is a type of natural 
human protein with low immunogenicity, hTRX can be used 
as a frame protein to construct a gene fusion system, in which 
the solubility and activity of the expression product can be 
increased significantly (8,9).

Antibacterial peptide (PR39), a proline‑ and arginine‑rich 
peptide consisting of 39  amino acids, is considered to be 
the switch for angiogenesis (10). PR39 is able to inhibit the 
degradation of hypoxia inducible factor (HIF)‑1α, which subse-
quently elevates the expression of vascular endothelial growth 
factor (VEGF), kinase insert domain containing‑receptor, 
fms‑like tyrosine kinase and fibroblast growth factor receptor 
(FGFR)‑1 to promote vascularization (11,12). This mechanism 
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of action is similar to the mechanism of vascularization that 
is observed under conditions of hypoxia. Sun et al indicated 
that adeno‑associated virus (AAV)‑PR39 may serve as a novel 
therapeutic agent for the treatment of myocardial infarc-
tion (13). As a short peptide, PR39 is unstable; thus, hTRX 
may be used to provide a frame structure for PR39. Following 
the insertion of the hTRX frame structure, the aptamer (PR39) 
is more stable compared with the free peptide. Furthermore, 
the cell‑penetrating ability of hTRX (14,15) may enable PR39 
to pass through the blood‑brain barrier, which is conducive to 
enabling the full function of PR39.

In the present study, it was hypothesized that the recom-
binant gene, hTRX‑PR39, may exhibit multiple functions in 
the protection of neurons and the vasculature. Thus, the aim 
of the present study was to investigate the therapeutic roles of 
hTRX‑PR39 in hypoxia.

Materials and methods

Recombinant virus construction. The pGEM-T-hTRX-PR39 
cloning vector containing hTRX-PR39 full-length gene 
sequence was constructed as previously described (16). First, 
the forward and reverse primers of PR39 were designed 
and synthesized. Using PCR, the fragment encoding PR39 
was produced, including EcoR721 and BamHI restriction 
enzyme sites, and the new hTRX cDNA including EcoR721 
and EcoRI restriction enzyme sites was generated. Next, the 
synthesized fragments were cloned into a pGEM-T vector. 
The positive clone was identified using restriction enzymes, 
and the cloned amplified fragments were sequenced by the 
dideoxy-mediated chain-termination method. The cloned 
hTRX and PR39 cDNA were compared with the GenBank 
sequence (http://www.ncbi.nlm.nih.gov/genbank/) using 
DNASIS software (MiraiBio Group, San Francisco, CA, 
USA). Subsequently, pGEM-T-hTRX and pGEM-T-PR39 were 
digested by BamHI and EcoRI, the PR39 BamHI, EcoRI was 
cloned into the recombinant vector pGEM-T-hTRX BamHI, 
EcoRI. Thus, the recombinant vector pGEM-T-hTRX-PR39 
was produced. The pSSCMV viral vector, adenovirus plasmid 
pAAV/Ad, Escherichia coli TOP10, ECV304 and HEK293 cell 
lines were provided by Xi'an Huaguang Biological Engineering 
Co., Ltd. (Xi'an, China) (17).

Transfection. The recombinant virus was seeded into the 
culture medium of ECV304 cells (Xi'an Huaguang Biological 
Engineering Co., Ltd.) and incubated for 24 h. For the control, 
adenoviruses were seeded into the culture medium of ECV304 
cells instead of the recombinant virus. The control and trans-
fection groups were subsequently divided into three subgroups 
that were separately incubated in a hypoxic (1 and 5% O2) or 
normoxic environment (20% O2) for 72 h.

Reverse transcription‑quantitative polymerase chain reac‑
tion (PCR). Total RNA was extracted using TRIzol reagent 
(Invitrogen Life Technologies, Carlsbad, CA, USA) and reverse 
transcribed to cDNA using a Moloney Murine Leukemia 
Virus (M‑MLV) reverse transcriptase PCR kit (Promega 
Corporation, Madison, WI, USA). Briefly, 3 µl RNA was 
reverse transcribed to cDNA at 37˚C for 1 h in a 20‑µl reac-
tion system that contained 1 µl M‑MLV reverse transcriptase, 

4 µl 5X M‑MLV buffer, 0.5 µl RNase inhibitor, 1 µl oligo‑dT 
and 1 µl dNTP (Promega Corporation, Madison, WI, USA). 
For quantitative PCR, the PCR amplification mixture (20 µl) 
consisted of 2 µl cDNA mixture, 10 µl SYBR Green (Takara 
Biotechnology Co., Ltd., Dalian, China), 2 µl primers and 6 µl 
deionized water. β‑actin was used as a control. The amplifica-
tion conditions were as follows: Initial denaturation at 95˚C 
for 2 min, followed by 40 cycles of 95˚C for 10 sec, 58˚C 
for 30 sec and 72˚C for 30 sec. Nested PCR was performed 
using a 2‑µl sample of the PCR product as a template under 
the aforementioned PCR conditions. Bio‑Rad IQ5.0 Optical 
System software (Bio‑Rad Laboratories, Hercules, CA, USA) 
was used for the detection of the quantitative PCR products 
that were specific for VEGF, vascular endothelial growth 
factor receptor (VEGFR)‑1, VEGFR‑2, FGFR‑1, syndecan‑4, 
PR39 and β‑actin. The primer sequences used for PCR are 
shown in Table I.

Effects of AAV‑hTRX‑PR39 transfection on the hypoxic chick 
embryo. Effects of AAV‑hTRX‑PR39 on the hypoxic chick 
embryo were analyzed using a chick embryo (Xi'an Huaguang 
Biological Engineering Co., Ltd.) chorioallantoic membrane 
(CAM). In total, 120  fertilized chicken eggs (age, seven 
days; weight, 50‑55 g) were incubated under 65‑70% rela-
tive air humidity at 37˚C. On day four of incubation, 100 µl 
AAV‑hTRX‑PR39 or adenovirus (control) was gently pipetted 
onto the CAM surface using a transfer pipette. The eggs were 
subsequently placed in an incubator for three days. Next, the 
CAMs were incubated for 8 h in a hypoxic (1 and 5% O2) or 
normoxic (20% O2) environment, after which they were incu-
bated for 11 days in a normoxic environment. The CAMs were 
subsequently photographed using an Olympus DP73 digital 
camera (Olympus Corporation, Tokyo, Japan), as presented in 
Fig. 1. The vessel density of the CAMs was analyzed using 
Image‑Pro Plus software (Media Cybernetics, Inc., Rockville, 
MD, USA). For each study group, 10‑15 domains were selected 
for vessel quantification, and the mean values of the vessel 
density were calculated. All animal studies were approved by 
the Shandong University Institutional Animal Care and Use 
Committee.

Statistical analysis. Data are expressed as the mean ± standard 
deviation, and were analyzed using analysis of variance and 
the homogeneity of variance test, according to a completely 
randomized design. Comparisons between groups were 
performed using the two‑sample t‑test. SPSS software, 
version 13.0 (SPSS, Inc., Chicago, IL, USA) was used for 
statistical analysis, and P<0.05 was considered to indicate a 
statistically significant difference.

Results

Expression levels of VEGF, VEGFR‑1, VEGFR‑2, FGFR‑1, 
syndecan‑4 and PR39. Under normoxic conditions of 
20%  O2, the mRNA expression levels of PR39, VEGF, 
VEGFR‑1, VEGFR‑2, FGFR‑1 and syndecan‑4 exhibited 
no statistically significant difference when comparing the 
hTRX‑PR39‑transfected ECV304 cells and the control group 
(P>0.05). However, under hypoxic conditions of 1% O2, the 
quantitative PCR results demonstrated increased mRNA 
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expression levels of VEGF, VEGFR‑1, VEGFR‑2, FGFR‑1 
and syndecan‑4, as well as sharply increased expression levels 
of PR39, in the hTRX‑PR39‑transfected group (P<0.05), as 
compared with the control group. The results are shown in 
Table II. The 5% O2 condition was not examined as the 20% 
and 1% O2 conditions successfully demonstrated that transfec-
tion with rAAV/hTRX-PR39 increased the expression levels of 

VEGF, VEGFR-1, VEGFR-2, FGFR-1 and syndecan-4 under 
hypoxic condition (1% O2).

Effects of AAV‑hTRX‑PR39 transfection on the hypoxic chick 
embryo. Under 20% O2 conditions, the survival rate of the chick 
embryos was 100% in the transfected and non‑transfected 
groups (P>0.05). By contrast, under hypoxic conditions (5 or 

Table I. Primers used for reverse transcription‑quantitative polymerase chain reaction.

Genes	 Forward primer (5'‑3') 	 Reverse primer (5'‑3')	 Product (bp)

VEGF	 TCTACCTCCACCATGCCAAGT	 GCTGCGCTGATAGACATCCA	 104
VEGFR‑1	 TCCCTTATGATGCCAGCAAGT	 CCAAAAGCCCCTCTTCCAA	   79
VEGFR‑2	 CTTCGAAGCATCAGCATAAGAAACT	 TGGTCATCAGCCCACTGGAT	 156
FGFR‑1	 ACTCTGTGGTGCCTTCTGAC	 CATTTCCTTGTCGGTGGTAT	 317
Syndecan‑4	 CTGCTGCTGTTCTTCGTAGG	 CTTTGAGCTGTCTGGCTCTG	 153
PR39	 CTCTACCGCCTCCTGGAGCT	 GGCCCTTCATAATATCCCCCA	 117

VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor, FGFR, fibroblast growth factor receptor.

Table II. Expression levels of the angiogenic growth factors in the control and PR39‑transfected groups.

	 20% O2	 1% O2
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
	 Control 1		  Control 2
Gene expression	 group	 PR39	 group	 PR39

VEGF	 0.3±0.06	 0.33±0.08	 0.47±0.22	 0.75±0.25a

VEGFR‑1	 0.14±0.07	 0.15±0.10	 0.31±0.09	 0.49±0.21a

VEGFR‑2	 0.16±0.05	 0.15±0.11	 0.35±0.10	 0.54±0.12a

FGFR‑1	 0.23±0.06	 0.28±0.16	 0.42±0.14	 0.67±0.20a

Syndecan‑4	 0.16±0.05	 0.15±0.04	 0.29±0.06	 0.39±0.11a

PR39	 0.00±0.00	 0.10±0.12	 0.00±0.00	 1.43±0.25a

aP<0.05, vs. control 2 group. VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; FGFR, fibro-
blast growth factor receptor.

Table III. Effects of AAV‑hTRX‑PR39 transfection on the hypoxic chick embryo.

Group	 Survival rate (n)	 Wet weight (g)	 Density of vessels (%)

1% O2

  Control 1	   0/20c	 8.5±3.56c	 2.21±0.4c

  PR39	 16/20a	 32.5±4.5a	 10.6±0.6a

5% O2

  Control 2	   3/20c	 20.4±8.56c	 5.65±0.6c

  PR39	 17/20b	 34.31±6.51b	 11.9±0.5b

20% O2

  Control 3	 20/20	 38.8±4.27	 12.5±0.5
  PR39	 20/20	 34.2±5.44	 10.1±0.5

aP<0.05, vs. control 1 group; bP<0.05, vs. control 2 group; and cP<0.05, vs. control 3 group. AAV, adeno‑associated virus; hTRX, human 
thioredoxin.
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1% O2), the survival rate of the chick embryos was shown to 
increase in the transfected group when compared with the 
non‑transfected group (5% O2, 17/20 vs. 3/20; 1% O2, 16/20 
vs. 0/20; P<0.05).

As shown in Table III, the wet weight of the chick embryos 
under normoxic conditions did not significantly differ between 
the transfected or non‑transfected groups (P>0.05). However, 
the wet weight of the chick embryos under hypoxic conditions (5 
or 1% O2) increased significantly in the transfected group when 
compared with the non‑transfected group (P<0.05).

Under a normoxic environment, no statistically significant 
difference was observed with regard to the density of the vessels 
between the transfected and non‑transfected groups (P>0.05). 
However, the density of the vessels in the chick embryos subjected 
to mild hypoxia (5% O2) and severe hypoxia (1% O2) decreased 
significantly in the non‑transfected group when compared with 
the 20% O2 control group. In addition, the density of the vascu-
lature increased significantly in the transfected groups when 
compared with the respective non‑transfected groups (P<0.05). 
The results are presented in Table III.

Discussion

hTRX is a micromolecular protein that functions as an oxidant 
and a reductant. The hTRX gene is 13 kb in length and encodes 
104 amino acids (18). hTRX is known to play a number of 
important roles, including regulating the redox reaction, scav-
enging free radicals and exerting antiapoptosis effects (19‑21). 
Previously, hTRX protein homology was demonstrated to 
consist of a protein cross‑frame feature that provides available 
sites for the binding of an active aptamer (9,22). Following the 
insertion of the aptamer into the cross‑frame structure, the 
aptamer becomes more stable compared with the free peptide 
and is more prone to transfer into cells. PR39, a short peptide that 
is extremely unstable, is prone to inactivating conformational 
changes. Thus, therapeutic use of PR39 requires expression as 
a recombinant protein. The hTRX protein can provide a frame-
work for the expression of PR39 as a therapeutic aptamer. As 
hTRX is a natural human protein with low immunogenicity, 
hTRX can serve as a cross‑frame protein for the construction 
of a gene fusion expression system, which may significantly 

Figure 1. Effect of adeno‑associated virus‑human thioredoxin‑PR39 transfection on the hypoxic chick embryo in various O2 environments. (A) 1% O2, (B) 1% 
O2PR39, (C) 5% O2, (D) 5% O2PR39, (E) 20% O2 and (F) 20% O2PR39.

  F  E

  D  C

  B  A
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increase the activity of the expression products and activated 
soluble proteins. Previous studies have demonstrated that 
hTRX‑PR39 can reduce the number of apoptotic ECV304 
cells under hypoxic conditions (23,24). Thus, the hTRX‑PR39 
chimeric protein provides structural compatibility to ensure 
the directed bioavailability of PR39 at the target site, in addi-
tion to the added stability of the protein. Furthermore, in the 
present study, the mRNA expression levels of PR39 and the 
various growth factors were only activated under conditions of 
hypoxia, but not under conditions of 20% O2, indicating that 
the application of hTRX‑PR39 is controllable.

In the present study, the mRNA expression levels of VEGF, 
VEGFR‑2, FGFR‑1 and syndecan‑4 were shown to increase in 
the PR39‑transfected groups when compared with the respec-
tive control groups, indicating that PR39 may activate these 
growth factors and receptors. To assess the effect on vascu-
larization, the density of the allantoic sac vasculature were 
calculated. The results demonstrated that the density of the 
vasculature was markedly increased in the transfected groups. 
Accordingly, the survival rates of the chick embryos were also 
improved in the transfected groups when compared with the 
respective control groups. Therefore, the results indicated that 
hTRX‑PR39 was able to induce tolerance to hypoxia.

PR39 has been previously demonstrated to prevent 
the degradation of HIF‑1α, which results in the upregula-
tion of HIF‑1α‑dependent genes, including VEGF and 
VEGFR‑1 (24,25). In addition, PR39 is known to upregulate 
the expression of the FGFRs, FGFR‑1 and syndecan‑4, which 
subsequently activate FGF signaling (24,26). The improve-
ment in blood supply may further increased the level of 
PR39 (27,28). In the present study, increases in the expres-
sion levels of angiogenic growth factors and vascularization 
were confirmed in the PR39‑transfected groups; thus, it was 
hypothesized that these factors may be the main mechanisms 
underlying the protective role of PR39 in hypoxia. In addition, 
PR39 has been hypothesized to play a role in the protection 
of IAP‑2 (an inhibitor of apoptosis) and the decreased activity 
of caspase‑3, leading to the suppression of apoptosis  (29). 
According to these results, PR39 may stimulate an angiogenic 
response, which may be used as a therapeutic intervention in 
ischemic areas. In future studies, hTRX‑PR39 should be trans-
fected into ischemic brain tissues to observe the protective role 
in ischemic stroke.

According to previous studies (30-33) by other groups, and 
our previous study (34), a recombinant AVV (rAAV) vector, 
containing the hTRX‑PR39 chimeric gene, was constructed 
to achieve sustained, stable and efficient protein production. 
Vectors containing hTRX‑PR39 were transfected into chick 
embryonic tissues that had been subjected to hypoxia, and the 
expression of PR39 was shown to be activated, as well as that of 
downstream factors. Expression activation was only observed 
under hypoxic conditions, indicating that the expression is 
well‑controlled. Thus, rAAV/hTRX‑PR39 was demonstrated 
to promote vascularization and cell survival in hypoxia, and 
may have potential in the therapy of cerebral ischemia.

In conclusion, the hTRX‑PR39 chimeric protein provides 
structural compatibility to ensure the directed bioavailability 
of PR39 at the target site, in addition to added stability of the 
protein. Furthermore, transfection with rAAV/hTRX‑PR39 
was shown to increase the expression levels of VEGF, 

VEGFR‑1, VEGFR‑2, FGFR‑1 and syndecan‑4, and promote 
angiogenesis and cell survival under hypoxic conditions. Thus, 
rAAV/hTRX‑PR39 may provide a novel therapeutic method 
for the treatment of ischemia.
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