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Abstract. Large animal models of osteoporosis are essential 
for osteoporosis research. However, the time required to estab-
lish an accurate osteoporosis model is unknown. Therefore, 
the aim of the present study was to establish a large animal 
model of osteoporosis in goats. In total, 14 Chinese goats were 
divided into an ovariectomized (OVX, n=7) or sham‑operated 
(SHAM, n=7) group. Vertebral bodies were used to measure 
the bone mineral density (BMD) prior to the ovariectomy and 
at 24 months after the ovariectomy. In addition, the BMD of 
the femoral neck, femoral diaphysis and tibial diaphysis were 
measured 24 months postoperatively. Bone samples from the 
vertebral body, femoral head and femoral neck were scanned by 
micro‑computed tomography (CT) to visualize the trabecular 
and cortical microstructure. Furthermore, the vertebral body, 
femoral head, femoral neck and tibial diaphysis were analyzed 
for mechanical strength. The BMD of vertebral body of the 
OVX group decreased significantly (P<0.01) at 24 months after 
the ovariectomy when compared with the baseline measure-
ments. Micro‑CT scans of the vertebral body revealed that the 
bone volume fraction, trabecular number, trabecular thickness 
and the degree of anisotropy decreased by 37.1, 36.7, 10.5 and 
16.5%, respectively (P<0.01) in the OVX group when compared 
with the SHAM group. Additionally, the specific bone surface 
and trabecular spacing significantly increased by 37.7 and 62%, 
respectively in the OVX group (P<0.001). Cortical bone porosity 
in the vertebral body and femoral neck was greater in the OVX 
group when compared with the SHAM group (P<0.05). In 
addition, mechanical testing revealed a statistically significant 
difference between the vertebral bodies of the OVX group and 

the SHAM group. In conclusion, the present study demonstrated 
that an ovariectomy was able to induce significant osteoporosis 
and deterioration of mechanical properties in the bones of goats.

Introduction

Osteoporosis is one of the main geriatric problems worldwide, 
occurring frequently in postmenopausal females (1), while post-
menopausal osteoporosis is a common systemic skeletal system 
disease occurring in middle‑aged females. The functional 
decline of the ovaries leads to decreased estrogen levels, which 
triggers osteoporotic changes  (2). Osteoporosis becomes a 
clinical issue when fragility fractures occur in weakened bones. 
Osteoporotic fractures of the hip and spine can lead to serious 
complications, including loss of mobility and independence, 
and even mortality. With the aging of a large portion of the 
worldwide population, considerable sums of money are spent 
managing osteoporosis and associated fractures (3,4).

A large portion of osteoporosis research is aimed at preven-
tion, medical treatment of low bone mass and surgical treatment 
of osteoporotic fractures. Thus, large animal models that accu-
rately portray human osteoporotic changes are required for these 
studies. In previous studies, rats (5), large osteopenic animal 
models, such as nonhuman primates and sheep, have been used 
as models (6,7). However, the time required to establish an accu-
rate osteoporosis model is unknown (8‑12). Therefore, the aim 
of the present study was to use locally available Chinese goats to 
establish a large osteopenic animal model through application 
of an ovariectomy (OVX), with a follow‑up period of 24 months.

Materials and methods

Ovariectomized goat animal model. In total, 14  skeletally 
mature female Chinese mountain goats, with a body weight 
between 27 and 32 kg, were used for the study. The goats were 
randomly divided into an ovariectomized group (OVX, n=7) or 
a sham group (SHAM, n=7). The animals were aged 2.5 years, 
and skeletal maturity was determined by radiographical confir-
mation of the closure of the distal femoral and proximal tibia 
growth plates (12). The goats were housed on a farm and cared 
for by a qualified veterinarian during the entire study. Animal 
Research Ethics approval was obtained from the Research Ethics 
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Committee of Shanghai Ninth People's Hospital (Shanghai, 
China). A bilateral ovariectomy was performed under general 
anesthesia, using a standard aseptic surgical technique, on the 
seven goats in the OVX group. The same surgical procedure 
was performed on the seven goats in the SHAM group, without 
the ligation of the oviduct and the excision of the ovary. All the 
goats were housed for 24 months, and no goats were excluded 
from the study due to disease or any other reasons. The develop-
ment of osteopenia was confirmed by measuring the changes in 
bone mineral density (BMD), bone microstructure and altera-
tions in biomechanical properties at several skeletal sites.

Measurement of the serum estrogen concentration. A 20‑ml 
blood sample was collected from the jugular vein of the goats 
at the beginning of study and prior to being euthanized with 
pentobarbital sodium (100 mg/kg, intravenously). After leaving 
the blood samples to stand for 30 min at room temperature, the 
blood was centrifuged for 10 min at 1,000 x g. The serum 
estrogen (pg/ml) concentration was measured using a radio-
immunoassay (RIA) following manufacturer's instructions. 
A gamma counter (University of Science and Technology 
of China, Hefei, China) was employed and RIA kits were 
obtained from the Institute of Radioactive Medicine at Fudan 
University (#1031990; Shanghai, China).

BMD measurement by dual‑energy X‑ray absorptiometry 
(DXA). DXA (Discovery DXA System; Hologic, Bedford, 
MA, USA) was used to measure the BMD (g/cm2) of the first 
to fourth lumber vertebrae, femoral neck, femoral diaphysis 
and tibial diaphysis. The BMD of the vertebral body was 
measured at the baseline and at 24 months after surgery. All 
measurements were obtained by the same individual.

Microstructure analysis by micro‑computed tomography 
(micro‑CT). Vertebral bodies from the goats were isolated 
by carefully removing the surrounding muscles, ligaments 
and intervertebral discs. The femoral head and femoral neck 
bone specimens were subjected to a similar treatment. All 
the samples were scanned using micro‑CT (µCT 80; Scanco 
Medical AG, Brüttisellen, Switzerland) at 70 kVp, 117 mA and 
20‑µm slice thickness. After scanning, a constant volume of 
interest (VOI) centered over the specimen was selected for 
analysis of all the study samples. Three‑dimensional (3‑D) 
images were reconstructed based on the VOI. The bone 
volume fraction (BV/TV; %), trabecular thickness (Tb.Th; 
µm), specific bone surface (BS/BV; %), trabecular number 
(Tb.N; 1/mm), trabecular spacing (Tb.Sp; mm), connectivity 
density (Conn.D; 1/mm3) and structure model index (SMI; %) 
were calculated using the Image Processing Language soft-
ware, version 4.29d (Scanco Medical AG) provided with the 
instrument. The SMI is a topological index used to estimate 
the characteristic form of bone in terms of the plates and rods 
that compose the 3‑D structure. This index assumes integer 
values of 0 and 3 for ideal plates and rods, respectively; for 
a mixed structure containing plates and rods, the value lies 
between 0 and 3 (13). Cortical bone porosity (%) in the verte-
bral body and femoral neck was also measured.

Mechanical testing. Prior to mechanical testing, samples 
were defrosted overnight in a 0.15‑M NaCl solution at 5˚C. 

At 3 h prior to mechanical testing, the samples were removed 
from the refrigerator and allowed to reach room tempera-
ture. A previously described mechanical testing method was 
applied (8), which utilized a testing machine (model 8874; 
Instron Corporation, Norwood, MA, USA). The samples were 
kept moist with a saline‑soaked gauze throughout the experi-
ment. Prior to the cyclic loading the vertebral body, femoral 
head and femoral neck were preloaded to 50 N and cycled for 
200 cycles between 50 and 450 N at 1 Hz for preconditioning. 
Immediately after cyclic loading, the sample was compressed 
under displacement control at a rate of 2 mm/min. During 
compression, load and displacement data were recorded. Each 
specimen was compressed in a longitudinal direction between 
two plates at a rate of 2 mm/min. The test concluded upon 
the failure of the specimen. The ultimate stress and elastic 
modulus were obtained from the stress‑strain curve.

The frozen tibial samples were thawed prior to the 
three‑point bending assessment. The tibia was placed on a 
lateral surface on two rounded support bars spaced 2.4 cm 
apart. A preload was applied at the medial surface of 
the diaphysis by lowering a third rounded bar. A constant 
displacement rate of 2 mm/min was applied until failure 
occurred.

Statistical analysis. All data are expressed as the mean ± stan-
dard deviation. The Student's t‑test was used to compare the 
mean values between the OVX and SHAM groups, while a 
paired t‑test was used to compare the baseline data and the 
data collected at 24 months after surgery. All statistical anal-
yses were performed using a commercial software package 
(SPSS 16.0; SPSS, Inc., Chicago, IL, USA). P<0.05 was consid-
ered to indicate a statistically significant difference.

Results

Serum estrogen levels in the blood. At 24 months after the 
ovariectomy, the serum estrogen levels in the OVX group 
(1.78±1.71 pg/ml) were significantly lower compared with those 
in the SHAM group (19.86±9.24 pg/ml). When compared with 
the baseline levels, the 24‑month estrogen level of the SHAM 
group did not change significantly, whereas a statistically 
significant decrease in the estrogen levels of the OVX group 
was observed (Fig. 1).

Figure 1. Level of E2 in the SHAM and OVX goats at the baseline and at 
24 months after surgery. E2, estradiol; OVX, ovariectomized.
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BMD. At 24 months after the ovariectomy, when compared 
with the SHAM group, the OVX group exhibited a signifi-
cantly reduced BMD in the lumbar spine, femoral neck, 
femoral diaphysis and tibial diaphysis [29.5, 28.5 (P<0.01), 
23 and 28.8% (P<0.05), respectively] (Fig. 2).

Microstructure analysis by micro‑CT. The trabecular 
microstructure of the vertebral body revealed the following 
results. Compared with the SHAM group, the OVX group 
exhibited a significantly decreased BV/TV, Tb.N, Conn.D 
and DA (37.1, 36.7, 17.3  and 16.5%, respectively; P<0.01), 
Tb.Th (0.5%; P<0.05) and significantly increased BS/BV 
and Tb.Sp (37.7 and 62%, respectively; P<0.01). In addition, 
the SMI was lower in the SHAM group compared with the 
OVX group; however, the difference was not statistically 
significant (P>0.05). The BV/TV and DA of the femoral head 
were significantly lower in the OVX group (15.5 and 12.7%, 
respectively; P<0.05) when compared with the SHAM group. 
BS/BV, SMI and Tb.Sp exhibited upward trends, while the 
remaining parameters exhibited a significant downward trend; 
however, no statistically significant differences were observed. 
The Tb.Th and Conn.D of the femoral neck were lower in the 
OVX group compared with the SHAM group, while the other 
parameters showed no significant difference (P<0.05; Fig. 3).

The cortical bone porosity of the vertebral body and 
femoral neck were higher in the OVX group when compared 
with the SHAM group (P<0.05; Fig. 3).

Mechanical testing. At 24  months after the surgery, the 
failure load and elastic modulus of the vertebral body were 
significantly lower in the OVX group compared with the 
SHAM group (P<0.05), with an overall decrease of ~24%. 
The failure load of the femoral head and femoral neck were 
also significantly lower in the OVX group when compared 
with the SHAM group, decreasing by ~30% (P<0.05) and 17% 
(P>0.05), respectively (Fig. 4).

Results of the three‑point bending test revealed that the 
maximum bending load of the tibia in the OVX group was 
less than that in the SHAM group, with a decrease of ~7%; 
however, this difference was not statistically significant 
(P>0.05). The ultimate strength and elastic modulus in the 
OVX group decreased by 4 and 7%; however, the differences 
were not statistically significant (P>0.05; Fig. 5).

Discussion

Loss of bone mass and damaged bone microstructure 
significantly weakens the mechanical strength of the bone. 
Osteoporotic bones are prone to brittle fractures, which seri-
ously threaten the quality of life in elderly female patients (1). 
The pathogenesis of osteoporosis is very complex, and 
research into the condition is expensive and time‑consuming. 
Estrogen plays a fundamental role in skeletal growth and bone 
homeostasis in males and females. In postmenopausal females, 
longitudinal loss of bone mass increases in association with 
reduced levels of endogenous estrogen (8,14). Although marked 
progress has been made in understanding how estrogen defi-
ciency causes bone loss, the mechanisms involved are complex 
and multifaceted (15). Therefore, selecting and establishing 
an ideal experimental animal model is essential for further 
osteoporosis research.

Sheep have been widely used as an animal model in ortho-
pedic research (16), and as osteoporosis models in numerous 
studies (17‑19). However, the time required to establish an accu-
rate osteoporosis model remains inconsistent between studies. 
A number of previous studies (20‑23) have found that bone 
formation in sheep continues to decline between 10 weeks and 
6 months after an ovariectomy, with certain studies reporting 
that the BMD significantly decreases 6 months after an ovari-
ectomy (24); however, other studies have not observed these 
results (25).

A number of scholars have proposed that an osteoporosis 
model can be established within 6 months through the use 
of various testing methods, such as biomechanical testing, 
bone histophotometry analysis or DXA (18,26‑28); however, 
there are limitations, including a small number of samples 
and single specimen testing methods. Recent research has 
demonstrated that the BMD of the vertebral body in ovari-
ectomized sheep exhibits a significant downward trend after 
1 year; however, no statistically significant difference was 
identified when compared with a sham‑control group (18). It 
has been suggested that a short‑term ovariectomized sheep 
model should be defined as an osteopenia model, rather than 
an osteoporosis model (29). Lill et al (12) hypothesized that 
>1 year was required to establish an osteoporosis model using 
an ovariectomy alone. Short‑term ovariectomies are unable 
to guarantee the establishment of an effective osteoporosis 

Figure 2. (A) BMD of the vertebral body at the baseline and at 24 months after surgery. (B) BMD of the FN, FD and TD at 24 months after surgery. BMD, 
bone mineral density; FN, femoral neck; FD, femoral diaphysis; TD, tibial diaphysis; OVX, ovariectomized.

  A   B
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model. Therefore, the time required to establish an osteoporosis 
model remains controversial. In the present study, the changes 
in BMD, bone microstructure and biomechanical properties 
were analyzed in different skeletal locations in ovariectomized 
goats for 24 months to further clarify the time period required 
to establish an effective osteoporosis model.

Since sheep are most fertile in the autumn and winter, 
an increase in hormone levels occurs during these seasons, 
which can affect the result of an ovariectomy. Furthermore, 
the BMD of ewes is influenced by seasons and is generally 
reduced in the winter (30‑32). To account for seasonal influ-
ences, the present study was initiated in July and finished in 
the same season 24 months later. Evaluation of the serum 
estrogen levels is essential for the assessment of the model. 

Johnson et al (25) found that an ovariectomy was unable to 
completely eliminate 17β‑estradiol synthesis (4‑6 pg/ml) in 
sheep. Furthermore, Karch et al (26) found that the normal 
estrogen level in sheep was ~1 pg/ml, and estrogen levels 
were significantly lower following an ovariectomy. The 
results of the present study demonstrated that 24 months 
after an ovariectomy, the serum estrogen levels were 
significantly decreased in the OVX group (1.78±1.71 pg/ml) 
when compared with the SHAM group (19.86±9.24 pg/ml; 
P<0.001).

Geusens  et  al  (29) observed that at 6  months after 
an ovariectomy, bone mass in the femoral neck of sheep 
decreased by between 3 and 9%; however, no statistically 
significant difference was observed when compared with a 

Figure 3. Trabecular microstructure parameters were measured using micro‑computed tomography at 24 months after surgery. (A) BV/TV; (B) BS/BV; 
(C) Conn.D; (D) SMI; (E) DA; (F) Tb.Th; (G) Tb.N; (H) Tb.Sp; and (I) porosity of cortical bone. OVX, ovariectomized; VB, vertebral body; FH, femoral 
head; FN, femoral neck; BV/TV, bone volume fraction; BS/BV, specific bone surface; Conn.D, connectivity density; SMI, structure model index; DA, degree 
of anisotropy; Tb.Th, trabecular thickness; Tb.N, trabecular number; Tb.Sp, trabecular spacing.

  A   B   C

  D   E   F

  I  H  G
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control group (33). Lill et al (9,12) found that following appli-
cation of an ovariectomy and restricted calcium intake, the 
BMD of the radius in sheep decreased by 5.5%. In the study 
by Turner et al  (32), the BMD was shown to decrease by 
3‑8%. These observations indicate that short‑term estrogen 
deficiency can increase bone turnover by up to 10% in an 
ovariectomized sheep model. However, whether short‑term 
ovariectomized sheep can effectively simulate the long‑term 
human postmenopausal process that leads to osteoporosis is 
yet to be determined. A previous study demonstrated that 
limiting calcium and vitamin  D intake can enhance the 
effect of bone mass loss caused by estrogen deficiency (34). 
Food‑induced metabolic acidosis may also enhance the 
effects of an ovariectomy (35). In the present study, long‑term 
estrogen deficiency (2 years) was investigated. The BMDs 
of the lumbar spine, femoral neck and femoral head were 
significantly lower in the OVX group when compared with 
the SHAM group, decreasing by 28.5, 28.8 and 23% (P<0.05), 
respectively. The BMDs of the femoral and tibial shafts were 
also reduced by 15.3 and 30.6%, respectively; however, the 
decreases were not statistically significant when compared 
with those in the SHAM group (P>0.05). Changes in the 
microstructure of the cortical bone play an important role 
in bone quality. Increased cortical bone porosity can lead 
to decreased structural integrity (35) and is closely associ-
ated with the occurrence of fractures  (36). The results 
of the present study revealed that at 24 months after the 
ovariectomy, the cortical bone porosity in the vertebral body 
and femoral neck significantly increased by 6.2±1.7  and 

6.5±2.9%, respectively. These changes may have been caused 
by long‑term estrogen deficiency.

In addition to a reduction in bone mass, the trabec-
ular spatial microstructure is altered during estrogen 
deficiency (37). Bone microstructure is strongly associated 
with the mechanical properties of bone (35), and the measure-
ment of bone microstructure is an important predictor of 
fracture risk  (13). Estrogen deficiency for two years has 
been shown to influence the bone microstructure primarily 
by affecting the SMI  (36,38). However, previously used 
osteoporosis models have been studied for no longer than 
18 months following the ovariectomy  (35). In the present 
study, the observation time was increased to 24 months to 
further investigate the effect of estrogen deficiency on bone 
microstructure. After 24 months, the BV/TV decreased by 
37.1% (P<0.05), while the DA decreased by 16.5% (P<0.001), 
as compared with the SHAM group. The mechanical property 
of bone is mostly determined by the BV/TV and DA. When 
the BV/TV and DA decrease, the mechanical properties also 
decrease. Furthermore, the axial compressive load and elastic 
modulus of the vertebral body were found to be significantly 
lower in the OVX group when compared with the SHAM 
group (P<0.05), with the maximum compressive load reduced 
by ~24%. The important characteristics of trabecular bone 
degeneration include changes to the rod‑like structure and 
the appearance of perforations (40). In the present study, the 
trabecular bone structure became significantly rod‑like at 
24 months after the ovariectomy. In addition, for the verte-
bral body, the SMI in the OVX group increased by 40%, and 

Figure 4. (A) Elastic modulus (MPa) and (B) failure load (N) in compression testing of specimens from the VB, FH and FN. OVX, ovariectomized; VB, 
vertebral body; FH, femoral head; FN, femoral neck.

Figure 5. (A) Maximum bending load (N), (B) ultimate strength (MPa) and (C). elastic modulus in the three‑point bending analysis of specimens from the 
tibial diaphysis. OVX, ovariectomized.
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the BS/BV increased by 37.7% (P<0.001). Furthermore, the 
Tb.N decreased by 36.7% (P<0.01), the Conn.D increased by 
17.3% (P<0.01). In the femoral head, only the BV/TV (P<0.05) 
and DA (P<0.05) decreased significantly in the OVX group 
when compared with the SHAM group; this change was 
proportional to a change in the maximum axial compres-
sion load. When comparing the structure of the femoral 
neck between the OVX and SHAM groups, only the BS/BV, 
Tb.Th and Conn.D were significantly different, whereas the 
mechanical test results revealed no statistically significant 
differences. The parameters of the trabecular microstructure 
changed unevenly, which may have been the result of adaptive 
changes triggered by the decrease in BMD and alterations in 
mechanical properties (41). By reorganizing the trabecular 
direction, the trabecular bone is able to maintain mechanical 
properties. Results of the three‑point bending test revealed 
that the maximum tibial bending loads were lower in the 
OVX group when compared with the SHAM group, showing 
a decrease of 7%; however, the difference was not statistically 
significant (P>0.05). The ultimate strength in the OVX group 
decreased by 4% (P>0.05) when compared with the SHAM 
group, while the elastic modulus decreased by ~7% (P>0.05). 
These decreases may have been caused by the high rate of 
bone turnover triggered by the estrogen deficiency, which 
subsequently increased the porosity of the trabecular bone.

In conclusion, the present study investigated the osteopo-
rosis outcome in goats after extending the estrogen deficiency 
time to 24 months. After 24 months, the OVX goats exhibited 
features of osteoporosis (osteopenia). Therefore, based on the 
results, the following hypotheses can be concluded. Firstly, 
24 months after an ovariectomy in goats, a pathological state 
similar to osteoporosis is produced. Secondly, goats may be a 
suitable animal model for the study of osteoporosis. Finally, a 
reduction in the BMD, alterations in biomechanical properties 
and a change in the microstructure are associated with estrogen 
deficiency. These results may aid the study into the long‑term 
effects of different therapeutic protocols for osteoporosis.
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